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Scientist Award at the Ruhr Universitdt Bochum. In this paper we report on
our recent researches on the interrogation and modeling of cancellous bone.

1 Introduction

In [6, 5] Buchanan, Gilbert and Khashanah investigated the extent to which
the most important parameters of the Biot model [1],[2]could be recovered
by acoustic interrogation in an numerical experiment which simulated the
physical experiment of Hosokawa and Otani [14], (See also of McKelvie and
Palmer [15], Williams [17].) where a small specimen of cancellous bone was
placed in a tank of water between an acoustic source and receiver. It was
found that by using computer simulations we could estimate bone density
to within a percent. Other bone parameters, such as bulk modulus, shear
modulus, permeability, etc. were not so accurately determined.

The Biot model treats a poroelastic medium as an elastic frame with
interstial pore fluid. Cancellous bone is anisotropic, however, as pointed out
by Williams, if the acoustic waves passing through it travel in the trabecular
direction an isotropic model may be acceptable. We will simulate a two
dimensional version of the experiments described in McKelvie and Palmer



and Hosokawa and Otani. The motion of the frame and fluid within the bone
are tracked by position vectors u = [u,v] and U = [U; V]. The constitutive
equations used by Biot are those of a linear elastic material with terms added
to account for the interaction of the frame and interstial fluid
Ozz = 2pezz + Xe + Qe, (11)
Oy = 2peyy + Ae + Qe,

Ozy = UEzy,Oyzr = UEyz,

o = Qe + Re
where the solid and fluid dilatations are given by
Ou Ov oU ov
e—V-u—%+5yf,6—V'U—5;f5-§. (1.2)
The stress-strain relations are
€rz = =, €zy =€ —QE+@6 & (1.3)
T YTV T oy o’ ™ oy '

The parameter pu, the complex frame shear modulus can be measured. The
other parameters A, R and @ occurring in the constitutive equations are
calculated from the measured or estimated values of the parameters given in
Table 4 using the formulas

(K, — K,)* — 28K, (K, — K;) + B°K?

A=m—%+ R (1.4)
pK?
" D-K,
Q= BK, ((1 - ,B) K, — Kb)
D - K, )
where
D = K,(1+ B(K./K; - 1)). (1.5)

The bulk and shear moduli K}, and u are often given imaginary parts to ac-
count for frame inelasticity. Equations (1.1), (1.2) and (1.3) and an argument
based upon Lagrangian dynamics are shown in [1] to lead to the following
equations of motion for the displacements u, U and dilatations e, €

B+ VIO + e+ Qe = D(onn + pul) +52(w-U)  (1L6)

ViQe + Re] = gt-zg(mzu + poU) — b%(u -U).
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Symbol | Parameter

p Density of the pore fluid

Pr Density of frame material

K, Complex frame bulk modulus
m Complex frame shear modulus
K; Fluid bulk modulus

K, Frame material bulk modulus
8 Porosity

il Viscosity of pore fluid

k Permeability

a Structure constant

a Pore size parameter

Table 1: Parameters in the Biot model

Here p11 and pa; are density parameters for the solid and fluid, p;; is a density
coupling parameter, and b is a dissipation parameter. These are calculated
from the inputs of Table 4 using the formulas

pu = (1 — B)pr — B(ps — mB)
P12 = 5(Pf — mp)

pr = mpB
_F (a\/wpf/n) vﬁ"’n
- k
where
m = 2P
B

and the multiplicative factor F(¢), which was introduced in [2] to correct
for the invalidity of the assumption of Poiseuille flow at high frequencies, is

i b
given by P = ) ¢T(¢) ‘ wn
=312 '

where 7 is defined in terms of Kelvin functions

ber’(¢) + tbei'(¢)

T¢) = ber(¢) + ibei(¢)
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B k a Q Re K, Reu

072 5x107° [ 471 x10~% [ 1.10 | 3.18 x 10° | 1.30 x 10°
0.75|7x107° [ 8.00 x 10~% | 1.08 | 2.69 x 10° | 1.10 x 10?
0.81 {2x10"°[1.20x 10~° | 1.06 | 1.80 x 10° | 7.38 x 10°
0.833x107°[1.35x 1072 | 1.05 | 1.55 x 10° | 6.27 x 10°
095|5x10""220x10"° | 1.01 | 2.57 x 10° | 1.05 x 10°

Table 2: Estimated values of some Biot parameters at different porosities
taken from McKelvie and Palmer or Hosokawa and Otani.

The article of McKelvie and Palmer contains estimates of the Biot param-
eters of cancellous bone in the human os calcis (heel bone) for the normal
(8 = 0.72) and severely osteoporotic (3 = 0.95) cases while the article of
Hosokawa and Otani has estimates for bovine femoral bone for porosities
of # = 0.75,0.81 and 0.83. Table 2 contains estimates of these six Biot
parameters for five bone specimens. In obtaining them we followed the esti-
mation procedures used by Williams, McKelvie and Palmer, and Hosokawa
and Otani. In generating test problems for a parameter recovery algorithm
an estimate of the range of values a parameter might take is needed. Here
is a discussion of how the values of the Biot parameters in Table 2 were
calculated and our estimate of the range of values for each parameter:

For purposes of comparison we also computed the mean and standard
deviation of all Phase 3 answers whose objective function value was within
a factor of 2 of the lowest value and used these to find a 95% confidence
interval for the mean. The result is shown in Table 3. Instances of underesti-
mation, indicated by *, were more common, however only the underestima-
tion of the error for the structure factor in Problem 83w was severe. On the
other hand the overestimations of the error were less severe than with min-
imum/maximum/midpoint approach and on the whole better characterize
the actual errors.

This suggested that perhaps the Biot model, which was the basis of our
numerical experiment, was not sufficient to accurately model the acoustic
response of cancellous bone. It is well known that the strength of bone
depends heavily on its micro-structure [13]. Hence, it is imperative to develop
new ultrasound methods for assessing the micro-structure in vivo.
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Problem 6} k. a a ReK, Rep
Tlw Error 0.12% 1.83% 5.41% 0.55% 0.71% 3.44%
Est. Err 0.22% 8.34% 9.49% 1.10% 11.27% 3.61%
75w Error 0.00% 21.20% 22.86% 0.34% 9.19% 6.34%
Est. Err 0.19% 30.41% 38.40% 1.19% 12.24% 15.15%
7w Error 0.14% 1.17% 4.10% 0.32% 7.67% 1.64%
Est. Err 0.12%* 36.14% 44.77% 0.99% 9.00% 1.44%*
83w Error 0.94% 23.30% 25.94% 2.78% 0.02% 0.02%
Est. Err 1.27% 17.71%* 17.87%* 0.87%* 0.99% 0.66%
87w Error 0.03% 257% 4.15% 033% 6.86% 7.10%
Est. Err 0.30% 32.76% 27.61% 0.90% 39.87% 13.19%
91w Error 0.56% 23.52% 17.41% 1.24% 21.12% 34.73%
Est. Err 0.99% 17.14%* 16.44%* 0.86%* 26.49% 22.22%*
Average
Worst
Table 3: Phase 3 percentage errors when using mean values for Problems
7lw, ..., 91w. Estimated errors are calculated from 95 percent confidence
intervals.

2 Two-scale Convergence

Using the method of homogenization, we described the microstructure of
the composite material, bone plus blood-marrow, in terms of a cell problem
where all ingredients exist in equilibrium [8]. The two-phases of material are
assumed to have the following constitutive equations

0° =60’ + (1 - 6)o*°, . (2.1)

The viscoelastic behavior of the trabeculae is modelled by a Kelvin-Voigt
constitutive equation

oy = (A° + iwB®)ijue(u)u. (2:2)

Here w is the wave frequency and e(u€) is the strain tensor defined by
1 ..
e(u®)i; = 5(6.11; + 3_,'&':) 1,7 =1,2,3.

The constants Af;,, are the elasticity coefficients of the solid are assumed to
have the classical symmetry and positivity conditions. The constants B},
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describe viscosity of the solid, with the classical symmetry and positivity
conditions.

The marrow was modelled as a slightly compressible viscous barotropic
fluid with the constitutive equations

offf = (A +iwB!)jue(u)u. (2.3)
In (2.3),

Al = Pppbiibu, Bl = 2066, + £6:i0u. - (24)
] v

Here, c is the sound speed, p; > 0 is a constant density of the marrow at rest,
7, € are constant viscosities which are subject to the following conditions:

£ 2
n >0, ?7> 3

From (2.4) one can obtain more explicit constitutive equations
ol = psV - w1 + 2iwne(u’) + wEV - u°l. (2.5)
The equations of motion for the trabeculae (solid part) are given by
—wipuf — div (¢**) = Fp, in Q, (2.6)

Here the trabeculae stress is defined in (2.2), and p, > 0 is the constant
density of the trabeculae at rest.
In the marrow part,

—w?p; u¢ — div (05¢) = Fps in Q5, (2.7)

The transition conditions between fluid and solid parts are given by the
continuity of displacement

[u)=0o0nT,, (2.8)

where [-] indicates the jump across the boundary of I, = 9% N3¢, and the
continuity of the traction

o .v=0/*.vonr,. (2.9)
At the exterior boundary we imposed zero Dirichlet condition:
u® = 0 on O52. (2.10)
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This led to a weak formulation of the slightly compressible problem as
~w? [ pfus(z)d(z) + [ 65(AY +iwB’)e(us) : e(d) + (2.11)
Q Q

‘{ (1-6°)(A° + iwB*)e(u) : e(¢) = ‘{ Fp®9, V¢ € Hy(Q)",

where ~ denotes the complex conjugate. In [8] we constructed the cell problem
by assuming that u! is representable in the form

u'(z,y) = NP (y)ea(u)pg(z) + MP(y, w)e(u®)pg(2), (2.12)

where the summation convention is assumed. Here the u!(x,y) are vectors
and, therefore, the matrices N? and the M™ have vector components, i.e.
the right hand side is a linear combination of these vectors with scalar coef-
ficients (e4(u°)),,-

The strong form of the variation formulation requires that we find NP9
such that

div (Kn(EP? + e,(NP?))) =0 in), (2.13)
B (EP + e,(NP))v = A*(E™ + ,(NP))v, on 8Y; N Y,

[N™] =0, on Yy N Y.
Here
Ky = wbBf + (1 -6)A°. (2.14)
Similarly, the strong form of the variation equation for M™ is to find a
solution of

div (K (EP + e, (MP?))) (2.15)
= —div (Kpey(N?P?)) in),

(AT +iwB’)(EP + e,(MP?) + e, (NP))v
= (A® +iwB*)(EP + e,(M™) + ¢, (N"))v
on 0Y¢ N 0Ys,

[M™] =0, on 8Yy N 3Y,,

where
Kp = 6(Af +iwB’) + (1 - 6)(A® + iwB®). (2.16)
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3 Isotropic Case

-

For isotropic trabeculae we may write out explicitly the equations for the
vectors components of the NP?

NP = [NP? N§7|.

They are seen to satisfy the system of partial differential equations (8, 9]

P4 — Qi
()\+2‘u)a ay + 20 AN} 0in ),
NP

(m +2§) + 2n ANP? = 0in ;. (3.1)
We may express these as matrlx equations

(A+2u)HNP + 2u ANP = 0 in ), (3.2)
and

(n+2)HNM +2n ANP = 0 in ). (3.3)

where H is the Hessian operator, i.e.
find i ad
H = ( %}! ou10v2 ) .
310y; 555
'To determine the matrix solutions AM™, we introduce QP = MP?4+ NP4, solve
the problems for QP and then obtain the solutions for AMP?. We obtain the
following equation holding in Yy [9)
iwn A QM + (Pps + iwé +iwn) HQM = in Yy (3.4)
We obtain the weak formulation of the effective equation
/ PF @ = —u? / o5+ / [A4* + iwB* + C*(w)] e(w?) : e(3).  (3.5)
Q 0 Q

This leads to
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THEOREM 1 Let u be the unique solution in Hy(Q) of

L.ut =Fp° in
u* =0 on o0 (3.6)

where L, denotes the second order partial differential operator
Louf = — div (((1 - 6°)0** + 8 a/)e(u)) — w?pus,
6° = 6 (%) is the characteristic function of the marrow part Q% and
o = 6py + pu(1 — ).
Then, there exist a subsequence {u®}, not relabeled, such that {u} converges
weakly in HY(Q) to a limit u° € H}(Q), and p* converges weak-x in L*®(S2)
to p. The pair u°, p is a weak solution of the homogenized equation

Lu=Fp inQ
u=20 on 80 (3.7)

where L denotes the homogenized operator such that
Lu = — div JB{A”e(u") + iwB*e(u’) + C* (w)e(u°)} —w?pu

The effective constant tensors A*, B* are defined, in (77), (7?), respec-

tively. The effective frequency dependent tensor C*(w) is defined in (77)..

The vectors NP, M that appear in (?7)-(?7) are solutions of the auziliary
cell problems (??), (??), respectively.

4 Numerical Experiments

Using the physical values given in the table and the computed value for A we
were able to compute the coefficients in the effective equations from the cell
problem solutions N;; gnd M;; i.5 = 1.2 [9]. We show two of these coefficients
below. It is important to realize that these coefficients are in themselves only
used to compute the effective constant coefficients appearing in the effective
equations (3.7).
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| Symbol Parameter
ps = 10° Density of the pore fluid
pr= Density of frame material

K, = 2.76 x 10° | Complex frame bulk modulus
p=1.15x10° | Frame shear modulus
K;=2x10° Fluid bulk modulus

K, =2x10'0 | Frame material bulk modulus

B =0.76 Porosity

n=15 Viscosity of pore fluid
§ =0

w=mx 10° Sound frequency

c =1483 Speed of sound

Table 4: Parameters used in our model

The system of equations (3.7) for the parameters chosen becomes

3.86%% + 0.0867Z% +0.1018%% + 2.9109 2% + 0.9468%% + 0.00007%% — u

0.08678%% + 2,8366,ZL +3.7888%% + 0.08651 5% + 0.000055% + 0.9468%% — v

By computing the characteristic equation of the symbol of this pseudodiffer-
ential operator the roots are seen to be

% = 0.0177 &+ 0.9514, —0.0401 & 1.040:.

and hence the system is elliptic, as expected.

5 The Slightly Compressible Monophasic Poly-
mer

Work is in progress [11] on a cancellous bone model where the interstitial
fluid is taken to be a non-Newtonian fluid. As before we assume an elastic
matrix

Pa"a't'g_ — div(Ae(u®)) = Fp,; (5.1)



whereas, in the fluid part, x]0, T'[., we have a Stokes system describing the
motion

&ut .
ProE ~ div (o/*) = Fp; (5.2)
in % x]0, T'[.; whereas,
ol := —p°I + 2unp (e [v¥]) (5.3)
divv =0, in 2x]0, ], (5.4)

where v = u is the fluid velocity and p° is the fluid pressure. For the
slightly compressible case which occurs in acoustics we replace the pressure
by pdivu. A quantitative acoustic model must take into account that can-
cellous bone is mostly blood and marrow. This blood marrow mixture is
a polymer, which suggests that we model its viscosity as a non Newtonian
(shear dependent) fluid. There are two widely used shear-dependent viscosity
laws in practice. The first is the power law, or Ostwald-de Waele model

Ty (e(1)) = np (e(0)) := ple(@)™?, 1<r<2,u>0, (5.5)

and the Careau law, which takes into account that polymers show a finite
nonzero constant Newtonian viscosity at very low shear rates (7],

mp (e(1)) = 7 (1)) := (0 — o) (1 + Ne(@P) 4700 (5.6)
1<r<2, Mm>n20, A>0.

We shall assume that 7, obeys one of these lawes with exponent r in what
follows.
The fluid stress is then given by

of® = [~Ppdivu’l + 2un, (e [v])] e(u).

The transition conditions between fluid and solid parts are given by the
continuity of displacement

[u] = 0 on Tsx]0, T, (5.7)

where [-] indicates the jump across the boundary, and the continuity of tﬁe
contact force
0 -v =0/ .vonIx]0,T] (5.8)
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At the exterior boundary we assume periodicity, namely that the
{u®,p°} are L ~ periodic . (5.9)
To simplify our discussion we assume that there is no flow or deformation at
t =0, that is
u®(z,0) = 0,
u(z,0) = 0 inQ. (5.10)

We may reformulate the system as a variational problem, namely find u® €
CY([0, T]; L2er ()™) N C([0, T'); H3,e (2)") such that

({ prvE(t)e +‘£ 2pmp (e(v*(2))) €(v) : () (5.11)
7
+ [ AD(u*(t)) : e(¢) — [ SApdivuc divey = [ Fp.p,
i1 a5 0
Vo€ Hy ()",  in D'(]0,T)
where
" uf(0) = 0, and v*(0) = 0 (5.12)
divu ='0in 0%x]0, T, (5.13)
Pe = XnsPs + XagPs) (5.14)

and x4 is the characteristic function of A. It is trivial to establish [11] the fol-
lowing a priori estimates starting with equations using the C*([0, T}; H,,, (2)")
short-time regularity and setting ¢ = %‘t: as the test function in (5.11).

”ﬁe"L“lO,Tl;L’(ﬂ)“) s C”F“m(]o,r[xn)n = C(F), | (5.15)
el e gorrpea@gymimgnsy < CCF), (5.16)
lle (@) |- gozryze(gyosy < CF)- (5.17)

. t
On the other hand by writing e(u®(t)) = [e (%nl'-(n)) dn with Holder’s in-
0
equality we have

lle(us(£))

ou®
L S t4/4le ( an )

Lr(jo.Tixas)™
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from which _
lle(u) oo o127 (2yn2y < C(F). (5.18)
Moreover, if F € H*(0, T; L?>(Q)") then
+14y =
“ Otk+1 ”L°°(OTL3(9)" < C"F"H"(lo,ﬂxﬂ)" = C(F) (5.19)
Likewise

lle ( )||L°°(0TL3(Q)") C(F). (5.20)

We show that uniqueness and existence follow by using the results of (3], [4]
and following the procedure pf [10].
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