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ABSTRACT. Quantum mechanical systoms exhibit an inherently probabilistic
nature upon $mea\epsilon urementwhich\propto cludes$ in principle the singular $dir\propto t$ ob-
servability continual case. Quantum theory of time continuous $measurement_{8}$

and quantum prediction theory, developed by the author on the basis of an
independent-increment model for quantum noise and nondemolition causality
principle in the $80’ s,$ $solve8$ this problem allowing continual quantum predic-
tions and reducing many quantum information and quantum $fe\epsilon dbackcontro[$

problem\S to the $da\epsilon sical$ stochastic one\S . Using explicit $indir\propto tobs\epsilon rvation$

$model\epsilon kr$ diffusive and counting measurements we derive quantum filtering
(prediction) equations to describe the $8tochastic$ evolution of the open quantum
system under the $\infty ntinuous$ partial observation. The $r\infty ulting$ filtering and
Bellman $\Re uationkr$ the diffusive observation $i_{8}$ then applied to the cxplicitly
solvable quantum linear-quadratic-Gaussian (LQG) problem which $empha\epsilon iz\infty$

many similarities and differences with the corresponding classical nonlinear fil-
tering and control problems and $demonstrate8$ microduality between quantum
flltering and classical control.

1. INTRODUCTION
The purpose of this paper is to build on the original work of the author and

prusent an accessible account of the theory of quantum continual measurements,
quantum causality and predictions and optimmal quantum feedback control. Firstly
we introduce the necessary concepts and mathematical tools from modem quantum
theory includin$g$ quantum probability, continuous causal (non-demolition) measure-
ments, quantum stochastic calculus, and quantum $filter\dot{P}g$. However, we first start
from a model example of quantum filtering and the feedback control problem. This
is important because it is one of the few exactly solvable control problems which em-
phasizes the similarities between the corresponding classical and quantum filtering
and control theories. It allows us to set up notations and clearly demonstrates not
only the similarity but also the difference of classical and quantum feedback control
theories which can be observed in microduality $p$rtnciple, a more elaborated duality
between quantum linear Gaussian filtering and classical linear optimal control.
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2. MODEL EXAMPLE: QUANTUM FREE PARTICLE

The quantum linear filtering and optimal quadratic control problem with quan-
tum Gaussian noise was flrst studied and resolved by the author in a $s$eries of quan-
tum measurement and Mtering papers $[5],[28],[16]$ , and based on these quantum
feedback control papers $[6],[8],[3]$ . The simplest example of a single quantum Gauss-
ian oscillator matched with a transmission line, [28] as a complex one-dimensional
channel, was taken as a quantum feedback model in the starting preprint [6] even-
tually published in [4]. However, a more similar to the classical case quantum linear
models require at least two real dimensions instead of a single complex one; and
we may now use the multidimensional quantum LQG control solutions derived in
the last Section of this paper for application on higher dimensional systems which
do not have such complex representation. The optimal control of a continuously
observed quantum free particle with quadratic cost is the simplest such example.

Let $\check{x}$. $=(\check{x}_{1},\check{x}_{2})$ be a pair of phase space operators $\check{x}_{1}=\check{q},\check{x}_{2}=\check{p}$ for a
quantum particle in one dimension, given by selfadjoint operators of position $\check{q}$ and
momentum $\check{p}$ satisfying the canonical commutation relation (CCR)

(2.1) $[q,p]$ $:=\check{q}\beta-\check{p}\check{q}=i\hslash I$ .
Here 1 is the identity operator in a Hilbert space $\mathfrak{h}$ of the CCR representation
(2.1) and $\hslash$ is called Planck constant, which for our purpose could be any poeitive
constant $\hslash\geq 0$ . Let us denote the row of initial expectations $\langle\check{x}_{j}\rangle$ of $\check{x}_{j}$ in a quantum
Gaussian state by $x$. $=(q,p)$ , and also denote the initial dispersions of a and $\phi$ by $\sigma_{q}$

and $\sigma_{p}$ respectively and the initial symmetric covariance ${\rm Re}\langle\check{q}\check{p}\rangle-qp$ by $\sigma_{qp}=\sigma_{pq}$ .
The Hamiltonian $\check{p}^{2}/2\mu$ of the free particle is perturbed by a $\infty ntroUing$ force, using
the hnear potential $\phi(t,\check{q})=\beta u(t)\check{q}$ with $u(t)\in \mathbb{R}$ , as $H(u)=\check{p}^{2}/2\mu+\beta u\check{q}$ where
$\mu>0$ is the mass of the particle. The particle is assumed to be coupled not only to
control which can be realized by a quantum coherent (forward) channel, but also to
a coherent observation (estimation) quantum channel such that its open Heisenberg
dynanioe is described by quantum Langevin equations:

(2.2) $dQ(t)+\lambda Q(t)dt$ $=$ $\frac{1}{\mu}P(t)dt+dW_{q}^{t},$ $Q(O)=\check{q}$

(2.3) $dP(t)+\lambda P(t)dt$ $=$ $dV_{p}^{t}-\beta u(t)dt,$ $P(0)=\check{p}$

Here $\lambda=\frac{1}{2}(\alpha\epsilon+\beta\gamma)$ and $V_{p}^{t}=\alpha V_{e}^{t}+\beta V_{f}^{t},$ $W_{q}^{t}=-\epsilon W_{e}^{t}-\gamma W_{f}^{t}$ are given by two
independent pairs $(V_{o}, W_{o})$ (where $0=e,$ $f$ stands for error and force) of Wiener
noises $V_{o}=\hslash\Im(A_{o}^{+}),$ $W_{o}=2\Re(A_{o}^{+})$ due to the interaction with the coupled
estimation and feedback channels. Note that these noises do not commute,

(24) $W_{q}^{s}V_{p}^{f}-V_{p}^{r}W_{q}^{s}=(r\wedge s)iM$ ,

if $\lambda\neq 0$ , which is necessary and sufficient condition for preservation of the CCR
(2.1) by the system (2.2), (2.3). It can be easily found by substituting the solution

$P(t)= e^{-\lambda t}\check{p}+\int_{0}^{t}e^{(s-t)\lambda}(dV_{p}^{s}-\beta u(s)ds)$

of the second equation (2.3) into the first one (2.2), that

$[Q(r), Q(s)]= \frac{i\hslash}{\mu}|r-s|e^{-\lambda|r-s|}\neq 0$ .
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Therefore the family $\{Q(t)\}$ is incompatible and canmot be represented as a classical
stochastic process and directly observed. However, it can be indirectly observed by
continuous measuring of the coupling operator $\alpha\check{q}$ with an error white noise in
the estimation channel as it was suggested in $[3],[13]$ . $R$ this end we measure
$W_{e}^{t}=2\Re(A_{e}^{+})$ as an evolved input process, after an interaction with the particle,
onto an output classical process given by a commutative family $[Y_{e}^{t} : t>0]$ in the
linear estimation channel

(2.5) $dY_{e}^{t}=\alpha Q(t)dt+dW_{e}^{t}$ .
Here the input process appears as measurement error noise with commutative in-
dependent increments $dW_{e}^{t}$ , representing the standard Wiener process such that
$(dW_{e})^{2}=dt$, but noncommuting with the perturbative force $V_{p}^{t}$ since,

(2.6) $dW_{e}^{t}dV_{p}^{t}=\frac{\alpha\hslash}{2i}dt,$ $dW_{e}^{t}dW_{q}^{t}=-\epsilon dt$.
Thus the measurement error noise $W_{e}$ satisfies the error-perturbation CCR
(2.7) $[V_{p}^{r}, W_{e}^{s}]=(r\wedge s)i\hslash\alpha I$ ,

which is a necessary and sufficient condition for quantum causality (or quantum
nondemolition condition) in the form
(2.8) $[Y_{\epsilon}^{r},Q(s)]=0=\psi_{e}^{f},P(s)]\forall r\leq s$

$requir\dot{i}g$ the statistical predictabihty of quantum hidden in the future trajecto-
$7\dot{Y}es\{X. (s):s\geq t\}$ with respect to the classical observed in the past tmjectories
$\{Y_{e}^{r} : r\leq t\}$ for each $t$ . From th色 we derive the He拍 enberg emor-perturbation unト

certainty $p$rinciple in the precise Belavkin inequality form [28],[16]

(2.9) $( dV_{p}^{t})^{2}\geq(\frac{\alpha\hslash}{2})^{2}dt$ , $(dW_{e}^{t})^{2}=dt$

in terms of the perturbation $V_{p}^{t}$ in (2.3) and standard error $W_{e}^{t}$ in (2.5). Thus we
have the case

(2.10) $j=(\begin{array}{ll}0 1-1 0\end{array})$ $\lambda=(\frac{\alpha}{\frac{\beta}{2}}$ $\frac{i\epsilon}{\not\in^{1}\hslash})$

of the general quantum lmear open system considered in the last Section, where $\lambda$ is
the direct sum $\lambda_{e}\oplus\lambda_{f}$ of two rows $\lambda_{e},\lambda_{f}$ corresponding to $b_{e}=(\alpha, 0),$ $e=(0,\epsilon)$ ,
$b=(\beta,0),$ $e_{f}=(0,\gamma)$ . From this we compute the matrices $g,$ $hsatis\infty g$ the
microduality principle, which are turned to be diagonal,

$g=($ $\zeta_{q}0$
$\zeta_{p}0$ ), $h=(\begin{array}{ll}\eta_{q} 00 \eta_{p}\end{array})$ ,

with eigenvalues $\zeta_{q}=\gamma^{2},$ $\zeta_{p}=(\hslash/2)^{2}(\alpha^{2}+\beta^{2})=\eta_{q},$ $\eta_{p}=\epsilon^{2}$ .

3. QUANTUM FEEDBACK CONTROL EXAMPLE

We can now apply the results obtained in the last Section to demonstrate opti-
mal quantum filtering and optimal feedback control and their microduality on this
model example. The optimal estimates of the position and momentum based on
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a nondemolition observation of free quantum particle via the continuous measure-
ment of $Y_{t}$ , originally derived in $[3],[13]$ in the absence of a control channel, are
then given by the Belavkin Kalnan filter in the form of linear stochastic equations

(3.1) $d\hat{q}_{0}^{t}+\hat{q}_{0}^{t}\lambda dt$ $=$ $\frac{1}{\mu}\hat{p}_{0}^{t}dt+(\alpha\sigma_{q}(t)-\epsilon)d\hat{W}_{e}^{t}$

(3.2) $d\hat{p}_{0}^{t}+\hat{p}_{0}^{t}\lambda dt$ $=$ $\beta u(t)dt+\alpha\sigma_{qp}(t)d\hat{W}_{e}^{t}$.
Here the ostimation innovation process $\hat{W}_{e}^{t}$ describes the gain of information due
to measurement of $Y_{e}^{t}$ given by

(3.3) $d\hat{W}_{\epsilon}^{t}=dY_{e}^{t}-\alpha\hat{q}_{0}^{t}dt$,
and the error covariances satisfy the Riccati equations

$\frac{d}{dt}\sigma_{q}$ $=$ $\zeta_{q}+2(\frac{1}{\mu}\sigma_{qp}+\sigma_{q}\delta)-(\alpha\sigma_{q})^{2}$

(3.4)
$\frac{d}{}\sigma_{qp}\frac{dtd}{dt}\sigma_{p}$ $==$ $\frac{1}{\zeta\mu}\sigma_{p}-(\lambda-\delta)\sigma_{qp}-\alpha^{2}\sigma_{q}\sigma_{qp}p^{-2\lambda\sigma_{p}-(\alpha\sigma_{p})^{2}}$

’

where we denote $\delta=\frac{1}{2}(\alpha\epsilon-\gamma\beta)$ , with initial conditions
$\sigma_{q}(0)=\sigma_{q}$ , $\sigma_{qp}(0)=\sigma_{qp}$ , $\sigma_{p}(0)=\sigma_{p}$ .

The Riccati equations for the error $\infty variance$ in the filter\’e free particle dy-
narnics have an exact solution [13] with profound implications for the ultimate
quantum hmit satisfying the Heisenberg uncertainty relations for the accuracy of
optimal quantum state estimation via the continuous indirect quantum particle
coordinate measurement.

The dual optimal control problem can be found by identifying the corresponding
dual matrices which give the quadratic control parameters

(3.5) $\check{c}(u)$ $=$ $(u-\check{z})^{2}+\eta_{q}\check{q}^{2}+\eta_{p}\check{p}^{2}$ ,
$\check{s}$ $=$ $w_{q}\check{q}^{2}+\omega_{qp}(\check{p}\check{q}+\check{q}\check{p})+w_{p}\check{p}^{2}$

corresponding to the dual output process given by $\check{z}=\gamma p$ . For the linear Gaussian
system this gives the optimal control strategy
(3.6) $u(t)=\beta(\omega_{pq}(t)\hat{p}_{0}^{t}+w_{p}(t)\hat{q}_{0}^{t})$

where the coefficients $w(t)$ are the solutions to the Riccati equatioo

(3.7)
$- \frac{}{dt}\omega_{qp}(t)-\frac{d}{d_{d}t}w_{q}(t)$ $==$ $\frac{\eta_{1}}{\mu}\omega_{q}-(\lambda+\delta)\omega_{qp}-\beta^{2}w_{p}\omega_{qp}q^{-2\lambda\sigma_{q}-(\beta\sigma_{q})^{2}}$

$- \frac{d}{dt}w_{p}(t)$ $=$ $\eta_{p}+2(\frac{1}{\mu}\omega_{qp}-\omega_{p}\delta)-(\beta w_{p})^{2}$

with terminal conditions
$\omega_{p}(T)=\omega_{p}$ , $\omega_{qp}(T)=\omega_{qp}$ , $\omega_{q}(T)=\omega_{q}$ .

Note that in this example, as well as $ident\Phi ing$ the dual matrices by transpo-
sttion and time reversal according to the duality, one must also symplecticly in-
terchange the phase coordinates $(\check{q},\beta)rightarrow(p, q)$ . This is because the matrix of
coefficients a is non-symmetric and nilpotent, so it is dual to its transpose only
when we interchange the coordinates in the dual picture. Thus the optimal coeffi-
cients $\{\omega_{p}, w_{qp},w_{q}\}(t)$ in the quadratic cost-to-go correspond to the minimal error
\infty varianc\’e $\{\sigma_{q},\sigma_{qp}, \sigma_{p}\}(T-t)$ in the dual picture.
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The minimal total cost for the experiment can be obtained by substitution of
these solutions

$S=w_{q}(q^{2}+\sigma_{q})+2w_{qp}(qp+\sigma_{qp})$

(3.8) $+w_{p}(0)(p^{2}+ \sigma_{p})+\int_{0}^{T}(\hslash^{2}\omega_{p}(t)+w_{pq}^{2}(t)\sigma_{q}(t))dt$

$+ \int_{0}^{T}(w_{p}^{2}(t)\sigma_{p}(t)+2\omega_{qp}(t)\omega_{p}(t)\sigma_{pq}(t))dt$

This demonstrates the linear microduality principle in the following specified form
of the table

Filtering $\check{q}|\lambda-\mu^{-1}|\alpha|\epsilon|j^{T}k|gj|\Sigma j$

bntrol$\beta|\overline{\lambda Contro1\beta|\lambda-\mu^{-1}|\beta|\gamma|l^{T}|jh|}$jn
showing the complete symmetry under the time reversal and exchange of $(q,p)$ ,
in which the coordinate observation is seen as completely dual to the feedback of
momentum.

4. QUANTUM DYNAMICS WITH TRAJECTORIES

This.section highlights the differences between quantum and classical systems
and introduces the problem of quantum observation and its solution in the frame-
work of open dynamics. In orthodox quantum mechanics, which treats only closed
quantum dynamics without observations, there is no such problem. However, it
is neaningless to consider quantum feedback control without the solution of this
problem. After the appropriate setting of quantum mechanics with observation is
given, the measurement problem is then restated as a statistical problem of quan-
tum causality; this can be raeolved by optimal dynamical estimation on the output
of an open quantum system called quantum Mtering.

Quantum physics that deals with the unavoidable random nature of the mi-
croworld requires a new, more general, noncommutative thmry of stochastic processes
than the classical one based on Kolmogorov’s axioms. The appropriate quantum
probability theory was developed through the 70s and 80s by Accardi, Belavkin,
Gardiner, Holevo, Hudson and Parthasarthy [29, 5, 7, 2, 30, 31, 32] amongst others.

The essential difference between classical and quantum systems is that classical
states, includmg the mixed states, are defined by probability measures not on prvp-
erties but events. This is because the properties of classical systems are described
by measurable subsets $\Delta\subseteq\Omega$ forming a Boolean $\sigma$-algebra $\mathfrak{U}$ on the space of clas-
sical pure states, the points $\omega\in\Omega$ of a phase space. In principle they all can be
tested simultaneously and identified with the events represented by the indicator
functions $1_{A}(\omega)$ of $\Delta\in \mathfrak{U}$ on the universal observation space $\Omega$ . They are building
blocks for classical random variables described by essentially measurable functions
with respect to a probability measure $\mathbb{P}$ on $\mathfrak{U}$ . The algebra of all such complex func-
tions $a$ : $\Omegaarrow \mathbb{C}$ with pointwise operations is denoted by $A$ , while $L^{p}(\Omega, \mathbb{P})$ with
$p=1,2,\infty$ stands for the subspaces of absolutely integrable, square-integrable and
essentially bounded functions $f,g,$ $b\in A$ respectively. Note that the Banach space
$M=L^{\infty}(\Omega,\mathbb{P})$ is a commutative $C^{*}$-algebra (see Appendix 1.1) of the algebra A
with $involution*:A\ni a\mapsto a^{*}\in A$ defined by the complex conjugation $a’=\overline{a}$.
Moreover, it is $W^{*}$-algebra since $M$ has the preadjoint space $M_{\star}=L^{1}(\Omega,\mathbb{P})$ such
that $M:=M$ with respect to the standard pairing

(4.1) $(a|f):= \int_{\Omega}\overline{a(w)}f(w)\mathbb{P}(d\omega)\equiv\langle a^{*},f\rangle$

defining the expectation on $M_{\star}$ as $E[f]=\langle 1,f\rangle$ .
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In a quantum world, unfortunately, there are incompatible properties correspond-
ing to inconsistent but not orthogonal (i.e. not mutually excluding) questions such
that, if the infimum $P\wedge Q$ is zero, it does not mean that $P\perp Q$ . These questions
cannot be surely answered simultaneously, i.e. tested with simultaneous events on
any universal measurable space $\Omega$ , and they cannot be represented in any Boolean
algebra. Since the incompatibility is measured by noncommutativity of orthopro-
jectors $P$ and $Q$ representing these questions as Hermitian idempotents on a Hilbert
space $\mathcal{H}$ of quantum vector-states. The algebra $A$ generated by all quantum prop-
erties must be noncommutative. The set $\mathfrak{P}(\mathcal{A})$ of all orthoprojectors $P\in \mathcal{A}$, called
prvperty logic of a noncommutative algebra $A$, clearly extends any eventum logic
of commuting orthoprojectors injectively representing the Boolean logic $\mathfrak{U}$ by a
$\sigma$-homomorphism $E$ : $\mathfrak{U}arrow \mathfrak{P}(\mathcal{A})$ such that $\sum E(\Delta_{j})=I$ for any measurable
$\sigma$-partition $\Omega=\sum\Delta_{j}$ . Two normal quantum variables are said to be compatible
if their orthoprojectors commute, and therefore can be represented classically by
measurable figctioo on their joint spectrum space $\Omega$ . However, there is no such $\Omega$

if they do not commute. Since there are many incompatible quantum variables, e.g.
the position and momentum in quantum mechanics, quantum properties cannot be
identified with any commuting set $E(\mathfrak{U})$ representing a Boolean logic $\mathfrak{U}$.
4.1. Quantum causality and predictions. Almost simultaneously with Kol-
mogorov’s functional formulation of classical probabihity theory von Neumann [33]
gave another, more general operator formulation, aiming to lay down the foun-
dation of quantum probability theory. It deals not necessarily with commutative
$W^{*}$-algebras, called von Neumann algebras when they are represented as algebras
of operators on a Hilbert space $\mathcal{H}$ with involution as Hermitian $conjugation*and$
unit as the identity operator $I$ on $\mathcal{H}$ . In order to understand the relation between
these two formulations it is useful to reformulate Kolmogorov’s axioms in terms of
von Neumann’s (vice versa is impossible in the case of noncommutativity of the
operator algebra). Any random variable $a\in M$ can be represented by the diagonal
operator $\hat{a}$ of pointwise multiplication $\hat{a}g=ag$ in the Hilbert space $H=L^{2}(\Omega,\mathbb{P})$

such that the abelian (commutative) operator algebra $\hat{M}=\{\hat{a} : a\in M\}$ is maximal
in the algebra $\mathcal{B}(H)$ of all bounded operators on $H$ in the sense that $\hat{M}=\hat{M}’$ . Here
$\hat{M}’=\{B\in \mathcal{B}(H):[\hat{M},B]\wedge=0\}$ with $[\hat{M} , B]=\{AB-BA:A\in\hat{M}\}$ stands for the
bounded commutant of $M$ , which obviously coincides on $H$ with the commutant
(4.2) $\hat{1}_{\mathfrak{U}}’=\{B : [\hat{1}_{A},B]=0, \Delta\in \mathfrak{U}\}$

of the Boolean algebra $\hat{1}_{a}=\{\hat{1}_{A} : \Delta\in \mathfrak{U}\}$ of $aU$ diagonal orthoprojectors (the
multiplications by $1_{A}$ ) generating $\hat{M}.$ Note that the commutant $B=\mathcal{M}’$ of any
nonmoa $\pi d$ abelian subalgebra $\mathcal{M}\subseteq \mathcal{B}(\mathcal{H})$ is a noncommutative $W^{*}$-algebra with
strict inclusion of $\mathcal{M}$ as the center $\mathcal{B}\cap \mathcal{B}’$ of $\mathcal{B}$. Thus the simple algebra $\mathcal{B}=$

$\mathcal{B}(\mathcal{H})$ is the commutant of the abelian algebra of scalar multipliers $\mathcal{M}=\mathbb{C}I$ which
is generated by the trivial Boolean algebra $\mathfrak{U}=\{\emptyset,\Omega\}$ reproeented by improper
orthoprojectors $P_{\emptyset}=O,$ $P_{\Omega}=I$ . The noncommutative algebra $A$ cannot be
generated by any Boolean algebra of orthoprojectors as the commuting Hermitian
idempotents $P^{2}=P=P^{*}$ in $\mathcal{B}(\mathcal{H})$ .

Quantum causatity, assuming the existence of not only properties but also ob-
servable events, requires that all quantum properties related to present and $fi\iota tuoe$

at each time-instant $t$ must be compatible with all passed events. This makes
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an allowance for simultaneous predictability of incompatible properties upon the
observed events, at least in the statistical sense. However, the usual quantum
mechanics, dealing only with irreducible representations $A=\mathcal{B}(\mathcal{H})$ of quantum
properties and not with the events, is causal only for the trivial eventum algebra of
improper orthoprojectors $\{O,I\}$ on $\mathcal{H}$ . This is why any nontrivial causality requires
an extension of the orthodox framework of quantum mechanics to quantum stochas-
tics unifying it with the framework of classical stochastics in a mimimalistic way
allowing the distinction between the future quantum properties and past claesical
events. This program was completed in $[2, 12]$ on the basis of quantum nondemoli-
tion (QND) principle [7, 8, 15] as an algebraic formulation quantum causality: The
past events, corresponding to the measumble histories $\Delta\in \mathfrak{U}_{t]}$ up to each $t\in \mathbb{R}+$ ,
shotdd be represented in the commutant of a noncommutative subatgebra $\mathcal{A}_{[t}\subseteq \mathcal{A}$

describing the present and juture on a universat Hilbert space $\mathcal{H}$ Thus, instead of
a single noncommutative algebra $A$ extending the eventum $W^{*}$-algebra $\mathcal{M}$ gener-
ated by $E(\mathfrak{U})$ one should consider a decreasing family $(\mathcal{A}_{[t})$ of reduced subalgebras
$\mathcal{A}_{[t}\subseteq A_{\zeta s}\forall s<t$ in the relative commutants $\mathcal{B}_{t}=A\cap E(\mathfrak{U}_{t]})’$ of the past eventum
logics $E(\mathfrak{U}_{t]})=\{E(\Delta) : \Delta\in \mathfrak{U}_{t]}\}$ reresenting the consistent histories of increasing
probability spaces $(\Omega_{t]},\mathfrak{U}_{t]},\mathbb{P}_{t]})$ in nonmaximal abelian $W^{*}$-algebras $\mathcal{M}_{t]}$ generated
by $E(\mathfrak{U}_{t]})$ .

The nondemolition principle requiring the choice of time arrow makes quantum
causality even microscopically irreversible by alowing future okervatioms repre-
sented by decreasing eventum algebras $E(\mathfrak{U}_{t})\subset A_{[t}$ to be incompatible with some
nonaticipating questions $Q$ even if $Q\in A_{[t}$ . Although any projectively increasing
family of classical probability spaces can be obtained by Kolmogorov construction
ffom a single $(\Omega,\mathfrak{U},\mathbb{P})$ with projections $\kappa_{s]}$ : $\Omegaarrow\Omega_{s]}$ inverting the injections
$\kappa_{s]}^{-1}(\mathfrak{U}_{s]})\subseteq\kappa_{t]}^{-1}(\mathfrak{U}_{t]})\subseteq \mathfrak{U}$ for all $s\leq t$ such that $\mathbb{P}_{s]}=\mathbb{P}_{t]}0\kappa_{\epsilon]}^{-1}=\mathbb{P}0\kappa_{s]}^{-1}$. How-
ever, this projective limit may not be compatible with any noncommutative algebra
$A_{[t}$ . Thus the maximal $W^{*}$-algebra $\mathcal{A}=A_{[0}$ , satisfying the compatibihty condi-
tion $A’=\mathcal{M}_{0]}$ with the initial central algebra $\mathcal{M}_{0]}=A\cap A’$ , coincides with the
decomposable algebra $\mathcal{M}_{0]}’$ which is not compatible with the total eventum algebra
$\mathcal{M}=\vee \mathcal{M}_{t]}$ except the case $\mathcal{M}=\mathcal{M}_{0]}$ of absence of innovation $\mathcal{M}_{r]}=\mathcal{M}_{t]}$ for all $r$

and $t$. The latter with $\mathcal{M}=\mathbb{C}I$ is a standard assumption in the orthodox quantum
mechanios dealing in the absence of obervations with the constant $A_{[t}$ equal to
$\mathcal{B}(\mathcal{H})$ . In the nonorthodox quantum mechanics with causal observations the even-
tum algebra $\mathcal{M}$ is nontrivial such that $A_{\mathfrak{l}^{t}}\subseteq \mathcal{M}_{t]}’$ can not simply $\mathcal{B}(\mathcal{H}_{[0})$ for all
$t$ , however we may assume that $\mathcal{M}_{0]}=\mathbb{C}I$ corraeponding to trivial initial history,
$\mathfrak{U}_{01}=\{\emptyset,\Omega\}$ with $\mathbb{P}_{0]}=1$ on a single-point $\Omega_{0]}=\{0\}$ , which allows $A_{[0}=\mathcal{B}(\mathcal{H}_{[0})$ .

Note that since all operators $B\in E(\mathfrak{U}_{t]})’$ commute with $\mathcal{M}_{t]}$ , they are jointly
decomposable, given in the diagonal representation of $\mathcal{M}_{t]}$ by $(\mathfrak{U}_{t]},\mathbb{P}_{t]})$-essentially
bounded functions $B$ : $w\mapsto B(w)$ on $\Omega_{t]}$ with operator values $B(w)\in \mathcal{B}(w)$ on the
Hilbert components $\mathcal{H}(w)$ of the orthogonal decomposition $\int_{\Omega_{ll}}^{\oplus}\mathcal{H}(\omega)\mathbb{P}_{t]}(d\omega)\sim \mathcal{H}$

corresponding to the joint spectral representations

(4.3) $E( \Delta)\simeq\int_{\Omega_{t|}}^{\oplus}1_{A}(w)I(w)\mathbb{P}_{t]}(dw)\equiv I_{t]}(\Delta)$

of commuting orthoprojectors $E(\Delta)$ , A $E\mathfrak{U}_{t]}$ .
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Quantum state (See Appendix 1.2) consistent with the trajectory probability
space $(\Omega,\mathbb{P}, \mathfrak{U})$ is given as the linear positive functional $\langle\varpi, Q\rangle=(\varpi|Q)$ by a
Hermitian-positive $\varpi=\varpi^{*}$ mass-one $\langle\varpi, I\rangle=1$ operator $\varpi\vdash A(\in A$ in usual
or a generalized sens$e$ as affiliated to $\mathcal{A}$) defining the probability measure $\mathbb{P}$ as the
projective hmit of

(4.4) $\mathbb{P}_{t]}(\Delta)=\langle\varpi, E(\Delta)\rangle=\mathbb{P}(\Delta)$ , $\Delta\in \mathfrak{U}_{t]}$

(where $\langle\varpi,B\rangle=$ tr $[B\varpi]$ for $A=\mathcal{B}(\mathcal{H})$ ). It is called the (probability) density
operator for $A$ since it defines the probability $Pr[Q]=\langle\varpi, Q\rangle\in[0,1]$ of any
quantum property described by an orthoprojector $Q\in A$ Since $Q\in \mathfrak{P}(A_{[t})$ is
compatible with each eventum projector $E(\Delta)$ for $\Delta\in \mathfrak{U}_{t]}$ , the property $Q$ is
statistically predictable with respect to all past events due to the existence of $a$

posteriori conditional probability

(4.5) $Pr[Q|\Delta]=\frac{1}{\mathbb{P}(\Delta)}\langle\varpi, QE(\Delta)\rangle\forall\triangle:\mathbb{P}(\Delta)\neq 0$

such that $Pr[Q]=\mathbb{P}(\Delta)Pr[Q|\Delta]+\mathbb{P}(\Delta^{\perp})Pr[Q|\Delta^{\perp}]$ . Note that $\langle\varpi, QE\rangle$ is not
positive and even not real without the compatibihity of $Q$ and $E$. This leads to
the existence of the postentor quantum states $\hat{\varpi}_{[t}$ on $\mathcal{A}_{[t}$ given by the conditional
expectations $\epsilon_{t}$ as normal projections on $W^{*}$-algebras $E(\mathfrak{U}_{t]})’$ onto their centers
$\mathcal{M}_{t]}$ :

(4.6) $\langle\hat{\varpi}_{[t},A\rangle$ $:=\epsilon_{t}(A)\equiv\hat{\varpi}_{[t}^{\star}(A)\forall A\in \mathcal{A}_{[t}$ .
The existence of these posterior states as classical stochastic adapted processes
$\omega\mapsto\varpi_{[t}^{w}$ with density operator values affiliated to the spectral components $A_{[t}(\omega)$

of $A_{[t}$ is established in the folowing theorem.

$Th\infty rem1$ . Let $\varpi$ be a normat state on A. Then the induced states $\varpi_{[t}$ on the
relative commutants $\mathcal{A}_{[t}\subseteq A\cap \mathcal{M}_{t]}’$ of the eventum algebra $\mathcal{M}_{t]}$ are given as clasricd
$e\varphi ectations$

$\langle\varpi_{[t},A\rangle=\int_{\Omega_{\ell l}}\langle\hat{\varpi}_{[t},A\rangle(w)\mathbb{P}_{t]}(d\omega)\equiv E_{\Omega_{1}}[\langle\hat{\varpi}_{[t},A\rangle]$

in terms of the $M_{t]}\sim \mathcal{M}_{t]}$ -valued pairings $(4\cdot 6)$ by

(4.7) $\langle\hat{\varpi}_{\mathfrak{l}^{t}},A\rangle(\omega)=\hat{\varpi}_{[t}^{\star}(A)(w):=\langle\varpi_{[t}^{w},A(\omega)\rangle$

on $A_{[t}(\omega)$ paired with the posterior density operutors $\varpi_{[t}^{\omega}\vdash \mathcal{A}_{[t}(w)$ which are $a.s$.
defined as positive weakly integrable functions of $\omega\in\Omega_{t]}$ .

Proof. Since $\varpi_{\mathfrak{l}^{t}}$ is normal state on $A_{[t}$ , equivalent to the space of essentially
bounded functions on $(\Omega_{t]},\mathfrak{U}_{t]}, \mathbb{P}_{t]})$ with operator values in $A_{[t}(w)\subseteq \mathcal{B}(\omega)$ , it
is uniquely defined as the expectation of (4.7) by an essentially integrable fuhction
$w\nu\varpi_{[t}^{\omega}$ with values afiiliated to $\mathcal{A}_{[t}(w)$ . Each $\varpi_{[t}^{w}$ is a density operator of the
posterior state as the conditional expectations defined on $A_{[t}$ with respect to the
central Abelian subalgebra $\mathcal{M}_{t]}\sim L^{\infty}(\Omega_{t]},\mathbb{P}_{t]})$ by the Radon-Nikodym derivatives

(4.8) $\epsilon_{t}[A|w]:=\lim_{\alpha_{\iota 1}\ni A\backslash \{w\}}\frac{\langle\varpi_{t},AE(\Delta)\rangle}{\mathbb{P}(\Delta)},$ $A\in A_{[t}$

where the limit is understood for almost all $w\in\Omega_{t]}$ in the same way as in the
classical case. 口
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Note that in the most important product case $\mathcal{H}\sim H_{t]}\otimes \mathcal{H}_{[t}$ considered in
next sections, all $\mathcal{H}(\omega)$ with $\omega\in\Omega_{t]}$ , corresponding to a complete in the sense
$H_{t]}=L^{2}(\Omega_{t]},\mathbb{P}_{t]})$ adapted observation, are isomorphic to a single Hilbert space
$\mathcal{H}_{[t}$ of a decreasing family $(\mathcal{H}_{[t})$ such that $B(\omega)\in \mathcal{B}(\mathcal{H}_{[t})$ if $\omega\in\Omega_{t]}$ . Defining
the subalgebra $A_{[t}$ of $E(\mathfrak{U}_{t]})’=\hat{M}_{t]^{\otimes}}^{-}\mathcal{B}(\mathcal{H}_{[t})$ as $A_{[t}\sim \mathcal{B}(\mathcal{H}_{[t})$ for any $t$ , the
posterior states are described then by the positive trace-normalized operators $\varpi_{[t}^{\omega}\in$

$\mathcal{B}(\mathcal{H}_{[t})$ for almost each $w\in\Omega_{t]}$ and can be considered as the conditional states
on the present-plus-futuare operator algebras $\mathcal{B}(\mathcal{H}_{[t})$ , controlled by the history
trajectory $w$ such that the weak expectation $\int_{\Omega_{tl}}\varpi_{[t}^{\omega}\mathbb{P}_{t]}(d\omega)$ is the prior marginal
state $\varpi_{[t}$ for $A_{[t}$ . Thus the above quantum causality setting gives immediately the
posterior states $\varpi_{1^{t}}^{\omega}$ for quantum present-plus- future conditioned by the classical
past without any reference to the projection or other phenomenological reduction
postulate of quantum measurement. This is the main advantage of the extended
event enhanced quantum mechanics, or eventum mechanics. It allows treatment
of the observable events on an equal basis with other quantum properties of the
system. It can be shown, see (5.5), that any reduction postulate of the operational
quantum mechamics can all be derived $hom$ QND causality, and this principle is
also applicable to the continuous measurements in both time and spectrum where
projection postulate fails.

We now describe an appropriate dynamical model for the time-continuous inter-
actions between the open quantum system and the field.

4.2. Quantum open dynamics and input-output. Quantum Markovian dy-
namics with observable trajectories, which entered into physics in the $\infty s$ in terms
of stochastic tramsfer-operators or stochastic Master equations, define the phenom-
enological $|\uparrow iotruments^{1}$ of observation without giving any $micros\infty pic$ dynamical
model in tems of the fundamental Hamiltonian interactions. In fact such approach
is equivalent to the earlier operational approach based on the instrumental transfer-
measures (See Appendix 1.3), and its starting point corresponds to already Mtered
Markov dynamics in the classical case. Here we describe the general scheme for
underlying Hamiltonian interaction models with continuous observation for open
quantum dynamical objects in terms of quantum stochastic evolutions in parallel
to the classical stochastic models with partial observation, following the original
Belavkin approach suggested in [2, 3, 12].

Let us fix a quantum probability spac$e(\mathcal{H},A,\varpi)$ and an increasing family
$A_{s]}\subseteq \mathcal{A}_{t]},$ $\forall s<t$ of $W^{*}$-subalgebras $\mathcal{A}_{t]}\subseteq A$ containing the compatible histo-
ries $E(\mathfrak{U}_{t]})\subset A_{[t}’$ and nontrrinial present $A_{[t]}=A_{t]}\cap \mathcal{A}_{[t}$ for each $t,$ $\mathfrak{g}_{\mathfrak{l}}ae\dot{m}ng$ that
each $A_{t]}$ commutes with future $A_{t}\subset A_{[t}$ , $A_{t]}\subseteq A_{t}’$ , being generated by only nonan-
ticipating questions $Q\in A_{t}’\cap \mathcal{A}$ . The future is described by $W^{*}$-subalgebras $A_{t}\subseteq A$

forming a decreasing family $A_{t}\subseteq A_{t+\iota}.\forall t,s>0$ with trivial intersection suCh that
we may assume that $\vee \mathcal{A}_{t]}=A$. Moreover, we shall assume that the family $(A_{t]})$

as well as $(\mathcal{M}_{t]})$ form the $W^{*}$-prvduct systems in the sense of $W^{*}$-isomorphisms

(4.9) $A_{t]^{\otimes}}^{-}\mathcal{A}_{t}^{s}\sim A_{t+s]},$ $\mathcal{M}_{t1\otimes \mathcal{M}_{t}^{s}\sim \mathcal{M}_{t+s]}}^{-}$ ,

where $\mathcal{A}_{t}^{s}=\mathcal{A}_{t}\cap A_{t+s]},$ $\mathcal{M}_{t}^{s}=\mathcal{M}_{t}\cap \mathcal{M}_{t+s]}$ and $(\mathcal{M}_{t})$ is decreasing family of $W^{*}-$

algebras $\mathcal{M}_{t}\subset A_{[t}$ generated by future events $E(\mathfrak{U}_{t})$ . This implies that the family
$(A_{t}^{s})$ satisfies the product $\infty ndition$ such that $A_{t}\sim \mathcal{A}_{t}^{\epsilon_{\otimes \mathcal{A}_{t+s}}^{-}}$ for any $t$ and $s>0$ ,
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and similar for $(\mathcal{M}_{t}^{s})$ corresponding to the split property

(4.10) $\Omega=\Omega_{t]}\cross\Omega_{t}^{s}\cross\Omega_{t+s},$ $\mathfrak{U}=\mathfrak{U}_{t]}\otimes \mathfrak{U}_{t}^{s}\otimes \mathfrak{U}_{t+s}$

of the measurable trajectory space.
Quantum open object under the observation is represented at each time $t$ by a

past-future boundary $W^{*}$-subalgebra a $(t)\subseteq A_{[t]}$ such that it is a quantum sto-
chastic process (in the genral sense [2]), adapted with respect to the family $(A_{t]})$ ,
nonanticipating the futures $(A_{t})$ , and satisfying causality condition with respect
to the histories $(\mathcal{M}_{t]})$ . We may assume that each $a(t)$ represents a fixed $\mathfrak{a}$, or a
variable boundary $W^{*}$-algebra $a_{t}$ by a $W^{*}$-homomorphism $\pi^{t}$ of $a_{t}$ onto $a(t)$ , with
$a_{t}$ taken in the imitial algebra $\mathcal{A}_{[0]}$ , say. Due to the causality condition the product

$\Pi^{t}(\Delta,\check{q})=E(\Delta)\pi^{t}(\check{q})\forall\Delta\in \mathfrak{U}_{1}$

defines for each $t$ an adapted transfer-measure $\Pi^{t}(\Delta)$ : $\mathfrak{a}_{t}arrow A_{t]}$ (see Appendix
1.4) with $W^{*}$-homomorphic valuos, normalized to the history eventum projectors
$E(\Delta)$ . Obviously $W^{*}$-algebras $a(t)$ and $A_{t}^{s}$ are both in $A_{[t}=A_{t+s]}\cap A_{1^{t}}$ , as wel
as $a(t+s)$ and $W^{*}$-algebras $\mathcal{M}_{t}^{s}$ .

Following [2] we shaM say that quantum open object $a(t)$ with eventum history
$E(\mathfrak{U}_{t]})$ is dynamica) with respect to $(A_{t})$ if

$\mathcal{M}_{t}^{*}\vee \mathfrak{a}(t+s)\subseteq a(t)\vee A_{t}^{s}\forall t,s>0$.
This is equivalent [2] to the existence of quantumflow with observations described as
folows on the co-images $a_{t}$ of the boundary algebras a $(t)$ . Assuming that the $W^{*}-$

algebras $\mathcal{A}_{[l}^{s}$ are generated by $a(t)$ and $A_{t}^{s}$ , we can always consider the dynanical
quantum open object with a $(t)=\mathcal{A}_{[t]}$ .
$Th\infty rem2$ . Let $\pi_{t}$ : $a(t)arrow \mathfrak{a}_{t}$ be normal injections inverted by the dynamical
representations $\pi^{t}$ , and let $\mathcal{A}_{t]},\mathcal{M}_{t]}fom$ the prvduct systems $(4\cdot 9)$ . Then there
exists a tmnsitiond spectral measure
(4.11) $Y_{t}^{r}(\Delta,\check{q})=E_{t}(\Delta)\alpha_{t}^{r}(\check{q}))$ $\check{q}\in a_{t+r}$

on $\mathfrak{U}_{t}^{r}$ with values in $a_{t}\emptyset-\mathcal{A}_{t}^{r}\dot{\wp}ven$ by adapted $\sigma- homomo\eta hismE_{t}$ : $\mathfrak{U}_{t}arrow \mathfrak{a}_{t}\emptyset-\mathcal{A}_{t}$

and a Heisenbe$\tau g$ flow $(\alpha_{t}^{r})$ of causal tensor-adapted $W^{*}$-homomorphisms $\alpha_{t}^{r}$ :
$a_{t+r}arrow E_{t}(\mathfrak{U}_{t}^{r})’$ such that $i$

(4.12) $\alpha_{t-r}^{r}0\alpha_{t}^{s}$ $=$ $\alpha_{t-r}^{r+s}\forall r,$ $s>0$,
(4.13) $\alpha_{t-r}^{r}(E_{t}(\Delta))$ $=$ $E_{t-r}(\Delta)\forall t>r$

under the tnVial vtensiofoe onto $a_{t}\mathfrak{H}\mathcal{A}_{t}$ .
Prvof The representations $\pi^{t}$ as well as $\pi_{t-r}$ can be trivially aetended to the
adapted $W^{*}$-homomorphisms with respect to the identity maps id respectively on
$A_{t}$ and $A_{t-r}$ by virtue of commutativity $\mathcal{A}_{t]}\subseteq A_{t}’$ as $\pi^{t}(\check{q}_{t}\otimes A_{t})=\pi^{t}(\check{q}_{t})A_{t}$ and
$\pi_{t-r}(\check{q}A_{t-r})=\pi_{t-r}(\check{q})\otimes A_{t-r}$ respectively for all $q_{t}\in a_{t}$ and $\check{q}_{t-r}\in a_{t-r}$ . This
deflnes the compositions $\alpha_{t-r}^{r}=\pi_{t-\tau}\circ\pi^{t}$ of thus extended $W^{*}$-representations
as tensor-adapted $W^{*}$-homomorphisms $\alpha_{t-r}^{r}$ : $\mathcal{A}_{[t}arrow A_{[t-r}$ for $W^{*}$-algebras $A_{[t}=$

$a\otimes-A_{t}$ trivially \omega ctend血$g$ the map $a_{t}arrow A_{[t-r}^{r}$ and sat色 hdng the hemigroup condi-
tion (4.12) such that $\alpha_{t}^{0}=id(A_{[t})$ for each $t$ . Obviously these extensions satisfy
causality condition

$\pi^{t}(A_{[t})\subseteq E_{t}(\mathfrak{U}_{t]})’,$ $\alpha_{t}^{r}(A_{[t+r})\subseteq$瓦 $(\mathfrak{U}_{t}^{r})’$ ,
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where the eventum projectors $E_{t}(\Delta)\in A_{[t}$ are defined for any $\Delta\in \mathfrak{U}_{t}$ as $\pi_{t}(E(\Delta))$

by the extended injections $\pi_{t}$ : $a(t)\vee A_{t}arrow a_{t}\otimes-\mathcal{A}_{t}$ inverted by $\pi^{t}$ extended on
$E_{t}=\pi_{t}(E)$ . The second condition (4.13) simply follows from $\pi^{t}\circ\alpha_{t}^{r}=\pi^{t+r}$ due
to $\pi^{t+r}(E_{t})=E$ for any $r\in[0,t]$ and $E\in E(\mathfrak{U}_{t})$ . Thus the QS flow with nonde-
molition observations can be described in terms of the homomorphic transitional
measures (4.11) with (4.12) and (4.13) satisfying the hemigroup composition law
(4.14) $1_{t-r}^{r}(\Delta_{t-r}^{\prime,\prime r_{t}^{s}(\Delta_{t}^{s},\check{q}))=r_{t-r}^{r+s}}’(\Delta_{t-r}^{r+s},\check{q})$

where $\Delta_{t-r}^{r+\epsilon}=\Delta_{t-r}^{r}\cross\Delta_{t}^{s}\in \mathfrak{U}_{t-r}^{r+s}$ and $\check{q}\in \mathfrak{a}_{t+s}$ . 口

Corollary 1. The dynamicai $QS$ object is Markovian in the usual sense [2] if the
initid state $\varpi=\varpi_{[0}$ on $\mathcal{A}=A_{[0}$ is product state $\varpi\sim\varpi_{t]}\otimes\epsilon_{t}$ for any $t$ such that

$\langle\varpi,A_{t]}A_{t}^{\epsilon}\rangle=\langle\varpi, A_{t]}\rangle\langle\epsilon_{t},A_{t}^{\epsilon}\rangle$ .
It is operationally described in such a state by the hemigrvup of reduced transitionat
measuoes
(4.15) $T_{t}^{s}(\Delta,\check{q})=\epsilon_{t}^{\star}[|r_{t}^{\epsilon}(\Delta,\check{q})]$ ,
where $\epsilon_{t}^{\star}$ : $\mathcal{A}_{[0}arrow A_{t]}$ is conditional $e\varphi edation$ defined as
(4.16) $\langle\varpi_{1^{0}}, A_{t]}\rangle=\langle\varpi_{t]},\epsilon_{t}^{\star}[A_{t]}]\rangle\forall\varpi_{t]},A_{t]}\in A_{t]}$ .
They satisfy the operational Chapman-Kolmogorov $\eta uation$

(4.17) $\Gamma_{t-r}(\Delta_{t-r}^{r},\mathcal{T}_{t}^{\epsilon}(\Delta_{t}^{l},q))=\mathcal{T}_{t-r}^{r+s}(\Delta_{t-r}^{r+\epsilon},\check{q})$

as a nomal completely positive map $a_{t+s}arrow a_{t-r}$ for each product $\Delta_{t-r}^{r+s}$ of $\Delta_{t-r}^{r}\in$

$\mathfrak{U}_{t-r}^{r}$ and $\Delta_{t}^{s}\in \mathfrak{U}_{t}^{s}$ , and are nomalized as $\mathcal{T}_{t^{S}}(\Omega_{t}^{\epsilon})=\tau_{t}^{\epsilon}$ to normal unital $CP$ maps
$\tau_{t}^{s}=\epsilon_{t}^{\star}\circ\alpha_{t}^{s}$ of $a_{t+s}$ onto $a_{t}$ , foming a dynamical hemigroup $(\tau_{t}^{s})$ over the famdy
$(a_{t})$ .
Remark 1. The event representations $E_{t}=\pi_{t}(E)$ are $lLSually$ given as $E_{t}(\Delta)=$

$\alpha_{t}(I(\Delta))$ by an input $\sigma$-homomorphism $I$ : $\mathfrak{U}_{t}^{s}arrow A_{t}^{s},$ $I(\Delta)=\iota(1_{A}),$ cofve-
sponding to a two side adapted $W^{*}$-representation $\iota$ : $M_{t}^{s}arrow A^{s}$ and an output
representation $\alpha_{t}=\lim_{*}\alpha_{t}^{s}\dot{\wp}ven$ by a hemigrvup $(\alpha_{t}^{s})$ of interaction isomorphisms
$\alpha_{t}^{*}$ : $a_{t+s^{\otimes A_{t}^{\epsilon}}}^{-}arrow a_{t}\otimes-\mathcal{A}_{t}^{*}$ . Thus exten&d $\alpha_{t}^{s}$ define the output representation $\alpha_{t}$

as the projective limit $\alpha_{t}^{\infty}|\mathcal{A}_{t}^{s}=\alpha_{t}^{s}$ which is well defined on $\mathcal{A}_{t}=v_{s}At$ due to
the localization property $\alpha_{t}^{r+\epsilon}|\mathcal{A}_{t}^{s}=\alpha_{t}^{s}|A_{t}^{\epsilon}$ for any $r>0$ on the input eventum
algebra $\iota(M_{t})\subset A_{t}$ for $M_{t}=L^{\infty}(\Omega_{t},\mathbb{P}_{t})$ . Note that this locdization prvperty sim-
ply follows jthom the hemigroup condition $\alpha_{1}^{\theta}0\alpha_{t+s}^{r}=\alpha_{t}^{r+s}$ and the nomdization
$\alpha_{t}^{s}(I_{0})=I_{0}$ of $\alpha_{t}^{s}$ , extended adaptively also on $A_{0}^{t}\in A_{O}^{t}$ and $A_{t+s}EA_{t+s}$ such that

$\alpha_{t}^{s}(A_{0}^{t}\otimes B\otimes A_{t+\epsilon})=A_{0}^{t}\otimes\alpha_{t}^{s}(B)\otimes A_{t+s}$ .
The quantum ffie evolution is usually described by a semigroup $(\theta_{r})_{r>0}$ of en-

domorphisms $\theta_{r}$ : $A_{[0}arrow A_{[0}$ shifting isomorphically any $A_{t}^{\epsilon}$ onto $A_{t+r}^{\epsilon},$ -Wilth the
trivial action on $\mathfrak{a}$ . QS Heisenberg flow $(\alpha_{t}^{s})$ over a constant algebra $a_{t}=a$ with
observation $(E_{t})$ is called covariant with respect to the semigroup $(\theta_{r})$ acting also
on $\mathfrak{U}_{O}$ by translation of each $\sigma$-subalgebra $\theta_{t}(\mathfrak{U}_{0}^{s})\sim \mathfrak{U}_{t}^{s}$ onto $\mathfrak{U}_{t+r}^{s}$ , if
(4.18) $\alpha_{t}^{s}0\theta_{l+s}=\theta_{t}0\theta_{s},$ $E_{t}o\theta_{t}=\theta_{t}oE_{0}$ ,
where $\theta_{s}=\alpha_{0}^{s}0\theta_{s}$ and $\theta_{s}$ is extended on the $W^{*}$-algebra $\mathcal{A}_{[0}=\mathfrak{a}\emptyset-A0$ by $\theta_{s}(q^{\vee}\otimes A_{0})=$

$\check{q}\otimes\theta_{s}(A_{0})$ . This defines a Heisenberg $\theta$-cocycle $\alpha_{0}^{s}$ correspondin$g$ to the dynamical
semigroup $(\theta_{\epsilon})$ of injective $W^{*}$-endomorphisms $\theta_{\epsilon}$ : $A_{[0}arrow \mathcal{A}_{[0}$ satisfymg causality
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condition $\theta_{s}(A)\subseteq E(\mathfrak{U}_{s]})’$ . Note that the shift semigroup can be extended to a
shift group $\{\theta_{t} : t\in \mathbb{R}\}$ on $\mathcal{A}=\overline{A}0^{-}\otimes^{-}\mathfrak{a}\otimes \mathcal{A}0$ as $\theta_{t}=\theta_{-t}^{-1}$ by defining $\theta_{-s}=\sim\theta_{s}$ on
the opposite copy $\tilde{\mathcal{A}}_{0}$ of the algebra $A_{0}$ similar to $\theta_{s}$ on $A_{O}$ , inverting $\theta_{s}$ on $\mathcal{A}_{s}$

and reflecting $A_{0}^{s}$ onto $\tilde{A}_{0}^{s}$ such that $A^{r_{\otimes A_{r}^{S}}^{-}}$ is reflected onto $\tilde{\mathcal{A}}_{0\otimes\tilde{A}_{r}^{s}}^{r^{-}}$ by $\theta_{r+s}$ . This
reversible free dynamics defines an interaction group dynamics $\{\theta_{t} : t\in \mathbb{R}\}$ of au-
tomorphisms $\theta_{t}=\alpha_{0}^{t}0\theta_{t}$ on the whole $A$ by the trivial action of $\alpha_{0}^{t}$ on $\tilde{A}_{0}$ for $t>0$
and by $\theta_{t}=\theta_{-t}^{-1}$ for for $t<0$ . However, the reversible quantum dynamics on such
noncommutative $A$ cannot satisfy the causality in both directions of time with re-
spect to a nontrivial eventum algebra $E(\mathfrak{U})$ , except the case of absence innovation,
as it is in the conservative quantum mechanics without observation. To keep the
causality in the positive direction of time one must replace the nonabelian $\tilde{A}0$ by
the smaUer, abelian subalgebra $\check{M}_{0}$ , a copy of the eventum algebra $\hat{M}_{0}=I(M_{0})$ ,
which makes $\theta_{s}$ and $\theta_{s}$ irreversible on $A=\check{M}_{0\otimes^{-}}^{-}a\otimes \mathcal{A}_{0}$ in the case of a larger,
noncommutative future algebra $A_{0}$ than the past observable algebra $\hat{M}_{O}$ .

5. APPENDIX

5.1. A. Some definitions and facts on $W^{*}$-algebras.
(1) A complex Banach algebra A with involution $aarrow a^{*}$ such that $\Vert a^{*}a\Vert=$

$\Vert a\Vert^{2}$ is $can_{ed}C^{*}$-algebra, and $W^{*}$-algebra if it is dual to a linear sub-
space $L\subseteq A^{\star}$ (called preadjoint of A $=L^{\star}$ if it is closed, denoted as
$L=A_{\star})$ . They all can be realized as operator algebras on a complex
Hilbert space $\mathcal{H}$ , and an operator $W^{*}$-algebra is called von Neumann al-
gebra if its unit is the identity operator $I$ in $\mathcal{H}$ . The simplest example
of $W^{*}$-algebra is the von Neumann algebra $\mathcal{B}(\mathcal{H})$ of all bounded opera-
tors acting in a complex Hilbert space $\mathcal{H}$ . A von Neumann algebra $A$

is called semisimple if $\mathcal{H}$ has an orthogonal decomposition into invariant
subspaces $\mathcal{H}_{t}$ in which $A$ is $\mathcal{B}(\mathcal{H}_{i})$ . Let $\{Q_{i}\}$ (or $\{A_{i}\}$) be a fanUly of
self-adjoint operators (operator algebras $A_{i}$ ) acting in $\mathcal{H}$ , e.g. orthoprojec-
tors $Q_{i}^{2}=Q_{i}=Q_{i}^{*}:$ The $W^{*}$-algebra generated by this family is defined
as the smallest weakly closed self-adjoint sub-algebra $A\subseteq \mathcal{B}(\mathcal{H})$ contain-
ing these operators, or the spectral projectors of these operators if $Q_{i}$ are
unbounded in $\mathcal{H}$ (or the algebras $A,$ $A=\vee A_{i}$ ). In the case $I\in A$ it con-
sists of all bounded operators that commute with the bounded commutant
$B=f^{B}\in \mathcal{B}(\mathcal{H}):BQ_{i}=Q_{i}B$ $\forall i$} $\equiv\{Q:\}’$ (or with $\mathcal{B}=\cap 4’$ ), i.e., it is
the second commutant $A=\{Q:\}’’=\mathcal{B}’$ of the family $\{Q_{i}\}$ . The latter can
be taken as the definition of the von Neumann algebra generated by the
family $\{Q_{i}\}$ . Note that the commutant $\mathcal{B}$ is a von Neumann algebra, and
$\mathcal{B}=A’$ is semisimple iff it is commutant of an abelian algebra $A$. $[48]$ .

(2) A (normal) state on a von Neumann algebra $\mathcal{B}$ is defined as a linear ultra-
weakly continuous functional $\mathcal{B}\ni Q-\rangle$ $\langle\rho, Q\rangle\in \mathbb{C}$ , satisfying the positivity
and nomahzation conditions

(51) $\langle\rho, Q\rangle\geq 0$ , $\forall Q\geqq 0$ , $\langle\rho,I\rangle=1$

[$Q\geqq 0$ signifies the nonnegative definitenaes $\langle\psi|Q\psi\rangle\geqq 0\forall\psi\in \mathcal{H}$ called
Hermitian poeitivity of $Q$]. The linear span of all nomal states is isometric
with the preadjoint space $\mathcal{B}_{\star}$ . The latter is usually described as the space of
density operators $\rho$ uniquely defined as (generalized, or afiiliated) elements
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of the algebra $\mathcal{B}$ with respect to a standard Hermitian painng $\langle\rho^{*},$ $Q$) $\equiv$

$(\rho|Q)=:\rho^{\star}(Q)$ of $\mathcal{B}_{\star}$ and $\mathcal{B}$ given by the mass $\mu(\rho)=\langle\rho,I\rangle$ on the positive
$\rho$ such that $\rho^{*}=\rho\geq 0$ is state density iff $\langle\rho,I\rangle=1$ . A state $\rho$ is caled
vector state if $(\rho|Q)=\langle\psi|Q\psi\rangle$ (denoted $\rho=\rho_{\psi}$ ) for some $\psi\in \mathcal{H}$ , and pure
state if it is an extreme point of the convex set $\epsilon(\mathcal{B})$ of all normal states on
$\mathcal{B}$. Every normal state is in the closed convex hull of vector states $\rho_{\psi}$ with
$\Vert\psi\Vert=1$ but there might be no pure state in 5 $(\mathcal{B})$ . If algebra $B$ is semifinite
(there exists a faithful normal semi-finite trace $Q\mapsto trQ$ , then the states
on $\mathcal{B}$ can be described by unit trace operators $\rho\in \mathcal{B}$ (or $\rho\vdash \mathcal{B}$ if the are
only affiliated to $\mathcal{B}$), by means of the tracial pairing $\langle\rho, Q\rangle=$ tr $[\rho Q]$ . In
the simple case $\mathcal{B}=\mathcal{B}(\mathcal{H})$ the density operator $\rho$ is any nuclear positive
operator normalized with respect to the usual trace [48].

(3) Let $A,$ $\mathcal{B}$ be von Neumann algebras in respective Hilbert spaces $\mathcal{H}_{0}$ and
$\mathcal{H}_{1}$ , and let $\Phi$ : $\mathcal{B}arrow \mathcal{A}$ be a linear map that transforms the operators
$B\in \mathcal{B}$ into operators $A\in \mathcal{A}$ (called sometimes superoperator). The map $\Phi$

is called a transfer map if it is ultraweakly continuous, completely positive
(CP) in the sense

(5.2) $\sum_{1,k=1}^{\infty}\langle\psi_{i}|\Phi(B_{t}^{*}B_{k})\psi_{k}\rangle\geqq 0$ , $\forall B_{j},\psi_{j}$

$(i=1, \ldots,d_{e}<\infty)$ , and umity-preserving: $\Phi(I_{1})=I_{0}$ (or $\Phi(I_{1})\leq I_{0}$).
The CP condition is obviously satisfied if $\Phi$ is normal homomorphism (or
$W^{*}$-representation) $\pi$ : $\mathcal{B}arrow A$, which is defined by the additional mul-
tiplicativity property $\pi(B^{*}B)=\pi(B)^{*}\pi(B)$ . A compoeition $\langle\rho_{0}, \Phi(B)\rangle$

with any state $\rho_{0}\in s(A)$ is a state $\rho_{1}\in\epsilon(\mathcal{B})$ described by the preadjoint
action of the superoperator $\Phi$ on $\rho_{0}$ ,

$\langle\rho_{0}, \Phi(B)\rangle=\langle\Phi_{\star}(\rho_{0}),B\rangle,\forall B\in \mathcal{B},$ $\rho_{0}\in A_{\star}$ ,
where $\Phi_{\star}=\Phi^{\star}|A_{\star}$ in terms of $(\Phi^{*}(\rho)|B)=(\rho|\Phi(B))$ is such that $\Phi_{\star}^{\star}=\Phi$ .
A transfer map $\Phi$ is caUed spatial if

(5.3) $\Phi(B)=FBF^{*}$ or $\Phi_{*}(\rho_{0})=F_{\star}\rho_{0}F_{\star}^{\cdot}$ ,
where $F$ is a linear coisometric operator $\mathcal{H}_{1}arrow \mathcal{H}_{0},$ $FF^{*}=I_{0}$ (or $FI_{1}F^{*}\leq$

$I_{0})$ called the propagator and $F_{\star}=p\#$ is defined as left adjoint $(F\#\rho|Q)=$

$(\rho|FQ)$ with respect to the standard painings (which is usual adjoint, $F\#=$
$F^{*}$ , in the case of tracial pairing $(\rho|Q)=tr[\rho^{*}Q])$ . Every transfer map is
in the closed convex hull of spatial transfer maps, but there might be no
extreme point in this hul.

(4) Let V be a measurable space, and $\mathfrak{B}$ its Borel $\sigma$-algebra. A mapping $\Pi$ :
$dv\in \mathfrak{B}\vdasharrow\Pi(dv)$ with values $\Pi(dv)$ in ultraweakly continuous, completely
positive superoperators $\mathcal{B}arrow A$ is caled a transfer measure if for any $\rho\in$

$A_{\star},$ $B\in \mathcal{B}$ the C-valued function
$\langle\Pi(dv)_{*}\rho,B\rangle=\langle\rho,\Pi(dv)B\rangle$

of the set $dv\subseteq V$ is a countably additive measure normalized to unity
for $B=I$. In other words, $\Pi(dv)$ is a CP map valued measure that is
$\sigma$-additive in the weak (strong) operator sense and for $dv=V$ is equal
to some transfer-map $\Phi$ . In particular, $\Pi(dv,B)=M(dv)\Phi(B)$ with
$M(dv)=\Pi(dv,I)$ is transfer map iff $[M(dv) , \Phi(B)]=0$ for al $dv\in \mathfrak{B}$
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and $B\in \mathcal{B}$ as it is the case of the nondemolition measurements given by
representations $M=E$ of $\mathfrak{B}$ in $\mathcal{A}$ and $\Phi=\pi$ in $E(\mathfrak{B})’\cap A$ The quantum
state transformations $\rho\mapsto\Pi_{\star}(\Delta, \rho)$ corresponding to the results $v\in\Delta$ of
an ideaZ measurement are described by transfer-operator measures of the
form

(5.4) $\Pi(\Delta,B)=\int_{A}F(v)BF(v)^{*}dv$ ,

where $F(v)$ denote linear operators $\mathcal{H}_{1}arrow \mathcal{H}_{0}$, the integral with respect to
a poeitive Borel measure $\lambda$ on V is interpreted in strong operator topology,
and $\int F(v)F(v)^{*}dv=I_{0}$ . Every transfer-operator $\Phi$ : $\mathcal{B}arrow \mathcal{A}$ can be
represented by the integral (5.4) on $\Delta=V$ of an ideal measurement $\Pi(dv)$

as the compression

(5.5) $\Pi(\Delta,B)=FE(\Delta)\pi(B)F^{*}$

of the nondemolition measurement $E(\Delta)\pi(B)=\hat{1}_{A}\otimes B$ on the extended
Hilbert space $\mathcal{H}=\int_{v}^{\oplus}F(v)^{*}\mathcal{H}_{0}dv$ with the isometric embedding $F^{*}\psi_{0}=$

$\int_{v}^{\oplus}F(v)^{*}\psi_{0}\lambda(dv)$ of $\psi_{0}\in \mathcal{H}0$ into $\mathcal{H}$ adjoint to the coisometry $F\psi=$

$\int_{V}F(\nu)\psi(\nu)\lambda(dv)$ of $\psi\in \mathcal{H}$ into $\mathcal{H}_{0}$ .
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