On primitive numerical semigroups of genus 10⁻¹

神奈川工科大学・基礎 教養教育センター 米田 二良 (Jiryo Komeda) Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

We investigate whether a primitive numerical semigroup of genus 10 is Weierstrass. There are 89 primitive numerical semigroups of genus 10. We prove that 75 semigroups among them are Weierstrass.

§1. A characterization of a primitive numerical semigroup

Let \mathbb{N}_0 be the additive semigroup of non-negative integers. A subsemigroup H of \mathbb{N}_0 is called a *numerical semigroup* if whose complement $\mathbb{N}_0 \setminus H$ in \mathbb{N}_0 is a finite set. The cardinality of the set $\mathbb{N}_0 \setminus H$ is called the *genus* of H, which is denoted by g(H). Let H be a numerical semigroup. We set $\gamma(H) = \max\{\gamma \in \mathbb{N}_0 \mid \gamma \notin H\}$ and $a(H) = \min\{h > 0 \mid h \in H\}$. A numerical semigroup H is said to be *primitive* if $\gamma(H) < 2a(H)$. A numerical semigroup is called an *n-semigroup* if a(H) = n. For $a_1, \ldots, a_m \in \mathbb{N}_0 \langle a_1, \ldots, a_m \rangle$ denotes the semigroup generated by a_1, \ldots, a_m .

Example. Let $H = \langle 7, 8, 11, 17, 20 \rangle$. Since $\mathbb{N}_0 \setminus H = \{1 \longrightarrow 6, 9, 10, 12, 13\}$, H is a primitive 7-semigroup H of genus 10.

We state some properties of primitive numerical semigroups without proof.

Remark. If H is a primitive n-semigroup of genus g, then we have $\frac{g}{2} + 1 \leq n \leq g+1$.

Remark. For a subset S of \mathbb{N}_0 the following are equivalent:

i) S is a primitive *n*-semigroup.

ii) $\{1, \ldots, n-1\} \subseteq \mathbb{N}_0 \setminus S$ and $\mathbb{N}_0 \setminus S \subseteq \{1, \ldots, n-1\} \cup \{n+1, \ldots, 2n-1\}.$

We want to investigate the number of the primitive numerical semigroups of genus g.

¹This is an abstract and the details will be published elsewhere.

Proposition. Let $\frac{g}{2} + 1 \leq n \leq g + 1$. Then the number $\mathcal{P}_n(g)$ of the primitive n-semigroups of genus g is $_{n-1}C_{q-(n-1)}$

Proposition. Let $\mathcal{P}(g)$ be the number of the primitive numerical semigroups of genus g. Then we have $\sum_{q=1}^{g} {}_{m}C_{g-m}$.

Example. The number of the primitive numerical semigroups of genus 10 is 89, because $\mathcal{P}(10) = \sum_{n=6}^{11} \mathcal{P}_n(10) = \sum_{m=5}^{10} {}_m C_{10-m} = 1 + 15 + 35 + 28 + 9 + 1 = 89.$

$\S 2$. On the weight of a primitive numerical semigroup

We are interested in primitive numerical semigroups of genus 10. We want to explain its reason. In this paper a *curve* C means a complete non-singular irreducible curve over an algebraically closed field k of characteristic 0. For a point P of C we set

$$H(P) = \{n \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = nP\}$$

where k(C) denotes the field of rational functions on C and $(f)_{\infty}$ is the polar divisor of the function f.

Definition. A numerical semigroup H is said to be *Weierstrass* if there is a pointed curve (C, P) such that H = H(P).

Fact. Every primitive numerical semigroup of genus $g \leq 9$ is Weierstrass $(g = 4; [9], 5 \leq g \leq 8; [5], g = 9; [6]).$

We know that a *generic* primitive numerical semigroup is Weierstrass. We want to explain the meaning of *generic*. Let C be a curve of genus g. For every point P of C except the Weierstrass points we have H(P) = $\langle g+1,\ldots,2g+1\rangle$, i.e., $\mathbb{N}_0\setminus H(P)=\{1,\ldots,g\}$. We note that the number of the Weierstrass points is less than or equal to (g-1)g(g+1). We introduce the notion of the weight w(H) of a numerical semigroup H of genus g to indicate the difference between the semigroup $\langle g+1,\ldots,2g+1\rangle$ and H as follows: Let $\mathbb{N}_0 \setminus H = \{\gamma_1 < \cdots < \gamma_g\}$. Then we set $w(H) = \sum_{i=1}^{s} (\gamma_i - i)$. So,

the smaller is the weight w(H), the more generic is H.

Fact. If H is a primitive numerical semigroup with $w(H) \leq g(H) - 1$, then it is Weierstass $(w(H) \leq g(H) - 2$: [2], w(H) = g(H) - 1: [4]).

Thus, it is sufficient to study primitive numerical semigroups H with $w(H) \ge g(H)$ when we investigate whether a primitive numerical semigroup is Weierstrass or not. Here we give the table of the number of primitive numerical semigroups H of genus 10 classified by the minimum positive integer n in H and the weight of H.

n	$\mathcal{P}_n(10)$	$w(H) \leq 9$	$w(H) \geqq 10$
6	1	1	0
7	15	11	4
8	35	20	15
9	28	19	9
10	9	9	0
11	1	1	0
total	89	61	28

Moreover, we give all primitive numerical semigroups of genus 10 with $w(H) \ge 10$.

H	$\mathbb{N}_0 \setminus H$	w(H)
$\langle 7, 8, 9, 19, 20 \rangle$	$\{1 \longrightarrow 6, 10, 11, 12, 13\}$	12
$\langle 7, 8, 10, 19 \rangle$	$\{1 \longrightarrow 6, 9, 11, 12, 13\}$	11
$\langle 7, 8, 11, 17, 20 \rangle$	$\{1 \longrightarrow 6, 9, 10, 12, 13\}$	10
$\langle 7, 9, 10, 15 \rangle$	$\{1 \longrightarrow 6, 8, 11, 12, 13\}$	10
$\langle 8,9,10,11,12 \rangle$	$\{1 \longrightarrow 7, 13, 14, 15\}$	15
$\langle 8,9,10,11,13\rangle$	$\{1 \longrightarrow 7, 12, 14, 15\}$	14
$\langle 8, 9, 10, 11, 14 \rangle$	$\{1 \longrightarrow 7, 12, 13, 15\}$	13
$\langle 8, 9, 10, 11, 15 \rangle$	$\{1 \longrightarrow 7, 12, 13, 14\}$	12
$\langle 8,9,10,12,13 angle$	$\{1 \longrightarrow 7, 11, 14, 15\}$	13
$\langle 8,9,10,12,14 angle$	$\{1 \longrightarrow 7, 11, 13, 15\}$	12
$\langle 8,9,10,12,15 angle$	$\{1 \longrightarrow 7, 11, 13, 14\}$	11
$\langle 8,9,10,13,14\rangle$	$\{1 \longrightarrow 7, 11, 12, 15\}$	11
$\langle 8, 9, 10, 13, 15 \rangle$	$\{1 \longrightarrow 7, 11, 12, 14\}$	10
$\langle 8, 9, 11, 12, 13 \rangle$	$\{1 \longrightarrow 7, 10, 14, 15\}$	12
$\langle 8,9,11,12,14 \rangle$	$\{1 \longrightarrow 7, 10, 13, 15\}$	11
$\langle 8,9,11,12,15 angle$	$\{1 \longrightarrow 7, 10, 13, 14\}$	10
$\langle 8, 9, 11, 13, 14 \rangle$	$\{1 \longrightarrow 7, 10, 12, 15\}$	10

H	$\mathbb{N}_0 ackslash H$	w(H)
$\langle 8,10,11,12,13,17\rangle$	$\{1 \longrightarrow 7, 9, 14, 15\}$	11
$\langle 8,10,11,12,14,17\rangle$	$\{1 \longrightarrow 7, 9, 13, 15\}$	10
$\langle 9, 10, 11, 12, 13, 14, 15 angle$	$\{1 \longrightarrow 8, 16, 17\}$	14
$\langle 9, 10, 11, 12, 13, 14, 16 angle$	$\{1 \longrightarrow 8, 15, 17\}$	13
$\langle 9, 10, 11, 12, 13, 14, 17 angle$	$\{1 \longrightarrow 8, 15, 16\}$	12
$\langle 9, 10, 11, 12, 13, 15, 16 \rangle$	$\{1 \longrightarrow 8, 14, 17\}$	12
$\langle 9, 10, 11, 12, 13, 15, 17 \rangle$	$\{1 \longrightarrow 8, 14, 16\}$	11
$\langle 9, 10, 11, 12, 13, 16, 17 angle$	$\{1 \longrightarrow 8, 14, 15\}$	10
$\langle 9, 10, 11, 12, 14, 15, 16 angle$	$\{1 \longrightarrow 8, 13, 17\}$	11
$\langle 9, 10, 11, 12, 14, 15, 17 angle$	$\{1 \longrightarrow 8, 13, 16\}$	10
$\langle 9, 10, 11, 13, 14, 15, 16 angle$	$\{1 \longrightarrow 8, 12, 17\}$	10

$\S3$. On the Schubert index of a primitive numerical semigroup

We introduce a new notion for describing primitive numerical semigroups. Let $0 \leq \alpha_1 \leq \cdots \leq \alpha_g \leq g-1$ be integers. $\alpha = (\alpha_1, \ldots, \alpha_g)$ is called a Schubert index of genus g. The number $\sum_{i=1}^{g} \alpha_i$ is called the weight of α , which is denoted by $w(\alpha)$. We set $H(\alpha) = \mathbb{N}_0 \setminus G(\alpha)$ where $G(\alpha) =$ $\{\alpha_1 + 1, \alpha_2 + 2, \ldots, \alpha_g + g\}$. The Schubert index α is primitive if $H(\alpha)$ is a primitive numerical semigroup. Let H be a numerical semigroup of genus g. Set $\mathbb{N}_0 \setminus H = \{\gamma_1, \ldots, \gamma_g\}$ and $\alpha(H) = (\gamma_1 - 1, \ldots, \gamma_g - g)$. Then $\alpha(H)$ is a Schubert ndex of genus g. Moreover, $w(H) = w(\alpha(H))$.

Remark. If H is a primitive numerical semigroup, then $\alpha(H)$ is a primitive Schubert index.

Example. For an ordinary point P, i.e., a non-Weierstrass point, of a curve C of genus g we have $\alpha(H(P)) = (0, \ldots, 0) = (0^g)$, because $H(P) = \langle g + 1, g + 2, \ldots, 2g + 1 \rangle$ implies that $\mathbb{N}_0 \setminus H(P) = \{1, 2, \ldots, g\}$.

We want to define a partial order on the set of primitive Schubert indices.

Definition. Let $\alpha = (\alpha_1, \ldots, \alpha_{g-1})$ and $\beta = (\beta_1, \ldots, \beta_g)$ be primitive Schubert indices of genus g-1 and g respectively. We define $\alpha \Longrightarrow \beta$ if one of the following holds.

i) $\alpha_i = \beta_{i+1}$ for any $1 \leq i \leq g-1$,

ii) $1 \leq \exists j \leq g-1$ such that $\alpha_j = \beta_{j+1} - 1$ and $\alpha_i = \beta_{i+1}$ for $\forall i \neq j$.

Example. i) $(0^7, 6, 6) \implies (0^8, 6, 6)$. ii) $(0^6, 2, 4, 4) \implies (0^7, 2, 4, 5)$. iii) $(0^6, 3, 3, 3) \implies (0^6, 1, 3, 3, 3)$.

Definition. Let α and β be primitive Schubert indices. We define $\alpha \leq \beta$ if $\alpha = \beta$ or \exists a sequence $\alpha \Longrightarrow \alpha^{(n)} \Longrightarrow \cdots \Longrightarrow \alpha^{(1)} \Longrightarrow \beta$.

Example. i) $(0^5, 2, 3, 3) \leq (0^6, 1, 3, 3, 3)$, because

$$(0^5, 2, 3, 3) \Longrightarrow (0^6, 3, 3, 3) \Longrightarrow (0^6, 1, 3, 3, 3).$$

ii) $(0^4, 3, 3) \leq (0^8, 4, 6)$, because

 $(0^4,3,3) \Longrightarrow (0^5,3,4) \Longrightarrow (0^6,3,5) \Longrightarrow (0^7,4,5) \Longrightarrow (0^8,4,6).$

Definition. A primitive Schubert index β is minimal if $\exists \alpha$ such that $\alpha \leq \beta$ and $\beta \neq \alpha$.

Example. $(0^4, 3, 3)$, $(0^5, 2, 2, 2, 2)$ and $(0^6, 2, 2, 3, 3)$ are minimal.

Remark. Let α be a primitive Shubert index of genus g. i) If $w(\alpha) \leq g - 2$, then $(0) \leq \alpha$. ii) If $w(\alpha) = g - 1$, then \exists an odd h such that $(0^{\frac{h+1}{2}}, 2^{\frac{h-1}{2}}) \leq \alpha$.

We give the Schubert indices and the properties of all primitive numerical semigroups H of genus 10 with $w(H) \ge 10$.

H	lpha(H)	Property	w(lpha(H))
$\langle 7, 8, 9, 19, 20 angle$	$(0^6, 3^4)$	minimal	12
$\langle 7, 8, 10, 19 \rangle$	$(0^6, 2, 3^3)$	minimal	11
$\langle 7,8,11,17,20 angle$	$(0^6, 2^2, 3^2)$	minimal	10
$\langle 7,9,10,15 angle$	$(0^6, 1, 3^3)$	$\geq (0^5, 2, 3^2)$	10
$\langle 8,9,10,11,12 angle$	$(0^7, 5^3)$	minimal	15
$\langle 8,9,10,11,13 angle$	$(0^7, 4, 5^2)$	minimal	14
$\langle 8,9,10,11,14 angle$	$(0^7, 4^2, 5)$	$\geq (0^6, 4^3)$	13
$\langle 8,9,10,11,15 angle$	$(0^7, 4^3)$	$\geq (0^6, 3, 4^2)$	12
$\langle 8,9,10,12,13 angle$	$(0^7, 3, 5^2)$	minimal	13
$\langle 8,9,10,12,14 angle$	$(0^7, 3, 4, 5)$	$\geqq (0^6, 3, 4^2)$	12
$\langle 8,9,10,12,15 angle$	$(0^7, 3, 4^2)$	$\geqq (0^5, 3^3)$	11
$\langle 8,9,10,13,14 angle$	$(0^7, 3^2, 5)$	$\geqq (0^5, 3^3)$	11
$\langle 8,9,10,13,15 angle$	$(0^7, 3^2, 4)$	$\geq (0^5, 2, 3^2)$	10

Н	$\alpha(H)$	Property	w(lpha(H))
$\langle 8,9,11,12,13 angle$	$(0^7, 2, 5^2)$	minimal	12
$\langle 8,9,11,12,14 angle$	$(0^7, 2, 4, 5)$	$\geq (0^6, 2, 4^2)$	11
$\langle 8,9,11,12,15 angle$	$(0^7, 2, 4, 4)$	$\geqq (0^4, 3^2)$	10
$\langle 8,9,11,13,14 angle$	$(0^7, 2, 3, 5)$	$\geqq (0^5, 2, 3^2)$	10
$\langle 8,10,11,12,13,17 angle$	$(0^7, 1, 5^2)$	$\geqq (0^5, 4^2)$	11
$\langle 8,10,11,12,14,17\rangle$	$(0^7, 1, 4, 5)$	$\geq (0^4, 3^2)$	10
$\langle 9, 10, 11, 12, 13, 14, 15 angle$	$(0^8, 7^2)$	minimal	14
$\langle 9, 10, 11, 12, 13, 14, 16 angle$	$(0^8, 6, 7)$	$\geq (0^7, 6^2)$	13
$\langle 9, 10, 11, 12, 13, 14, 17 angle$	$(0^8, 6^2)$	$\geq (0^{6}, 5^{2})$	12
$\langle 9, 10, 11, 12, 13, 15, 16 angle$	$(0^8, 5, 7)$	$\geqq (0^6, 5^2)$	12
$\langle 9, 10, 11, 12, 13, 15, 17 angle$	$(0^8, 5, 6)$	$\geqq (0^5, 4^2)$	11
$\langle 9, 10, 11, 12, 13, 16, 17 angle$	$(0^8, 5^2)$	$\geqq (0^4, 3^2)$	10
$\langle 9, 10, 11, 12, 14, 15, 16 \rangle$	$(0^{8}, 4, 7)$	$\geq (0^5, 4^2)$	11
$\langle 9, 10, 11, 12, 14, 15, 17 angle$	$(0^8, 4, 6)$	$\geqq (0^4, 3^2)$	10
$\langle 9, 10, 11, 13, 14, 15, 16 angle$	$(0^8, 3, 7)$	$\geqq (0^4, 3^2)$	10

§4. On the moduli space \mathcal{M}_H

Definition. Let $\mathcal{M}_{g,1}$ be the moduli space of pointed curves of genus g. Let α be a primitive Schubert index of genus g. We set

$$\mathcal{C}_{\alpha} = \{ (C, P) \in \mathcal{M}_{g,1} \mid H(P) = H(\alpha) \}.$$

We say that α is *dimensionally proper* if there is an open subset U of $\mathcal{M}_{g,1}$ such that $\mathcal{C}_{\alpha} \cap U$ is a non-empty set with codimension $w(\alpha)$ in U.

Fact. Let $\alpha \leq \beta$ be primitive Schubert indices. If α is dimensionally proper, so is β ([2]).

Remark. The primitive Schubert index (0^g) of genus g is dimensionally proper. Hence, if α is a primitive Schubert index of genus g with $w(\alpha) \leq g-2$, then it is dimensionally proper, which implies that every primitive numerical semigroup of genus g with $w(H) \leq g-2$ is Weierstrass.

Fact. i) For any odd h the index $(0^{\frac{h+1}{2}}, 2^{\frac{h-1}{2}})$ is dimensionally proper. Hence, every primitive numerical semigroup H of genus g with w(H) = g - 1 is Weierstrass ([4]).

ii) $(0^4, 3^2)$ is dimensionally proper ([10],[5]).

iii) $(0^5, 4^2)$ is dimensionally proper ([10]). iv) $(0^6, 5^2)$ is dimensionally proper ([6]).

Fact. If H is a numerical semigroup of genus g with $\alpha(H) = (0^n, l^{g-n})$, then it is Weierstrass ([3]).

Using the above facts we get the following table which shows that certain semigroups are Weierstrass. In the table below \triangle means that the semigroup will be proved to be Weierstrass in the forthcoming paper.

Н	$\alpha(H)$	Property	$u(\alpha(H))$	Waiarstrago
(7, 8, 9, 19, 20)	$(0^{6} 3^{4})$	minimal	$\frac{\omega(u(\Pi))}{12}$	Weierstruss
(7 8 10 19)	(0, 0)	minimal	11	
/7 8 11 17 20	(0, 2, 3)	munuu		!
	$(0^{\circ}, 2^{\circ}, 3^{\circ})$	minimal	10	?
	$(0^{\circ}, 1, 3^{\circ})$	$\leq (0^{\mathfrak{s}}, 2, 3^{\mathfrak{z}})$	10	?
$\langle 8, 9, 10, 11, 12 \rangle$	$(0', 5^3)$	minimal	15	0
(8,9,10,11,13)	$(0^7, 4, 5^2)$	minimal	14	Δ
$\langle 8, 9, 10, 11, 14 \rangle$	$(0^7, 4^2, 5)$	$\geqq (0^6, 4^3)$	13	Δ
$\langle 8,9,10,11,15 angle$	$(0^7, 4^3)$	$\geqq (0^6, 3, 4^2)$	12	0
$\langle 8,9,10,12,13 angle$	$(0^7, 3, 5^2)$	minimal	13	?
$\langle 8,9,10,12,14 angle$	$(0^7, 3, 4, 5)$	$\geq (0^6, 3, 4^2)$	12	?
$\langle 8,9,10,12,15 angle$	$(0^7, 3, 4^2)$	$\geqq (0^5, 3^3)$	11	Δ
$\langle 8,9,10,13,14 angle$	$(0^7, 3^2, 5)$	$\geqq (0^5, 3^3)$	11	?
$\langle 8,9,10,13,15 angle$	$(0^7, 3^2, 4)$	$\geqq (0^5, 2, 3^2)$	10	?
$\langle 8,9,11,12,13 angle$	$(0^7, 2, 5^2)$	minimal	12	?
$\langle 8,9,11,12,14 angle$	$(0^7, 2, 4, 5)$	$\geq (0^6, 2, 4^2)$	11	?
$\langle 8,9,11,12,15 angle$	$(0^7, 2, 4, 4)$	$\geq (0^4, 3^2)$	10	0
$\langle 8,9,11,13,14 angle$	$(0^7, 2, 3, 5)$	$\geqq (0^5, 2, 3^2)$	10	$\overline{\Delta}$
$\langle 8, 10, 11, 12, 13, 17 angle$	$(0^7, 1, 5^2)$	$\geq (0^5, 4^2)$	11	0
$\langle 8, 10, 11, 12, 14, 17 \rangle$	$(0^7, 1, 4, 5)$	$\geqq (0^4, 3^2)$	10	Ō
$\langle 9, 10, 11, 12, 13, 14, 15 \rangle$	$(0^8, 7^2)$	minimal	14	0
$\langle 9, 10, 11, 12, 13, 14, 16 angle$	$(0^8, 6, 7)$	$\geqq (0^7, 6^2)$	13	$\overline{\Delta}$
$\langle 9, 10, 11, 12, 13, 14, 17 angle$	$(0^8, 6^2)$	$\geqq (0^6, 5^2)$	12	0
$\langle 9, 10, 11, 12, 13, 15, 16 \rangle$	$(0^8, 5, 7)$	$\geqq (0^6, 5^2)$	12	0
$\langle 9, 10, 11, 12, 13, 15, 17 angle$	$(0^8, 5, 6)$	$\geq (0^5, 4^2)$	11	Ŏ
$\langle 9, 10, 11, 12, 13, 16, 17 angle$	$(0^8, 5^2)$	$\geqq (0^4, 3^2)$	10	Ō
$\langle 9, 10, 11, 12, 14, 15, 16 angle$	$(\overline{0^8}, 4, 7)$	$\geqq (0^5, 4^2)$	11	Ō

Н	$\alpha(H)$	Property	$w(\alpha(H))$	Weierstrass
$\langle 9, 10, 11, 12, 14, 15, 17 angle$	$(0^8, 4, 6)$	$\geqq (0^4, 3^2)$	10	0
$\langle 9, 10, 11, 13, 14, 15, 16 angle$	$(0^8, 3, 7)$	$\geq (0^4, 3^2)$	10	0

Let H_1 and H_2 be primitive numerical semigroups. We define $H_1 \leq H_2$ by $\alpha(H_1) \leq \alpha(H_2)$.

Problem 1. Let H_0 be a Weierstrass primitive semigroup. If H is a primitive numerical semigroup with $H_0 \leq H$, then is it Weierstrass ? i.e., $\forall H_0 =$ "Wei" $\leq H =$ "Wei" ?

Definition. Let H be a numerical semigroup of genus g. For any $m \ge 2$ we set

$$L_m(H) = \{\gamma_1 + \cdots + \gamma_m \mid \gamma_i \in \mathbb{N}_0 \backslash H , \forall i\}.$$

We say that H is quasi-Weierstrass if $\sharp L_m(H) \leq (2m-1)(g-1)$ for $\forall m \geq 2$.

Fact. If a numerical semigroup H is Weierstrass, then it is quasi-Weierstrass ([1]).

Example A. There exists a primitive numerical semigroup H which is not quasi-Weierstrass such that $H_0 \leq H$ for some quasi-Weierstrass primitive numerical semigroup H_0 , i.e., $\exists H_0 =$ "quasi-Wei" $\leq \exists H =$ "not quasi-Wei".

Example B. There are non-Weierstrass semigroups H which are quasi-Weierstrass ([11]). Up to now all such semigroups H are not primitive.

Problem 2. Every quasi-Weierstrass primitive semigroup is Weierstrass?

Either Problem 1 or Problem 2 is at false, because of Example A. Finally we give the table which shows the situation on our problem ([5], [8], [6], [7]).

Genus	Weierstrass	Unknown
$g \leq 8$	All	None
$g = 9 \land primitive$	All(55)	None
$g = 9 \land non-primitive$	61	2
$g = 10 \land primitive$	75	14

References

- R.O. Buchweitz, On Zariski's criterion for equisingularity and nonsmoothable monomial curves, preprint 113, University of Hannover, 1980.
- [2] D. Eisenbud and J. Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math. 87 (1987) 495-515.
- [3] S.J. Kim, On the existence of Weierstrass gap sequences on trigonal curves, J. Pure Appl. Algebra 63 (1990) 171-180.
- [4] J. Komeda, On primitive Schubert indices of genus g and weight g 1, J. Math. Soc. Japan 43 (1991) 437-445.
- [5] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8 , J. Pure Appl. Algebra 97 (1994) 51-71.
- [6] J. Komeda, Existence of the primitive Weierstrass gap sequences on curves of genus 9, Bol. Soc. Bras. Mat. 30 (1999) 125-137.
- [7] J. Komeda, On numerical semigroups of genus 9, 数理解析研究所講究 録 1503 (2006) 70-75.
- [8] J. Komeda, and A. Ohbuchi, Existence of the non-primitive Weierstrass gap sequences on curves of genus 8, Submitted.
- [9] R. Lax, Gap sequences and moduli in genus 4, Math. Z. 175 (1980) 67-75.
- [10] K.O. Stöhr and P. Viana, Weierstrass gap sequences and moduli varieties of trigonal curves, J. Pure Appl. Algebra 81 (1992) 63-82.
- [11] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39-58.