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1. Introduction and main result

In this article, we survey the results in {13, 14, 15]. In those papers, we study the one-
dimensional Schrédinger operatosr with singular potentials. In order to explain the moti-
vation of our study, we describe its background. Such operators plays an important role
in solid state physics (see [10]) and have been studied in numerous work [1, 2, 5, 6, 8,
11, 16, 17]. In 1931, Kronig and Penney introduced the Hamiltonians which is formally
expressed as

L, :—%-+ﬂ Z é(x —2xl) in L%*(R),

l=—00

where §(z) is the Dirac delta function at the origin and 8 € R\ {0}. The precise definition
of L, is given through the boundary conditions on the lattice 27Z as follows.

(L)e) =~ 3(@), @ €R\2nZ,

Dom(L;) = { y € H*(R \ 27Z) ( 5'((21%)) ) - (ll’ (1) ) ( 1‘111'((:;:%)) ) ,

for z€2rZ

where H?(D) denotes the Sobolev space of order 2 on an open set D C R. This operator
is the Hamiltonian for an electron in a one-dimensional crystal and is called Kronig-
Penney Hamiltonian. The Dirac delta function is the most typical point interaction. The
d-interaction was widely generalized. In [5, 6], Gesztesy, Holden, and Kirsch inspired a
new class of point interactions. They syudied the operator in L?(R) of the form

(La)(®) = ~3(@), = € R\ 202,
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Dom(Ly) = { y € H*(R \ 27Z) (.5'((21%)) ) - ( (1) f ) ( 5’((2:%)) )

for z€2nZ
This operator has the formal expression
Ly, = & + 6 i 0'(z —2nl) in L*(R).
dz?

l=—00

In [16] , Seba found that the domain of any self-adjoint extension of (—d?/dz?)|cem\(0})
in L?(R) of coupled type is expressed as ‘

(2 ) —ea( MY )
y'(+0) y'(-0)
with A € SL(2,R), c € C, and [c| = 1, where SL(2,R) denotes the special linear group

(see also [2] and [1, Section K.1.4]). In [8], Hughes gave the Floquet-Bloch decomposition

of the Schrédinger operator in L?(R) with generalized point interaction on a lattice 27Z
defined as

{y € H*(R\ {0})

(Lay)(z) = —giy(x), z € R\ 27Z,

Dom(Ls) = { y € H*(R\ 2r2) ( 3’((21(()))) ) - CA( 3'((2;:%)) )

for ze€2nZ

These backgrounds motivate us to study the spectra of the one-dimensional Schrédinger
operators with periodic generalized point interactions.

To define the operators, we introduce notations. We fix n € N = {1,2,3,...}. Let
0= £ < K1 < -+ < K, = 27 be a partition of the interval (0, 2r). We put I'; = {r;}+27Z
for ] = 1,2, s, N, and I' = Fl U Pg U---u Fn. For {0,-};-;1 C R and {Aj};-'=1 C SLz(R),
we define the one-dimensional Schrédinger operator H = H (61,605, ...,0,,A1,A,,...,A,)
in L?(R) as follows.

(Hy)(z) = —y"(z), z€R\T, (1.1)

(5((21%)) ) =y ( Vo0 ) } (12)

Dom(H) = {y € H*(R\T)
for zeTy, 7j=1,2,...,n

This operator H is self-adjoint (see [13, Proposition 2.1]). Since the spectrum of H is
independent of {6;}7_; C R (see [14, Proposition 1.1(e)]), we may put

01=02="'=0n=0,
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which does not cause any loss of generality. Since H has 27-periodic point interactions,
the spectrum of H has the band structure. According to the Floquet-Bloch theory, we
label each band of the spectrum of H. For j € N, we designate the jth band of o(H) as

Bj = [Agj-2, Agj1]. (1.3)
The sequence {\,}32, C R satisfies the inequalities |
M< A< A <A< A< S Agjmg < Agj1 S Agj < -+ = 00.
So, the consequtive bands B; and Bj,, are separated by an open interval
Gj = (Aaj-1, Agj),

which is called the jth gap of o(H).

In (13, 14, 15], we mainly dealt with two problems. One of the problems is to give
a characterization of the band edges of o(H) by the rotation number. The other is to
determine the indices of the absent spectral gaps in a class of H.

We quote the main theorem in [14]. For this purpose, we introduce the rotation number.
First, we consider the Schrodinger equation

(2.2 =@, sER\T, (14)
+0,) -0, .
(Ber00)=a(¥28)) sem imtzean 09

where ) is a real parameter. We define the Priifer transform of a nontrivial solution y(z, A)
to (1.4) and (1.5) as follows. Let (r,w) be the polar coordinates of (y,'):

y=rsinw, Yy =rcosw.

Then we call the function w = w(z, ) the Priifer transform of y(z, ). For each j =

1,2,--- ,n, we write _
Aj = ( ‘ZJJ Z;) ~ (1.6)
Then, w(z, \) satisfies the equation
W'(z, ) = cos? w(z, A) + Asinw(z,A), z€R\T 1.7
as well as the boundary conditions
sinw(z + 0, A)(cj sinw(z — 0, A) + d;j cosw(z — 0, A))

= cosw(z + 0, A)(a; sinw(z — 0,A) + bj cosw(z — 0, X)), (1.8)

sgn(sinw(z + 0, X)) = sgn(a; sinw(z — 0, A) + b; cosw(z — 0, A)), (1.9)
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sgn(cosw(z + 0, A)) = sgn(c; sinw(z — 0, ) + d;j cosw(z — 0, A)) (1.10)
forze€Tjand j =1,2,...,n, where
1 if >0,
sgn(z) =< 0 if z=0,
-1 if z<0.

To determine the principal value of w(z + 0,)) by the boundary conditions (1.8), (1.9),
and (1.10), we must select a branch of w(z + 0,)) for z € I". We choose the branch of
w(z +0,)) as

w(z+0,)) —w(z—0,)) € [-m,7) for z €. (1.11)

Thanks to this selection, w(z + 0, A) is uniquely determined. We pick wy € R. Let w =
w(z, A, wp) be the solution of (1.7) — (1.10) subject to the initial condition

W(+0, A) = wp. (1.12)

We define the rotation number of H as

w(2nm + 0, A\, wp) — wp
2nm |

p(N) = lim (1.13)

We recall (1.3). In [14], we proved the following theorem which relates p() to the spectrum
of H.

Theorem 1.1. The following statements (a), (b), and (c) hold true.

(a) The limit on the right-hand side of (1.13) ezists and is independent of the initial value
Wwop.

(b) The function p(\) is non-decreasing on R.

(c) We put

I=#{je{1,2,...,n}| (b;<0) or (b;=0, d;<0)}, (1.14)

where §A stands for the number of the elements of A for a finite set A. Then, forj €N,
we have

Azj_z = ma.x{A eR

j-1 1

Azj——l = min {A eER

o(A) = -?2_ _ %} . (1.16)

We note that (1.15) and (1.16) critically depend on the choice of the branch of w(z +
0,)) for z € T (see [14, Section 4]).

The rotation number has a close relationship to the density of states. In order to see
that, we introduce the density of states for H. For k € N, we put I = I'*N(0, 27k). Let us



128

introduce the generalized Kronig-Penney Hamiltonian in L2((0, 27k)) with the Dirichlet
boundary conditions

y(+0) = y(2wk — 0) = 0.
We define the operator Ha,p a8

(H21rk.Dy)(z) = —y"(z), TE Ik;

y(z+0) \ _ , ( y(—0)
(#e39) -2 (Ve9)
Dom(Horkp) = ¥ € HXR\D)| for g€ r;n(0,27k), j7i=12,...,n,

y(+0) = y(2rk — 0) =0

For n € NU {0}, let A be the (n + 1)st eigenvalue of Hong p. Put
v(k,A) =f{n e NU {0} M. <A}

Then we have the following theorem.

Theorem 1.2, We have

vkN _p) , L

koo 2mk 00w 2r (1.17)

In the physics literatures, the left-hand side of (1.17) is refered to as the density of
states. We will give the outline of the proof of Theorem 1.2 in Section 2; the complete
proof is found in {14].. On the other hand, we did not describe Theorem 1.2 in [14]. So,
we give the complete proof of it in Section 2.

Our study [14] is also motivated by the works [9, 12], which we recall below. Johnson
and Moser found that the rotation number for the one-dimensional Schrédinger operators
with almost periodic potentials has a close relation to its spectrum. They dealt with the
Schrédinger operator L = —d?/dz? + q(z), where ¢ is an almost periodic function with a
frequency module M. They proved that the rotation number a () for L exists and defines
a continuous function in {A € C| ImA < 0}. Furthermore, a()) is constant in an open
interval I in a spectral gap and 2a(\) € M for A € I. In the special case where q is
periodic of period 27, they found that the jth band B; of o(L) is expressed as

B,-:{,\

for j € N. This means that

2 2

I=1 e < l} (1.18)

5\2_,'_2 = max {A eR

j—1

XQJ'_;[ = min {A eER a(A) = %} ’
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where B; = [A3j_2, A2;_1]. Let N(z, A) be the number of the zeroes in [0, ] of a nontrivial
solution to (Ly)(z) = Ap(z). Then they described that

lim N(z,}\) _ lim v(z,A) _ oz()\)’

T—00 T Zz—»00 T T

where v = v(z, ) is the number of eigenvalues of (Ly)(z, A) = Ay(z, M) in [0, z] with the
boundary conditions y(0) = y(z) = 0. In contrast to these results, our theorems involve
the number of the interactions in the fundamental region. :

Next, we introduce the results in [13, 15]. The aim of those papers is to determine
the indices of the absent spectral gaps of H(6,,6,, A1, A3). In [13], we dealt with the case
where

A, A, € SO(2)\ {E,—-FE}, (1.19)
E being the 2 x 2 unit matrix. We put

_ [ cosvy; —sinv; .
A; (sin'yj co8 g ) and +; € (0,7) U (m,2x)

for j = 1,2. We define
A={meN| G,=0}

In [13], we have the following theorem.

Theorem 1.3. Adopt the assumption (1.19). Let k, # .
(a) Suppose that 7, — v, #0 and y; + v, #0 (mod 7). Then we have

A=0.
(b) Suppose that y1 +v2 =0 (mod 7). Then we have

A= {3} if 2€Q,
1 B}u{pk+1 kKeN} if #=1 (pg €N’ and ged(p,g) =1

(c)Assume that v1 — v, =0 and 71 + 72 # 0 (mod 7). We put n; = 72j2/4(x — K;)? for
j € N. Then it holds that

U BN Bia = {77:‘
k=1

In [15], we dealt with the case where

A1A2 =+F and A1,A2 (S SL(2, R) \ {E, —E} (1.20)

J

1 \! o
——2(\/77,-—!- ﬁ) cot k14/M; = tany; and j GN}.

For convenience we rewrite the elements of A, as

b
A1=(Z d).

Then we have the following theorem [15, Theorem 1.2].
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Theorem 1.4. Adopt the assumption (1.20). Let k; # .

(a) Assume that k1/m & Q. Then we have
A= {k+1} if d=a, b#0, —c/b=k?/4 for some k€N,

19 otherwise.
(b) Suppose that k1/2m = q/p, (p,q) € N2, and ged(p, q) = 1. Then we have
A= {1+pj| jeN}U{1+k} if d=a, b#0, -—c/b=k?/4,
- for some k € N, k # 0 (mod p),
{1+pj| jeN} otherwise.

Using Theorem 1.1, we can newly get a theorem. We discuss the spectral gaps of the
Schrodinger operator formally expressed as

L4 = ——% + Z (ﬂ16(x — K1 — 27Tl) + ,32(5’(.’6 - 27rl)) )

l=—00

where x; € (0,27) and B;, 0, € R\ {0} are parameters. In our notatxons this operator is
expressed as Ly = H(0,0, M;, M;), where

(1 0 (1 p
Ml_(ﬂll) and M2—(0 12>

We have the following theorem for the operator Lg.
Theorem 1.5. We suppose that k; # w and

nw KinT 4|7 — Ky Kin® )

(61, 2) & {(|7r — K| tan lr — ry|° mm tan 2|m — K|
Then we have the following statements (i) and (ii).
(i) If either ky & {n/2,37/2} or By # B2 holds, then
A=0.
(ii) If ky € {m/2,3n/2} and B, = B,, then

{2} if ﬂl > 01
{3} i B <O

The study of L, is motivated by the work [17]. In [17], Yoshitomi investigated the
‘ spectral gaps of the operators

neN}.

Py = -—% + l_i (B16(z — k — 2nl) + Bod(z — 271)) in L3(R),
and |
d?

P=—-——+ Z (B18'(z — k — 2wl) + Bpd'(z — 2nl)) in L%(R),

T dr?
l==00

where k € (0,27). For j € N and k € {0,1}, he described that o(P;) has an absent

gap if and only if B; + B2 = 0 and k/7 € Q hold. Furthermore, his theorems say that if

B1 + B2 = 0 and /27 = m/n, (n,m) € N?, and ged(m,n) = 1, then the jth gap of o(P)

is absent if and only if j — k € nN. We prove Theorem 1.5 in Section 3.
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2. Proof of Theorem 1.2 and 1.3

In this section, we describe the proof of Theorem 1.2 and 1.3. We recall (1.6). Let

g; = ﬂ{ke {1,2,...,_7'” (bk <0) or (bk=0, dy. <O)},
do = 07
and
[ Arctan(b;/d;) — gj—1m if 5 >0, d;>0,
Arctan(b;/d;) +m — gj_im, if b; >0, d; <0,
/2 — gjam if >0, d;=0,
Arctan(b,-/d_,-) - T — gj-1T, if bj <0, dj <0,

=N Arctan(b;/d;) — g;_im i b <0, dy>0,
—71'/2 —q;17 if bj <0, dj =0,

—qj—1T if bj =0, dj >0,

| —T — ;T if =0, d;j<0

for j =1,2,...,n, where Arctan(z) € (—n/2,7/2) for z € R. Since

L gj—1 + 1 if (b_, < 0) or (bJ =0, dj < O),
%= gj—1 otherwise,

we have
nj € [~gjm, —gym + ). (2.1)
We pick a v € (0, 7) such that
N <—gn+vy for j=1,2,,...,n.
Then we have the following lemma.
Lemma 2.1. There erists Ay € R such that
~7(gj + pgn) < w(k; + 2mp + 0, A, wo) < —7(gj + Pga) + ¥
Joranype NU{0}, j=1,2,...,n, A < Xy, and wy € [0,7].

To prove this lemma, we recall a fundamental fact on the Priifer transform from 3,
Chapter 8, Theorem 2.1]. Let ¢ < d. For 3 € [0, 7), let = 6(z, A, c, B) be the solution to
the initial value problem

%0 = cos’ 0 + Asin’f on R, (2.2)
0|z=c = ﬂ, (2'3)

Then, it holds that
Jlm 6(d, )¢, ) =0. (2:4)

Moreover, the function 8(d, -, ¢, 8) is strictly monotone increasing on R.
We describe the outline of the proof of Lemma 2.1.
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Outline of the proof of Lemma 2.1. We fix wy € [0,7]. First, we shall show the following
statements by induction on 5 =1,2,...,n.

The limit 3; := )‘lim w(k; — 0, A, wp) € R exists, and we have 8; = —g;_,m.  (2.5)
——00

The function w(x; — 0, -,wp) is strictly monotone increasing on R. (2.6)

It follows by (2.4) that (2.5) and (2.6) are valid for j = 1. We pick m € {1,2,...,n},

arbitrarily. Suppose that (2.5) and (2.6) hold for j = m. Then we can show that the limit
Ay 1= All)r_nww(nm + 0, A, wp)

exists and

am = nm_ . » (2.7)
By (1.8), we have
G tan w(Km — 0, A, wp) + by,
cmtanw(nm - 0: /\,O)()) + dm ]

Combining the monotonicity of w(%.m, — 0, -,wp) and amdy — bmem = 1 with (2.8), we find
that w(km + 0, -,wp) is strictly monotone increasing on R.

Since w(kmy1—0, A, wp) = 0(Km+1, A, Km, w(Km +0, A, wp)), (2.6) is valid for j = m+ 1.
Using the monotonicity of w(#m, -, wp), we infer that there exists A,, € R such that

tan w(km + 0, A, wp) =

(2.8)

—@mT S w(km +0,A,wp) < =g+ (2.9)
for A < A,. By the comparison theorem [3, Chapter 8] and (2.9), we have
0(Km+1, A, Kmy —qmT) < W(kmt1 — 0, A, wo) < 8(Kms1, Ay Kimy —GmT + )
for A < A\,.. Since the equation (2.2) is w-periodic, we derive
Jim 0(kmi1, A my =gmm) = L _0(Km i1, A, Kmy =G +7) = —gumT,
so that

Bm+1 = —qmT.

So, we have proved (2.5) and (2.6) for j = m + 1. Therefore, (2.5) and (2.6) are valid for
j=12,...,n.

Put Ao = min;¢j<a A;. We have

—mg; < w(k; +0,A,wo) < —mg; +y (2.10)

for j =1,2,...,n,and A < Ag.

Using the comparison theorem and wp € [0, ], we notice that

w(k; +0,A,0) < w(k; +0,A,wp) < w(kj+0,A,7).

Therefore the estimate (2.10) is uniform with respect to wg € [0,7].
Since the equations (1.6) — (1.9) is 2#-periodic with respect to z, we have the desired
assertion from (2.10). O
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Proof of Theorem 1.1. By a similar way to the proof of [7, Theorem 2.1], it follows that
(a) and (b) hold. So, we have only to show the statement (c). We recall (1.14). Then, we
notice that ¢, = [. By Lemma 2.1, we have

—mpl < w(2mp + 0, A, wp) < —7pl +
for 0 < wp <7, A < Ay, and p € N. This together with (1.13) implies that

Lm p(\) = —%. (2.11)

A——00

Combining (2.11) with the discussion in the proof of [4, Proposition 2.1.], we get the
assertion (c). a

Proof of Theorem 1.3. By (2.5) and (2.6), we have

AEI_noow(nj —0,\ wo) = —gj1,

and the function w(x; — 0, -,wy) is strictly monotone increasing on R. Since the equation
(1.7) - (1.10) is 2n-periodic with respect to z, we have

lim w(27mp —0,A wp) = —gp_1m — w(p — 1)l
A——o00

and the function w(2mp — 0, -, wyp) is strictly monotone increasing on R for p € N. Because
of the monotonicity of w(2wp — 0,-,wy), there exists Ap,m € R satisfying

w(2mp — 0, Ap;m, wo) = —T{gn—1 + (p — 1)I} + mn

for each m € N. In a similar way to [3, Chapter 8, Theorem 2.1], we see that Apm is the
(m + 1)st eigenvalue of Hymp p.
We fix A € R, arbitrarily. Define

my=f{meN| Am<A}+1.

Then we have
Apmy S A < Apmat1.

By the monotonicity of w(2mp — 0, -,wp), we have
—m{gn-1 + (p — I} + mym < w(27p + 0, A, wo) < —7{gn-1 + (p — 1)} + (mg + 1)m.
This inequality reduces

m < w(2mp + 0, A, wp) +
T

g1+ (@-1I< m, + 1.

So we derive

. w(2mp + 0, A, wp)
m =[ A

] + @n—1 + (p— 1)I.
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By the definition of y(p, A) and m;, we have

w(27p + 0, A, wo)
™

¥(p,A) =m, = } + gn-1+ (p— 1)L (2.12)

On the other hand, we notice that

w(2rp + 0, A, wp) /7 4t p-1)l-1

2pm | 2pm
< [w(2mp + 0, A, wp) /7] L (p—1)
- 2pm 2pm
< w(2mp + 0, A\, wp) /7 4 Ot (»— 1) (2.13)
2pm 2pm
Using (2.12), (2.13), and (1.11), we get (1.17). O

3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. In the first place, we define the monodromy matrix.
For this purpose, we consider the equations

—y'(z,)) = My(z,)), z€R\T, (3.1)
(r)-(3 D (). v oo
(322)-( )R e

where ) is real parameter. These equations have two solutions y;(z, A) and ys(z, \) which
are uniquely determined by the initial conditions

yi(+0,2) =1, 1(+0,4) =0,

and
y2(+0, A) =0, y;(+0’ A) = 1’

respectively. Then, the monodromy matrix of (3.1) - (3.3) is defined as

127+ 0, A (2w 4+ 0, A
M) = (zggzwro, ,\g 'zggszo, ,\; ) (34)

As described in [17, Lemma 4] (see also {13, 15]), we have

B:=|JB«NBin={A€R| MQA)=E or M())=-E}.

k=1
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Put
T =21 — K.

By a direct calculation, we get

y1(27 4+ 0,)) = (1 + B1B2) cos TV Acos k1 VA + (—ﬁ—l - 2\/X> sin 7v/A cos K, VA

v
—BaVAcos TV Asin k; VA — sin TV Asin k1 VA, (3.5)
¥,(2m 4 0,)) = B, cos 7V Acos £, VA — VAsin7v/A cos k1VA — VAcos TV Asin k; VA,
| (3.6)
Y227 +0,)) = B, cos TV cos k1 VA + % sin TV cos k1 VA
+1 + By cos 7V Asin K VA + (é — 2) sin 7v/Asin k; VA, (3.7
VA A
¥4(2m + 0, ) = cos TV Acos k1 VA + % cos 7V Asink;VA —sin7VAsink; VA, (3.8)

In order to establish Theorem 1.5, we show the following theorem.
Theorem 3.1. We suppose that k, # m and

(B1, B2) & {( nr tan fanm 4 — k| tan Kinmw )

"=k 2m—ky| mm 2|7 — Ky}

ne N} . (3.9)

Then we have the following statements (i) and (ii).
(i) If either ky & {m/2,37/2} or B; # B, holds, then we have

B=0.
(ii) If k1 € {7/2,3n/2} and By = B;, then we have
B={1}.

We prove this theorem by using the following lemma.

Lemma 3.2. Assume that k, # 7 and M()\) = £E. Then we have the following state-
ments.

(i) If A # —B1/Ba, then A = B2/B: and cos k3 VA = cosTv/A = 0.

(ii) If A = —B1/Ba, then there ezists n € N such that

nmw Kinm
= tan
A |7 — K4 2| — k4|’
and .
'32 — —4l7l' - H:ﬂ tan rmnm

nw 2| — Ka|’
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Proof. We suppose that M () = +E. We first show that A 7 0. We have

M(0) = ( 1+ :3152 + 617 Ba+T+ (llt—ﬁ,élﬂlzBNI + BikaT )

This means M(0) # +FE because of 1 + ﬁlnl # 1. This is why A # 0.
Since M()\) = £E, we have

n(2r+0,A) —ya(2r + 0,A) = 1 (27 + 0,A) = 227 + 0,A) =
By {#,(27 4+ 0, A)/A + 12(27 + 0, )}V Acos k3, VA = 0, it turns out that

(ﬂl +ﬂ2\/_>cos7' A cos” k1 VA + B1 32 cos VA cos k1 VA sin k1 VA

7
(—5_1- — 52\/') sin 7v/A cos £,V Asin £, VA = 0. (3.10)

On the other hand, it follows by (y1(27 + 0, A) — 4(27 + 0, \)) sin k3 v/X = 0 that
I ﬁz\/_) sin 7V cos k; VA sin k1 VA

_ (ﬁz\/x + —\-/—_X) cos 7V Asin? k; v = 0. (3.11)

B182 cos TV cos k1 vV Asin k1 VX + (

Substituting (3.11) from (3.10), we have

(-% +ﬂz\/X) cos V3 =0,

namely

B
= +BVA=0 or cosTVA=0. . 3.12
7P (3.12)

We show the statement (i). We suppose that A # —8,/f3,. Then it follows by (3.12)
that cos 74/A = 0. This combined with A # 0 and %, (27 + 0, \) = 0 means cos K, VA = 0.
Substituting cos £; VA = cos Tv/A = 0 for y3(27 +0, A) = 0, we have A = 3,/3;. Therefore
we get (i).

Next, we show the statement (ii). We suppose that A = —(3;/3;. Then we have 8; /v A+
BavVA = 0. Substituting 8;/vX = =GV for (3:1(2m + 0,)) — y2(27 + 0,A))/B2 = 0, we
have

sin 7V cos K1 VA

B

3.13

2v/X (3.13)
We prove cos k; v\ A # 0 by contradiction. Seeking a contradiction, we assume cos £; VA =

0. Then it follows by (27 + 0,A) = 0 and A # 0 that cosTvA = 0. Substituting

cos k1 VA = cosTVA = 0 for (27 + 0,)) = 0, we have A = $3,/8,. This contradicts
A = —(,;/B2. Therefore we have cos nls/_ A#0.
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By (3.13) and cos k;v/X # 0, it follows that

sinTV = 5?71_; cos TVA. (3.14)
Inserting 6;/A = — (3, and (3.14) into (3.6), we have
sink; VA = 26‘)_\ cos K, V. (3.15)

By (3.14) and (3.15), it turns out that sin(r — k;)v/A = 0. This implies that 8;/8; < 0
because of A = —f3;/f3; and 7 — k; # 0. Substituting A = —0,/0; and 7 = 2% — K, for
sin(T — k1)V/A = 0, we obtain

8in 2(7 — K;) —% =0
Namely, there exists n € N such that
b1 n?
= .16
Br  4(m — Ky)? (3.16)
On the other hand, Equation (3.15) means
nw Kinm
= tan .
R ey T
This combined with (3.16) implies
4T — Ky Kinm
fa = nm ta'nZ|7r-—/'s1|'
O

Next, we show Theorem 3.1.
Proof of Theorem 3.1. We suppose ; # 7 and (3.9). We define

S = { é@/ﬁl} if coski\/B2/P1 =cosT/B2/Br =0,

otherwise.

Then, Lemma 3.2 says
S CB.

Since S D B, we have B = ) if S = (). Next we consider the case where S # 0. We
have S = {¢}, where £ = (3;/;. Since

M(£) = —sink,; £sinf\/g((1) ﬂz_{g;_),
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and

_ @_1_ B (ﬁz B1)(B2 + 51)
SR - 2

M(¢) = £E is equivalent to

Pa=P1=0 or B2+p1 =0, (3.17)
whence £ € B if and only if (3.17) holds. This together with {{} =S D B implies that

g_{{& ¥ B—-B=0 o B+p=0,
10

otherwise.

If By + B2 = 0, then we have S = 0, so that B = 0. If 5, — 8, = 0, then we obtain

o J {1} if k=%, %TT,
B=5= { 0 otherwise.

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. Theorem 3.1 (i) directly follows Theorem 1.5 (i). So, our last work
is to prove (ii). We suppose k; — /2 and f; = B». Then, Theorem 3.1 (ii) reads B = {1}.
We calculate the rotation number p(1). Substituting A = 1 for (1.7), we have

a%w(m, N=1, zeR\L (3.18)

Since the rotation number is independent of the initial value wp, we may put wy =
Equation (3.18) means w(x; — 0,1,0) = /2. It follows from (1.8)—(1.11) that

Arctan (-1—) if 61>0

w(xk; +0,1,0) =
(s ) {7r+Arctan (ﬁl) if B <0.

Using Equation (3.18) again, we have

Ammn(%)+(%r—nﬂ if B >0,

w(2r —-0,1,0) =
{1r+Arcta.n( )+(21r—n.1) if 61 <0.
Using (1.8)—(1.11) in the case where z = 2w — 0, we have w(27 + 0,1,0) = 27. Since the
equation (1.7) is m-periodic in w, we have w(27nt + 0,1,0) = 27t for t € N. Therefore we
have p(1) = 1.
We recall (1.14). Since
z={1 if By >0,
0 if B <0,

then we arrive at the goal owing to Theorem 1.1.
In a similar way, we obtain (ii) in the case where xk; = 37/2 and B; = . ]
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