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A Mathematical Note on the Feynman Path Integral for the
Quantum Electrodynamics
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1 Introduction.

A number of mathematical results on the Feynman path integral for the
quantum mechanics have been obtained. On the other hand, the author doesn’t
know any mathematical results on the Feynman path integral for the quantum
electrodynamics, written as QED from now on. A functional integral repre-
sentation for a non-relativistic QED model with imaginary time was obtained
by Hiroshima (1997) [7] by means of the probabilistic method.

Our aim in the present paper is to give the mathematical definition of the
Feynman path integral for the non-relativistic QED, especially studied in Feyn-
man (1950) [4] and Feynman - Hibbs (1965) [5]. In the present paper the
Fourier series is used as in Fermi (1932) [2], Feynman [4] and Sakurai (1967)
[13], and photons with large momenturh are arbitrarily cut off.

We first give the mathematical definition of the Feynman path integral for

the non-relativistic QED under the constraint condition, whose method is well
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known (cf. (9.7) in [5], (A-7) in [13], (13.10) in Spohn (2004) [14] and (7.38) in
Swanson (1992) [15]). Secondly, without the constraint condition wevgive the
mathematical definition of the Feynman path integral for the non-relativistic
QED, which is given by (9-98) in [5]. The author emphasize that any concrete
definition of (9-98) in [5] is not given. So our result may be completely new.
We also note that our Feynman path integral without the constraint condition
is proved to be equal with the Feynman path integral under the constraint
condition.

Our plan in the present paper is as follows. §2 is devoted to preliminaries.
In §3 we give the mathematical definition of the Feynman path integral for
the non-relativistic QED under the constraint condition and prove that this
Feynman path integral converges. We also state some remarks. In particular,
the expressions of the Hamiltonian operator and etc. by means of the creation
operators and the annihilation operators are given in Remark 3.3. These ex-
pressions are used in many literatures (cf. Gustafson-Sigal (2003) [6], [7], [13]
and [14]). In §4 we give the mathematical definition of the Feynman path in-
tegral for the non-relativistic QED without the constraint condition and prove
that our Feynman path integral Without the constraint condition is equal to
the Feynman path integral under the constraint condition. So, the Feynman
path integral without the constraint condition is also proved to converge from

the result in §3.
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2 Preliminaries.

We consider n charged non-relativistic particles z) € R® (j = 1,2,...,n)
with mass m; > 0 and charge e; € R. Let t € [0,T), ¢(t,z) € R a scalar
potential and A(t,z) € R® a vector potential, respectively. We set

Z = (zV,...,z™) € R,

7 = (20,...,2") e R*.

Then the Lagrangian function for the particles and the electromagnetic field

with
o) = Yo (6 -200) @.1)
and ) ”
jt,z) =Y z? ()6 (z — 2(t)) € R? (2.2)
is given by ”

., . . 0A 0

c (t,—x‘,?,A, A 5=, 5—3—)

- (a0 - [ oty e+ [ 566 At )i
. /R (1B, o) - |B(t,2)I*) dz + Const.

=3 (0P - ot + Less - A2

j=1

+ 51; /R 8 (|E(t,z)|* — |B(¢,z)|*) dz + Const. (2.3)

(cf. [5], [14]), where

1604 8¢
S e o —— —— oam— — 2:4
E=——% "5 B=Vx4 24)
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and we note that the Lagrangian function (2.3) has an arbitrary constant.

As in Fermi [2], Feynman [4] and Sakurai [13] we consider a sufficient large

| Ln Ly L, L, Ls L3
v=[-35]<[-33] <33

and periodic potentials ¢(t,z) and A(t, z) such that

box

V- A(t,z) =0 in [0,T] x R® (the Coulomb gauge) (2.5)
and
f b(t,z)dz = 0, / A(t, )dz = 0. (2.6)
v v
Let |V| = LyLyL3. We set
2r 2w 2w
k:= (Esl, -L—282, —L-;S;;) (31,32, 83 € Z) (27)

and take €;(k) € R® (j = 1,2) such that (e](k), &3 (k), k/|k|) for all k # 0
forms a. set of mutually orthogonal unit vectors and

g(-k) =~k (=12 (2:8)
(cf. p. 448 in Arai 2000 [1]). Then we can expand ¢(t,z) and A(t,z) from

(2.5) and (2.6) into plane waves

Az, {an}) = |Vl C Z{a ke w—.}(k) + agpe®® z—)(k)} (2.9)
k#0
o(z, {an}) = Z pre™ . (2.10)
k;eo
We write
(1) (2)
e = Elk—\/_—g——% 1=1,2), (2.11)

b = oy —idy- (2.12)
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Since A and ¢ are real valued, the relations

1 1 2 2 1 1 2 2
af)k‘— a’fk)’ a’f)k a’l(k)’ ¢! = é), ¢(—):_§c) (2.13)

hold from (2.8). So, we have

Az, {ax}) = V] CZ Z (awe™= + afe=** m) 2 (k)

k40 1=1
/ 2
= éﬂ-czz-—l—(a{;) COSk.x._l.aflz) Sink.m)-éi}(k), (214)
I l k#0 1=1 \/5
é(z, {an}) = 7 }: (6P cosk -z + ¢ sink - z), (2.15)

k40

where aj, denotes the complex conjugate of a).. We also write

P2 = Ze cosk -z, (2.16)
pA(Z) = Ze,- sink-z®. (2.17)
Jj=1

Determining an arbitrary constant in the Lagrangian function (2.3) as fol-
lows, we define £ by

£(7, 2, {an}, {an}, {86)) = \; T4 |52

J=1

lVl Z{Z (‘k|2|¢g)|2 87rp(')(?) ¢§ci))

k#0 \ i=1

K[>

a1z (clk])?la? | helk]
) 2.18
t3 5 > (zm V] 2 (218)

k#0,i,]

16 2Ej=1 e? + 1 Zﬂ - (5) A(:L'U) {aw})
———————— — . x . N
+ 1om c < €, 1k
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Taking account of the constraint condition
k28 = 4mp?  (1=1,2, k #0), (2.19)
roughly V - E = 47p (cf. (9-17) in [5] and (7.38) in [15]), then we have

LT, 7, {an}, {an}) = Z |2

J=1
Z Z eje cosk - (zV) — )
:#z P k2
+ = Ze 20 . A(zD, {ar})
J—l
1 al? _ (clkD?laill? |, helk
+ 2%; ( 2T T oV +— ] (2.20)

3 Results under the constraint condition.

We arbitrarily cut off the terms of large wave numbers k in (2.20). That

is, let M; (j = 1,2, 3) be arbitrary positive integers such that M, < M;. We

consider
= {k= (L P 32,2“ );s§+sg+s§¢o,
1 2
|s1], |82}, s3] < Mj} (3.1)
and write
Aj =: A;U =N}, AN —A; = empty set, A; C Ag. (3.2)

Let N; denotes the number of elements of the set Aj. It follows from (2.13)

that independent variables are ay; := {af,? }rear iy € R (cf. p. 154 in [14]).
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We consider

£, 7 ah (i) = 30 0P

j=1
Z Z eje cosk - (z9) — zW)
J;él ke, lklz
+ = Ze 40 A9, {a})
J—l
> (clkD?al)? | helk]
+3 keégﬂ (2|V| o] T2 (3.3)

in place of L., where A given by (2.14) is replaced with

Vi

Az, {an}) = V] ——cg(x) Z Z (w(al(k)/\/_) cosk -z
keAz 1=1
+9@?/v2)sink - a:) e (k). (3.4)

We suppose ¥(—0) = —9(6) (6 € R). We note that if g = 1 and ¥(8) = 6,
then A = A.

For the sake of simplicity we suppose A’ := A} = A}, = Aj. Let

A:0=m<n<...<7n =T, |Al: —1n<1?.<x(77—'r, 1)-

Let 7 € R3" and ay € RN (N = N;) be fixed. We take arbitrarily
ZO . FE-D g g

and
a®,...,a™ e R,
Then, we write the broken line paths on [0, T] connecting Z® at § = 7 (I =

0,1,...,v, Z® = 7) in order as T a(f) € R*". In the same way we define
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the broken line paths ax/a(0) € R*N on [0, T] for af?,) Yo ,af{f“l) and ay. We

define axa () € R®N by means of (2.13). We write the classical action

~ T - .
5u(T,0; T a, ana) = /0 £o(Ta6), 7 a(0),
ara(6), aan(6))do. (3.5)

THEOREM 3.1. We assume for g(z) and ¥(0) in (3.4) that for any l =

1,2,... and any multi-indez a there exist constants §; > 0 and §, > 0 satisfying

165(8)| < Ci(1+16))""*), 6 e R
and
18029(z)| < Ca(l + |z|)~(*%), 2 € RS,

respectively. Let f(Z,an) € L2(R¥4N). We write

5 AN
s ) o
sy Vomik(n —no) [ 3\ 2lViwih(n — 7o)
x Os — // (expih—lgc(T,O; 7A,GAA)> f(?A(O),
aA,A(O))d?<°> o d 2@ VdgQ - dall (3.6)

as (Ca(T,0)f) (Z, an’) or / / (exp ih~5.(7,0; T, ana) ) £ (T a(0), awa(0))
X DG aDaaa. Then, as |A| tends to 0, the function (Ca(T',0)f) (Z,an) con-
verges to the so-called Feynman path integral / / (exp ih‘IS'c(T, 0; Tf, aA) f(
7(0),apn (0)D¢Day in LEHRHN).  In addition, this limit satisfies the

Schrodinger type equation

ih%u(t) — H(t)u(t), w(0) = f, 3.7)
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where
"1 |h & € ~. . 2

(t) Z 2m,- i ax(j) c Az , @A)
Z Z ejez cosk - ((L‘(j) — 3:(1))
j#l k€A k|2

\4 (h 9 ) PCLII hclk[
+ A - (3.8
keAZ’,i,l { 2 \i8aY) 2V I )

Remark 3.1. We suppose Ay C A;. Then the same assertion as in Theorem

3.1 holds.

Remark 3.2. We note about the second term in (3.8) that we have

. (20 — 0
lim lim Z Z ejeicosk - (x z)

L1,L3,L3—00 My—oo ]Vl prrivyy |k|?
€;j€ . /( p3n
=3 Z o — o] S'(R%™) (3.9)

as in [2] and [5] by means of

1

. 1
tk-x 2 — : ! 3
o /e /kfPdk = 5~ in S'(R®).

1
|z|

Remark 3.3. In many literatures (cf. [6], [7], [13] and [14]) the Hamiltonian
operator H(t) defined by (3.8), the momentum operator and etc. are given by
means of the creation operators and the annihilation operators. In this remark

we give the expressions of H(t), the momentum operator and etc. by means

of the creation operators and the annihilation operators.
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Let’s define
&f,? =1 Z)Jzzllc[ <%5‘Z(i) Zﬂf‘l l(;c))
2i!z‘cfllk| (haff,? + T&[I 1('?) ~ (8.10)
N = ;—Tz"‘&g)' (3.11)

Then, we call a;; the annihilation operators and their adjoint operators &I',c the
creation operators. The operators &y, and d/, sastisfy the commutator relations
well known (cf. (2.26) in [13]). We can write the last term of H(t) defined by
(3.8) as

2
1 \4 (clk])? | |2 _ helk|
EEA:Z{ 2 (z 3,11;3) oW l“*k 2
= ) helk|afau. | (3.12)
keA,l

The vector potential A(z, {a}) defined by (2.9) or (2.14), where the sum of

k is taken over A,, is given by the expression

/47" 1 s ika | At a—ibT) =P (L
A(m {alk} (alke"“ T+ ;€ ) (] (k) (313)
keA 1— v/ 2clk]

We see that

o 17 Rl Bl (7 4") )
o= ]] 2mh|V] xp{ 2RIV (“"c + i )

keA’ )

is the ground state of Hyaq, called vacuum, whose energy is 0, i.e.

Hpq¥o =0
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. [2¢|k| . N
a4, Yo = —ﬁi—%alkwo, awVWo =0 (3.14)

(cf. Problem 9-8 in [5]). The function Wy := (a5,)" ¥ (0’ = 1,2,...), which

and satisfies

can be written in the concrete from (3.10) and (3.11), called n’ photons with

the momentum hk and the polarization state 1 (cf. [13]), satisfies

(Z &Lc&lk) Uprikr = ' Wroyar, (3.15)

keA,l
(Z hka{ka,k) o = 1 (hk') Cnrppr (3.16)
k€A
and /
Hrad\I/nlykr = n'(hc|k’|)\Ilnryk: (3.17)

from (3.14) and the commutation relations. We note that we assumed / Adz =
0, i.e. al((i)) =0 (i,1 = 1,2) in (2.6). The operators defined by the left hand
side of (3.15) and (3.16) are called the number operator and the momentum

operator, respectively (cf. [13]).

Remark 3.4. In many literaturs (cf. [5], [13] and [14]) an arbitrary constant
in the Lagrangian function (2.3) is determined to be 0. Consequently, the
term (1/2) Y7, €3/|z? — 2| appears in (3.9) and the ground state energy
of Hyaq i8 3 xcp iclkl|/2, which tends to infinity when Mj tends to infinity.
In the present paper we determined an arbitrary constant in (2.3) by (2.18).
Consequently, we could see that the term (1/2) 3°7_; €2/|z¢) —zU)| disappears

in (3.9) and that the ground state energy of H:.q becomes 0.
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Remark 3.5. We consider the external electromagnetic field Eex (¢, z) = (Fex1,
Fex2, Fex3) € R? and Bey(t, ) = (Bex1, Bex2, Bexa) € R3. We assume as in Ichi-

nose [8] that for any a # 0 there exist constants C, and §, > 0 satisfying
|02 Eex;(t,Z)| < Ca, | = 1, |82 Bex;(t, z)| < Ca(l + |z])~(+0)

(1=1,2,3)in [0,T] x R™. Let ¢ex(t,7) € R and A (t,z) € R? be the electro-
magnetic potential to E.x and Be,. We replace A(z, {ax}) in (3.3) and (3.8)
with A(z, {ai}) + X7_, Aex(t, ). Moreover we add — >_7_,; €;@ex(t, 1) to

(3.3) and 37, e;dex(t, 1)) to (3.8), respectively. Then, the same assertion as
in Theorem 3.1 holds.

The outline of the proof of Theorem 3.1. Let ||f|| denote the L? norm for

a function f(7,as) on RN, For a = 1,2,... we consider the weighted

Sobolev spaces

B* = {f(@,an) € LX(R*™*N); ||fllse := || FlI+
}:(Ilm"f |+ |(R8e)*F1) < 00}, 2 = (T, an). (3.18)

jal=a
We set B® = L2. Then, we can prove:
(1) There exist constants p* > 0 and K, > 0 (a = 0,1,2,...) such that for

0 <t <T we have

ICA(,0)fllge < €T || fllpe, 0 < ]A| < %, (3.19)

where Ca (t,0)f was defined by (3.6).

(2) There exists a constant M > 2 such that for <¢,t' <T and a =0,1, 2,...
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we have

h(Cat,0)f = Ca(t,00) ~ [ HO)Ca(®,05ds

Be
< CaV/|Allt = ||| fllpotr, 0 <|A] < p¥, (3.20)

where H(t) is the Hamiltonian operator defined by (3.8).
We have

ICa(2,0)f = Ca(t',0)fll g < Comst.[t — ¢'||| ]| pa+aa (3.21)

from (3.19) and (3.20). It follows from the Rellich criterion (cf. [12]) that
the embedding map from B°+? — B%*M jg compact. Let f € Bo+2M,
Then we can apply the abstract Ascoli-Arzerad theorem to {Ca(t,0)f}, in
C°([0,T); B>*M) from the compactness and the equicontinuity (3.21). Con-
sequently, for any sequence {A(n)}22, such that lim,_,. |A(n)| = 0, we can
choose a subsequence {A(n;)}2; such that there exists lim;_ o Ca(n,)(t,0)f
uniformly in C°([0, T]; B®t™). This limit satisfies the Schrédinger type equa-
tion (3.7) from (3.20). Hence, we can prove Theorem 3.1 by means of the
uniqueness of solutions to (3.7), and (3.19) just above. See Ichinose [10] and

[11] for details.
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4 Results without the constraint condition.

In place of £ expressed by (2.18) we consider

n

L2, 72, {an}, {au}, {e}) = Z T21|¢(1)|2

Jj=1

i 5 (S5 (st -2 )

ke,

16 2 =6 | L I~ ) Al
+ 167 T +-5§ e; £ - A(z"Y, {aw})
=1

1 612 (clkl)lalpl? | helk]
+35 D (2|V| BT 7 (+1)

keAs,i,l

by means of (3.4) as in ﬁc, where we suppose A; C As. For the sake of
simplicity we again suppose A’ := A}] = Aj = A3 as in Theorem 3.1.

Let T a(0) € R*, ana(8) € RN and apa(f) € RPN be the broken line paths
defined before. Let & = {5“) _ €Rfork €N Teke 20 7™ . and
£k("*1) in R? arbitrarily. Let py : (p,c ), p?) from (2.16) and (2.17). Then,
we define the path

Pralf) == —)(l) + 471’%?3{;;(9)) €ER? n1<0<m (4.2)

(l = 1, 2, ceey V), where ¢kA(0) = lima__>o+0 ¢kA(9) We set ¢A'A(0) = {d’kA(o)}keAl
€ RN We define ¢pa(f) € R*N by means of (2.13). Let S(T,0; 7 a,ann, Pra)
be the classical action for £(Z, '?, {aw}, {a}; {Pc})-

THEOREM 4.1. Let f(Z,ay) € B*(R*N) (a = 0,1,...). Then as a
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function in B*(R3+4N) we see that

(J =11 \/Zﬂ’zh(n — T 1) ) [I{,g, (_Zlki;:;—l-vrlg__l))

1
X \/2|V|1rih('rz —— }Os—/ / exp ih~15(T, 0;

7 a,aaa, ¢AA)) F(Za(0),apa(0)dZ@...d472 %D

x a0 - day™ [ d L OdE W .. dg D (4.3)
keA’

s equal to

/ (exp ih™15,(T, 0; 7 a, aAA))

x f (T a(0),ana(0)) DT aDana

defined by (3.6) in Theorem 3.1. So it follows from Theorem 8.1 that as |A| —
0, then (4.3) converges to the Feynman path integral

/// (exp ih*S(T,0; 7, aa, ¢A)> 7 (7(0),ar(0) DZDarnDen, (4.4)

which satisfies the Schrodinger type equation (3.7). This expression (4.4) is
given in §9-8 in Feynman-Hibbs [5], though a concrete definition is not given

there.

Remark 4.1. As was noted in the introduction, the constraint condition

(2.19) isn’t needed in Theorem 4.1 above.

Remark 4.2. We get the similar assertions for (4.3) as in Theorem 4.1 under

the assumptions of Remark 3.1 and Remark 3.5, respectively.
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The outline of the proof. Substitute (4.2) into [I(?A(é?), 7 Aa(6),aaa(9),
dAA(H), ¢AA(9)) and use

\/ i/ e’ dr =1 (a > 0).
i J oo

Then we can prove Theorem 4.1 by means of the theory of the pseudo-differential

operators. See Ichinose {9] and [11] for details.
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