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1 The Pauli-Fierz Hamiltonian

In this paper we discuss translation invariant nonrelativistic quantum electrodynamics
by functional integrations. We assume that an electron is in low energy, its density of
charge is smoothly localized. In particular, the ultraviolet divergence does not exist.
Let us see some classical model. Let E(¢, z) and B(t,z), (t,z) € R X R?, be an electric
field and a magnetic field respectively, and ¢(t) the position of an electron at time
t € R. The Maxwell equation with form factor ¢ is given by

B = -VxE,
V-B 0,
E = VxB-ep(-—q(t)d®),
V-E = ep(-—qt)

Let (J, p) = (ew(z — q(t))d(2), e(x — ¢(t))). Then the Lagrangian density is given by

Lit,z) = %qu + %(E2 _ B+ J-A-pd, (L.1)

where A and ¢ are a vector potential and a scalar potential related to E and B such as
=—-A—V¢and B=V x A. Let L = fps L(t,z)dz. Then the conjugate momenta
are given by

p(t) i= %% — mi(t) + ¢ [ Al D)o(z ~ a(®)dz, T(t,2) = g—i — Alt, 7).
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Then the Hamiltonian is given through the Legendre transformation as
Hy=p g+ [ Aldz— L

1 2 1 i a2 )
= o (p-e [ At D)o@ - a®)de) +3 [ {40 +(V x A(1,2))?} do+ Vala),
where V is a smeared external potential given by
olg —v)elg—y)

4rly — o]

We quantized H to define the Pauli-Fierz Hamiltonian.

Let us assume that the dimension of the state space is d and the photon is polarized
to d — 1 directions. Physically reasonable choice is d = 3. Let ¥y, be the Boson Fock
space over hp = @+ 1L3(RY), i.e., Fp := D, [®7hy], where ®7hy, denotes the n-fold
symmetric tensor product of hy with ®%hy, :=C. Q = {1,0,0,...} € F; is called the
Fock vacuum. The annihilation operator and the creation operator on Fy, are denoted
by a(f) and a*(f), f € W, respectively, and are defined by

(@*(NHT)™ 1= /nSa(f © T D) (1.2)

and a(f) := (a*(f))*, where S,, denotes the symmetrizer. Let Fp 5, be the finite
particle subspace of F,. The annihilation operator and the creation operator leave
Fosn invariant and satisfy the canonical commutation relations on it:

[a(f),a*(9)] = (£, 9)1, [a(f).a(g)] =0, [a"(f),a™(9)] =0
For f = (f1, .., fd_l) € @4 1L*(R?), we informally write a*(f), where a! stands for a or
a*, as ab(f) = Z / a¥(k, 5) f;(k)dk. The quantized radiation field A,(z) with a form
factor ¢ is deﬁned by

A“(z) 1 d— 1/6“( ,])( ()b( ) a( ]) —tkm+ SD( k)a(k ])etkz) dk.

J—l \/w( ) \/w( k)

Here e(k, 1), - - -, e(k, d—1) denote generalized polarization vectors satisfying k-e(k, j) =
0 and e(k,?) - e(k,j) = &;1, ¢, = 1,...,d — 1, and ¢ is the Fourier transform of form
factor . Note that ‘

(q)—§ dydy’.

d—1 ak
S ealk, 5)es(k, ) = bap — | lf = 85(k), @,B=1,..d.
2

Thus

(A(@)0 A ()5 = = “”(('“))26,fu(k)dk
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holds. Throughout this paper we use Assumption (A) below.

(A) Form factor ¢ satisfies /w, p/w € L2(R?) and @(k) = @(—k) = $(k).

A,(z) is essentially self-adjoint on Fp g, and its unique self-adjoint extension is
denoted by the same symbol. Next we define the second quantization. Let C(K — L)
be the set of contraction operators from K to £. The second quantization I is the
functor: '

I': C(Lz(Rd) — Lz(Rd)) — C(.Fb — ]:b)
given by .
NT)= " (@*'T).
n=0
For a self-adjoint operator h on L?(R?), {['(¢"?)}scr is a strongly continuous one-
parameter unitary group on . Then there exists a unique self-adjoint operator dr'(h)
on Fp such that ['(e**) = ¢#4T®), The number operator is defined by N := dI'(1). Let
w(k) = |k| be the multiplication operator on L?(R?). Define the free Hamiltonian H:.g
on F, by '
H.\y = dl(w). (1.3)

The Hilbert space H of state vectors for the total system under consideration is given
by

H := L*(R?) ® Fp. (1.4)
Under the identification H 2 [ Fydz, we define the self-adjoint operator A on H by
A, = [& Au(z)dz. The total Hamiltonian H, the so-called Pauli-Fierz Hamiltonian,
is described by

1
H:= -2-(—~iV®1—-eA)’+V®l+1®HM, (1.5)
where e € R is a coupling constant. The proposition below is established in [H0Ob, H02].

Proposition 1.1 Assume that V is relatively bounded with respect to —A with a rela-
tive bound strictly smaller than one. Then H is self-adjoint on D(Ho) and essentially
self-adjoint on any core of self-adjoint operator —(1/2)A ® 1 4+ 1 ® Hrea, and bounded
from below,

Define the field momentum by P, := dI'(k,) and the total momentum
PT ==V, ®1+1® P, (1.6)

where X denotes the closure of closable operator X. Now we set V = 0. Then it is
seen that H is translation invariant;

| “FiHe ™ =H, seR, p=1,..,d
Then we can decompose H on o(P;) = R. Define

H(P) := -;—(P — Py —eA(0)) + Hoa, P €RS wn

Note that H(P) is a well defined symmetric operator on D(H;aq) N D(P¢?) by assump-
tion (A). The next proposition is established in [H06, LMSO06].
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Proposition 1.2 H(P) is self-adjoint on D(Hxea) N (N4_y D(Pe%)) and it follows that
®
/R H(P)iP2 H. (1.8)

So H(P) is our main object and P € R? is called the total momentum. We want to
investigate spectral properties of H(P) by making use of functional integrations.

2 Functional integral representations

Let (b(t))e>0 = (b1(2), -+, ba(t))ez0 be the d-dimensional Brownian motion starting at
0 on a probability space (W, B, db). Set X, := z + b(s), z € R?, and dX := dz ® db.

2.1 Functional integral representations for e~tH

Let Ao(f) be a Gaussian random process on a probability space (Qo, X, o) indexed
by real f = (fi, ..., fa) eé L?*(R?) with mean zero and covariance given by

/Q Ao( ) Ao(9)duo = aol 1, 9) (2.1)

where

l ¢ L (LNF (VA
w(f,0) =5 3 [, 850 FuR) 35 (k) k.

The existence of probability space (Qo, X0, o) and Gaussian random variable Ap(f)
are known by the Minlos theorem. In a similar way, we can construct two other

Gaussian random variables. Let A;(f) indexed by real f Eé L?(R%*1) and A;(f) by

d
real f €® L?(R**?) be Gaussian random processes on probability spaces (@1, 1, p1)
and (Qz, Xz, u2), respectively, with mean zero and covariances given by

[ A A = a(f0), [ A Ao = aalf9), (22)
where
d S
alf0) =5 > [ G0 Falk, k) (h, ko) dkdk,
a,8=1
d —_— _
alf,9) = %2; [ B RV FoCF o ) ko, k)b,

From now on ¢ = 0,1,2. We extend it for f = fr +if; with fr = (f + f)/2 and

fi = (f = F)/(2i) as Ay(f) = Aq(fr) +iAq(f1). The n-particle subspace L2(Q,) of
L*(Q,) is defined by v

LA(Qq) = LH{: Ag(f1) - -~ Ag(fn) : |fs € LP(R*9),5 = 1,...,n}.
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Here : X : denotes the Wick product of X. The identity L*(Q,) = ®2,L2(Q,) is
known as the Wiener-It6 decomposition. We also define the second quantization on
L3(Q,). Let Ty : C(L*(R¥9) — L2(R¥Y)) — C(LH(Qg) — L*(Qy)) be defined by

TeeTl=1, TyT): Afr) - Agfa) =t Ap([T]af1) - Ag([Tlafn) : -

Set ['yq = I‘% for simplicity. In particular since {T'y("")};cr With a self-adjoint oper-
ator h on L%(RY) is a strongly continuous one-parameter unitary group, there exists
a self-adjoint operator dI',(h) on L?(Q,) such that T,(e**) = e« t € R. We set
N, :=dTCy(1). Let h be a multlphcatlon operator in L?(R?). We define the families of
isometries,

LA(RY) 2o [2(RA+1) 224 [2(R942) 5 teR, (2.3)
by
R _ gTisko w(k) 12
Jof Uy ko) = == (w(k)2 = |k0|2) F(B), (k, ko) € R® xR, (2.4)
etk h(k)

R .\ 1/2 .
ftf(k, ko, k1) = ——ﬁ' (W) f(k, ko), (k, ko, kl) € Rd X R XR.

Next, define the families of operators J; and =, = Z,(h), s,t € R;
L3(Qo) 2> L*(Qu) = L*(Q2)

by '

Jo =T01(Js), Et = Ta(s)- (2'5)

Define A, ,(f) = Aq(@g_lée,,f) We see that dT'o(—iV) 2 P; and dlo(w(—iV)) &

We can see that H = / L*(Qo)dz i.e., F € H can be regarded as an L?*(Qo)- va.lued

L?-function on R%. Note that in the Fock representation the test function f of Au( f )
is taken in the momentum representation, but in the Schrodinger representation, f of
Ao .(f) in the position representation. We can see that

1

where @ = (¢/+/w)¥. By the Feynman-Kac formula and the fact J3J; = e *Hra we
can see that

(F, e t-(1/28+VHHRa g, — /R ) Weffo‘ VXds( 7 F(Xo), G(Xs)) 12 dX.

Adding the minimal perturbation: —iV,®1 — —iV,®1—eA$, we have the functional
integral representation below [H97].

(F e tH@G)y = /ga w€ Jo VO 1y F(X,), e_ieAl()C[f'q(z))JtG(Xt))Lz(Ql)dX’ (2.6)
X

t
where KI™(z) := @2_, /0 FsP(- — Xs)db,(s) € @*L2(R*?).
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2.2 Functional integral representations for e *#(P)

We now construct the functional integral representation of (¥, e *#(")®)z . We use the
identification F, & L?(Q,) without notices. For ¥ € L*(Q,), we set ¥, := Je~tFt®g,
t>0. '

Theorem 2.1 Let ¥, € F,. Then
- [0.2] i P.
(T, e~ HP @)z = /W(\Ifo,e AN B,) 1.0,y PHOdb, (2.7)

' t
where K(0) = @y [ 5,5(- — b(s))dba(s).

Proof: We show an outline of the proof. See [HO06] for detail. Set F, = p, @ ¥ €
L*(R*) ® Fugn and G, = p, ® € L%(R?) ® Fy sin, Where p, is the heat kernel:

ps(2) = (2ms) 42 121/(29) 55 0, (2.8)
By the fact that H = U! (f{.; H(P)dP) U and Ue %P U~ = [§ e~#PdP, we have

(Fy, e tHe %P7 G, )y = /]!1  dP((UF,)(P),e P~ *P(UG,)(P))5,, &eR%

Here (UF,)(P) = (2r)~%/2 / e~=PeizFp (2)Wdz. Note that

Ré
1

(21r)"\p

strongly in JF;, for each P € R%. Hence we have by the Lebesgue dominated convergence
theorem,

Im(UF,)(P) = (29)

1

V(@m)e

On the other hand we see that by (2.6)
Um(Fy, e He 4 G = [ pr(b(8) ~ £)(JoW, e A O Je=€ R G) g .

(2.11)

Here we used that /W dbp,(be + 7 — €)(Jo, e~ A KD I@) Jo~PG) ig continuous at

z =0 and e"4Pr(p(X,) ® &) = p(X: — ¢) ® e=Fr®. Then we obtained by (2.10) and
(2.11) that

: —tH —ig.PT
Lm(F,, e He— 4P Q)R =

/n LAP (¥, etHP PG\ (P)R.  (2.10)

1

y (2m)¢

= [ pe(b(t) = )(Jo, AT O fe= R 1 o, b, (2.12)

[ e (@, e WG, )(P)sdP



211

Translation invariant Hamiltonian

Since
LN #PUG,(P)dP < [, IUGH(P) I dP = IIG- I < oo,

we have (U, e~tHO(UG,)(-))x, € L*(R?) for r # 0. Then taking the inverse Fourier
transform of both sides of (2.12) with respect to P, we have

(T, e HOUGC)(P)r

B \/(; )d /w db /Ra deePEp, (b(t) — €)(Jo¥, AT O g€ R E) 12(q,) (2.13)
™

for almost every P € R%. Both sides (2.13) are continuous in P, then (2.13) is true for
all P € R%. Taking r — 0 on both sides of (2.13), we have by the Lebesgue dominated
convergence theorem and (2.9) that

(T, e H P s = /W(Jo‘l’»6"’“‘1(”[1°'t](°’)Jze“P M) 13(q,e' T M db = (2.7).

Thus the theorem follows for ¥, ® € F,g,. Let ¥,® € F, and ¥, Py, € Fo,an Such
that ¥,, — ¥ and &, — & strongly as n — oo. Since

» 0. —iP
|(JoWn, e AT O) Je = RAMOS ) 12 g,)| < (| Wnllml|@nllm < €

with some constant ¢ independent of nn, we have by the Lebesgue dominated convergence
theorem

. oA (K Py :P.
lim /W( Jol,, e~ AL Jo—iPbOG ) a0 e PHO db

n—0o0

= /W( JoU, e—ieAl(IC£°,t1(o)) Ji e-in.b(t) Q)Lz(QI)eiP'b(t) db,

and it is immediate that limn_,o0(¥n, e HP @, )5 = (¥,e*HP)P)x . Hence (2.7) is
proven. qed

2.3 Applications

o0

Let L2.(Q,) := U [®Y_0L2(Q,)] and T a self-adjoint operator on L*(R**9). Let us
N=0

define the operator I, ,(T'f) on L,(Q,) by

Mg u(Tf) = i[dTo(T), Agyu(f)]

for f € D(T). In the case f is real-valued, II,,(T'f) is a symmetric operator. The
self-adjoint extension of I, ,(f) with real f is denoted by the same symbol.

Let K, = {¥ € L*(Q,)|¥ > 0} and K¢ := {¥ € K,|¥ > 0}. It is well known that
ePvkC. C K, for v € R%. Fundamental fact is that for real f € L*(R%+1),

JeMa LK, \ {0} C K3, (2.14)
i.e., JpeMu(h J, is positivity improving. See [H00a]. We define ¥ := exp (z‘%N )
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Theorem 2.2 de~tHO)9-1 45 positivity improving.
Proof: Let ¥, ® € K, \ {0}. It is seen that
(T, 9etHO9-19) . = /W(\p, Je e ) 7o~ RdOB) 15 o db. (2.15)

Here we used the facts that Jie R¥te—im/N = o—i(n/2)N J o—iR-ut) gnd

¥ T/ DN g—ieAy(f) g=i(r/N _ o—ielli(f)

where N = dT';(1). Since Jie—Mm(c"O) Je~iR¥) s positivity improving for each
b € W, specifically the integrand in (2.15) is strictly positive for each b € W. Hence the
right-hand side of (2.15) is strictly positive, which implies that 9e~tH®9-1k, \ {0} C
K¢ . Thus the theorem follows. qed

Immediate corollaries are as follows.

Corollary 2.3 The ground state ¢g(0) of H(0) is unique up to multiple constants, if
it exists, and it can be taken as %pg(0) > 0 in the Schridinger representation.

Corollary 2.4 It follows that

K\I’, e~tH(P) d:>).'F'b| < (I\I’L e—t(%Pf2+Hnd)|¢|)L2(Qo)) (216)
(2, 9P I318) 5| < (1], 92052 |8]) gy (217)

Proof: When L is positivity preserving, we have |L¥| < L|¥|. Furthermore,
(%, & HP8) 5| < [ (JolW], ™50 |8])1ag,ydb = (1], e R+ |B]) 1o gy

where we used that b(t) is Gaussian with [ |b,(¢)|?db = 1/2. Thus (2.16) follows. We
have

(8,96 FD9710)5, = [ (o, e ML D) o, P KOG, (2.18)
Then /
(2, e HP1@) 5, | < (1T, 9~ HO97 @) 12(qy).
Hence (2.17) follows. . qed

Let E(P,e?) = inf o(H(P)).

Corollary 2.5 (1) 0 = E(0,0) < E(0,e?) < E(P,€?), (2) Assume that the ground
state pg(0) of H(0) exists for e € [0, ep) with some eg > 0. Then E(0,e?) is concave,
continuous and monotonously increasing function on €, (3) E(0,€?) < inf o(H).
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Proof: (2.17) implies |(¥, 9e~tH(P)9=10) 5 | < e7tFOY)||¥||% . Since ¥ is unitary, (1)
follows. Let g(0) be the ground state of H(0). Thus by Corollary 2.3, (1, 0g(0))r3(qs) #
0. Hence

1 ' 1 a2 [08],0 5-0,1]
B(0,¢*) = Jim —10g(%, e #O0), = lim — log [ e~ TR Ogp,

¢2 ] s . .
Since e—F©XYI@XPN(0) i log convex on e?, E(0,e?) is concave. Then E(0,e?) is
continuous on (0, &). Since E(0, e?) is also continuous at e? = 0 by the fact that H(0)
converges as e — 0 in the uniform resolvent sense, F(0, e?) is continuous on [0, g).

Then E(0, e2) can be expressed as E(0, e2) = f§ ¢(t)dt with some positive function 4.
Thus E(0, €2) is monotonously increasing on e?. Then (2) is obtained. We have

(F,(189)e (18 97)G) = [ dP(F(P), 9 P97 G(P))s,
Then by (2.17) it is seen that
(F,(1 @)™ (1 @97 Fnl < &0 [ dPIF(P)If, = e *ODFIf,

Thus (3) follows. qed

3 The n point Euclidean Green functions

The functional integral representations derived in the previous section can be extended
to the n point Euclidean Green functions.

Theorem 3.1 Let K = dI'(h) with a multiplication operator h in L*(R%). We assume
that 8, ®,, € F, and ®; € F° forj = 1,...,m — 1 with &; = &;(A(f]),-- A
Then for Py, -+, P_y € RY,

m
(@0, I e~(@rm2-1)K g~ (t—t-DH(FB-1) G ) o
j=1

= [ (&0, eatr@) [] 85)sgme Trm®e¥es-DBagp, (3.1)

i=1

where K(0) == @2, 3 Ji ‘i &nda(- = D(s))dbu(s) and

Jj=1"%

<i>j = E,, Jt,e_iP"b(t’)Qj =®; (-Az (fa,ﬁ,-ff(' - b(tj))) ooy Az (€$jjtj frJ;,( - b(tj)))) .
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Proof: See [H06)] for detail.

We shall show some applications of Theorem 3.1, by which we can construct a se-
quence of measures on W converging to (¢g(P), T'wg(P))s, for some bounded operator
T. In particular T = e PN and T = e—*A (g are taken as examples. It is known that
H(P) has a unique ground state @g(P) and (pg(P), Q) x5, # 0 for sufficiently small e.

Corollary 3.2 We suppose that H(P) has the unique ground state wg(P) and it sat-
isfies (wg(P), )z, # 0. Then for B >0,

(e(P), e og(P)) = Jim / 2 /D(1-e"A)DE) iPHE gy

where D(t) := ql(lC[lo't] (0), K521(0)) and pge is a measure on W given by

dpze = -;—e““’/% (RO g

with normalizing constant Z such that [y, €F* @ dpug, = 1.

Proof: We define the family of isometries & = &,(1), s € R, by (2.3). By Theorem 3.1
we have

—tH(P —BN ,—tH(P _ iP-b(2 —ieAa (€K (0)+Egxc 2
(eTtHPIQ, PNe—tHPIQ) . = /dee (39)(1, g=#eAa(oK IO +EaX T Oy 1y

- / dbeiPH(2t) g=(¢/2)aa 6ok > (0) +£sK I (0))
w

Noticing that gs(&.f, &:9) = e *~tg1(f, ), we have
0K P(0) + &K1 (0)) = & (kKP (0), KP*(0)) - (1 - e)ar (KT(0), K*(0)).
Then
(e—tH(P)Q, e—ﬁNe—tH(P)Q)
(e—H )Gy, e— H(PIY)
The corollary follows from (3.2) and

e (p(P), Ve

_ /W e(e2/2)(1-—e'3)D(t)eiP~b(2t)du2t. | (3.2)

s — lim = g (P
1 el ~ oP), 0m) 2
qed
Corollary 3.3 Assume the same assumptions as in Corollary 8.2. Then
(0g(P), e~ 4Py ( p))Jcb — lim [ e~ en®PMO~F0(NgPUM Gy, (3.3)

t-—o0 JW

where f*:= @%_ :fal- — b(?)).
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Proof: We have by Theorem 3.1

» ) (e—tH(P)Q’e—-;A(f)e—tH(P)Q)}_
(ve(P), e A(f)ﬂag(P Nr, = }Eglo (e—tH(P)Q), e—tH(P)Q) £, :

— = / dbetPH0) (1, e——z(e.Ax(IC[oM(O))+A1(th))1)L2(Q)
t—-)oo

_ 1 / dbeiPH2)e —}qi(ex® "1(0)+f‘
t-»oo

Note that q,(f*, f*) = qo(f, f). Then the corollary follows. qed

Remark 3.4 It is informally written as
@ (KIS»T](O) ’C[S’,T'](O))
T2 Z / dba s)/ dbf"( )/ (k) kO(k)I -—Is—r!w(k)e—-ik(b(a)—b(,-))dk.

a,f=1

and

a (KL?0), 1) = Z f dba(s) / 815(k) o(k) Fa()ethCo)-HO g—lo~thu(i) g

2 api Vw(k)

4 The Pauli-Fierz Hamiltonian with spin 1/2

Let us include the spin of the electron. Let d = 3 and o, 02,03 be the 2 x 2 Pauli

matrices given by
(01 [0 —i (1 0
=10 27\ o) BTl -1

The Pauli-Fierz Hamiltonian with spin 1/2 is defined by

H,(P) =5 (P P — eA(O)) + Hppa — 5 Z 0, Bu(0),

y—l

where B(0) = rotA(z). Although H,(P) acts on C*>® Fy, it can be reduced to the self-
adjoint operator on L?(Z/2Z;@,). The functional integral representation of e~tH<(F)
can be also constructed by making use of 3 + 1 dimensional Lévy process (b(t), N:)
with values in R® x (NU{0}), where N, denotes the Poisson process on a measure space
(S,%, Pp) with Ep,[N; = N] = e~*tN /N!. For o € Z/2Z we define o, = o(—1)Ne. Let
B,(z) = rotAy(z). The net result is
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Theorem 4.1 Let &,V € L*(Z2/2Z;Qo). Then

(Q,e—tHa(P)‘I;) = lim et Z /Wxs db@dPe [ez‘P-b(t) /Q1 dulJOQ(a.)eXfJte—-in-b(t)\I;(o-t) :

=0 c€Z/22
(4.1)
where
3.t t e
X =i 35 [ A1\ = UeD = [[(-5)oBraliA( = bls))ds
-l-/:+ log (—Hod(b(S), —0s—, 3) - G'Qbe(Hod(b(s)) —0s—, 3))) dN,
and e
Hoa(z,—0,5) = 5(Bu1(fsA(- =~ b(s)) — t0B1,2(JsA(- — b(s)))
with the indicator function ¥.(z) = { (1)’ ii{ ; Zﬁ’
Proof: See [HLO7] for detail. ged
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