Numerical Real Inversion Formulas of the Laplace Transform
by using a Fredholm integral equation of the second kind

T. Matsuura (松浦勉)
Graduate School of Mechanical Engineering,
Gunma University, Kiryu, 376-8515, Japan
E-mail: matsuura@me.gunma-u.ac.jp

Abdulaziz Al-Shuaibi
KFUPM Box 449, Dhahran 31261, Saudi Arabia
E-mail: shuaaziz@kfupm.edu.sa

H. Fujiwara (藤原宏志)
Graduate School of Informatics,
Kyoto University, Japan
E-mail: fujiwara@acs.i.kyoto-u.ac.jp

and S. Saitoh (齋藤三郎)
Graduate School of Engineering,
Gunma University, Kiryu, 376-8515, Japan
E-mail: ssaitoh@math.sci.gunma-u.ac.jp

1 Introduction

We shall give a very natural and numerical real inversion formula of the Laplace transform

\[ (\mathcal{L}F)(p) = f(p) = \int_0^\infty e^{-pt}F(t)dt, \quad p > 0 \]  (1.1)
for functions $F$ of some natural function space. This integral transform is, of course, very fundamental in mathematical science. The inversion of the Laplace transform is, in general, given by a complex form, however, we are interested in and are requested to obtain its real inversion in many practical problems. However, the real inversion will be very involved and one might think that its real inversion will be essentially involved, because we must catch "analyticity" from the real or discrete data. Note that the image functions of the Laplace transform are analytic on some half complex plane. For complexity of the real inversion formula of the Laplace transform, we recall, for example, the following formulas:

$$\lim_{n \to \infty} \frac{(-1)^n}{n!} \left( \frac{n}{t} \right)^{n+1} f^{(n)} \left( \frac{n}{t} \right) = F(t)$$

(Post [15] and Widder [25,26]), and

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left( 1 + \frac{t}{k} \frac{d}{dt} \right) \left[ \frac{n}{t} f \left( \frac{n}{t} \right) \right] = F(t),$$

([25,26]). Furthermore, see [1-7,10,11,17,18,21] and the recent related articles [10] and 11. See also the great references [27,28]. The problem may be related to analytic extension problems, see [10] and [11].

In this paper, we shall give new type and very natural real inversion formulas from the viewpoints of best approximations, generalized inverses and the Tikhonov regularization by combining these fundamental ideas and methods by means of the theory of reproducing kernels. However, in this paper we shall propose a new method for the real inversion formulas of the Laplace transform based essentially on a Fredholm integral equation of the second kind. We may think that these real inversion formulas are practical and natural. We can give good error estimates in our inversion formulas. Furthermore, we shall illustrate examples, by using computers.

2 Background General Theorems

Let $E$ be an arbitrary set, and let $H_K$ be a reproducing kernel Hilbert space (RKHS) admitting the reproducing kernel $K(p,q)$ on $E$. For any Hilbert space $\mathcal{H}$ we consider a bounded linear operator $L$ from $H_K$ into $\mathcal{H}$. We are
generally interested in the best approximate problem
\[
\inf_{f \in H_K} \|Lf - d\|_\mathcal{H}
\] (2.2)
for a vector \(d\) in \(\mathcal{H}\). However, when there exits, this extremal problem is involved in the both senses of the existence of the extremal functions in (2.2) and their representations. See [16] for the details. So, we shall consider its Tikhonov regularization.

We set, for any fixed positive \(\alpha > 0\)
\[
K_L(\cdot, p; \alpha) = \frac{1}{L^*L + \alpha I}K(\cdot, p),
\]
where \(L^*\) denotes the adjoint operator of \(L\). Then, by introducing the inner product
\[
(f, g)_{H_K(L; \alpha)} = \alpha(f, g)_{H_K} + (Lf, Lg)_{\mathcal{H}},
\] (2.3)
we shall construct the Hilbert space \(H_K(L; \alpha)\) comprising functions of \(H_K\). This space, of course, admits a reproducing kernel. Furthermore, we obtain, directly

**Proposition 2.1 ([18])** The extremal function \(f_{d, \alpha}(p)\) in the Tikhonov regularization
\[
\inf_{f \in H_K} \{\alpha\|f\|_{H_K}^2 + \|d - Lf\|_{\mathcal{H}}^2\}
\] (2.4)
exists uniquely and it is represented in terms of the kernel \(K_L(p, q; \alpha)\) as follows:
\[
f_{d, \alpha}(p) = (d, LK_L(\cdot, p; \alpha))_{\mathcal{H}}
\] (2.5)
where the kernel \(K_L(p, q; \alpha)\) is the reproducing kernel for the Hilbert space \(H_K(L; \alpha)\) and it is determined as the unique solution \(\tilde{K}(p, q; \alpha)\) of the equation:
\[
\tilde{K}(p, q; \alpha) + \frac{1}{\alpha}(L\tilde{K}_q, LK_p)_{\mathcal{H}} = \frac{1}{\alpha}K(p, q)
\] (2.6)
with
\[
\tilde{K}_q = \tilde{K}(\cdot, q; \alpha) \in H_K \quad \text{for} \quad q \in E,
\] (2.7)
and
\[
K_p = K(\cdot, p) \in H_K \quad \text{for} \quad p \in E.
\]
In (2.5), when $d$ contains errors or noises, we need its error estimate. For this, we can obtain the general result:

**Proposition 2.2 ([14]).** In (2.5), we have the estimate

$$|f_{d,\alpha}(p)| \leq \frac{1}{\sqrt{\alpha}} \sqrt{K(p,p)} \|d\|_{\mathcal{H}}.$$  

For the convergence rate or the results for noisy data, see, ([9]).

### 3 A Natural Situation for Real Inversion Formulas

In order to apply the general theory in Section 2 to the real inversion formula of the Laplace transform, we shall recall the "natural situation" based on [17, 13].

We shall introduce the simple reproducing kernel Hilbert space (RKHS) $H_K$ comprised of absolutely continuous functions $F$ on the positive real line $\mathbb{R}^+$ with finite norms

$$\left\{ \int_0^\infty |F'(t)|^2 \frac{1}{t} e^t dt \right\}^{1/2}$$

and satisfying $F(0) = 0$. This Hilbert space admits the reproducing kernel $K(t, t')$

$$K(t, t') = \int_0^{\min(t, t')} \xi e^{-\xi} d\xi \quad (3.8)$$

(see [9], pages 55-56). Then we see that

$$\int_0^\infty |(\mathcal{L}F)(p)p|^2 dp \leq \frac{1}{2} \|F\|_{H_K}^2; \quad (3.9)$$

that is, the linear operator on $H_K$

$$(\mathcal{L}F)(p)p$$

into $L_2(\mathbb{R}^+, dp) = L_2(\mathbb{R}^+)$ is bounded ([17]). For the reproducing kernel Hilbert spaces $H_K$ satisfying (3.9), we can find some general spaces ([17]). Therefore, from the general theory in Section 2, we obtain
Proposition 3.1 ([17]). For any $g \in L_2(\mathbb{R}^+)$ and for any $\alpha > 0$, the best approximation $F_{\alpha,g}^*$ in the sense

$$
\inf_{F \in H_K} \left\{ \alpha \int_0^\infty |F'(t)|^2 \frac{1}{t} e^t dt + \| (\mathcal{L}F)(p)p - g \|_{L_2(\mathbb{R}^+)}^2 \right\}
$$

exists uniquely and we obtain the representation

$$
F_{\alpha,g}^*(t) = \int_0^\infty g(\xi) (\mathcal{L}K_{\alpha}(\cdot, t))(\xi) \xi d\xi.
$$

Here, $K_{\alpha}(\cdot, t)$ is determined by the functional equation

$$
K_{\alpha}(t, t') = \frac{1}{\alpha} K(t, t') - \frac{1}{\alpha} ((\mathcal{L}K_{\alpha,t'})(p)p, (\mathcal{L}K_t)(p)p)_{L_2(\mathbb{R}^+)}
$$

for

$$
K_{\alpha,t'} = K_{\alpha}(\cdot, t')
$$

and

$$
K_t = K(\cdot, t)
$$

4 New Algorithm

We shall look for the approximate inversion $F_{\alpha,g}^*(t)$ by using (3.11). For this purpose, we take the Laplace transform of (3.12) in $t$ and change the variables $t$ and $t'$ as in

$$
(\mathcal{L}K_{\alpha}(\cdot, t))(\xi) = \frac{1}{\alpha} (\mathcal{L}K(\cdot, t'))(\xi) - \frac{1}{\alpha} ((\mathcal{L}K_{\alpha,t'})(p)p, (\mathcal{L}K_t)(p)p))_{L_2(\mathbb{R}^+)}.
$$

Note that

$$
K(t, t') = \begin{cases} 
- te^{-t} - e^{-t} + 1 & \text{for } t \leq t' \\
-t'e^{-t'} - e^{-t'} + 1 & \text{for } t \geq t'.
\end{cases}
$$
\[
(\mathcal{L}K(\cdot, t'))(p) = e^{-t'p}e^{-t'} \left[ \frac{-t'}{p(p+1)} + \frac{-1}{p(p+1)^2} \right] + \frac{1}{p(p+1)^2}.
\]
\[
(4.14)
\]
\[
\int_0^\infty e^{-qt'}(\mathcal{L}K(\cdot, t'))(p)dt' = \frac{1}{pq(p+q+1)^2}.
\]
\[
(4.15)
\]
Therefore, by setting
\[
(\mathcal{L}K(\cdot, t))(\xi)\xi = H(\xi, t),
\]
which is needed in (3.11), we obtain the Fredholm integral equation of the second type
\[
\alpha H(\xi, t) + \int_0^\infty H(p, t)\frac{1}{(p+\xi+1)^2}dp = -\frac{e^{-t\xi}e^{-t}}{\xi+1}(t+\frac{1}{\xi+1}) + \frac{1}{(\xi+1)^2}.
\]
\[
(4.16)
\]
\section{5 Numerical Experiments}

We shall give a numerical experiment for the typical example
\[
F_0(t) = \begin{cases} 
-te^{-t} - e^{-t} + 1 & \text{for } 0 \leq t \leq 1 \\
1 - 2e^{-1} & \text{for } 1 \leq t,
\end{cases}
\]
whose Laplace transform is
\[
(\mathcal{L}F_0)(p) = \frac{1}{p(p+1)^2} \left[ 1 - (p+2)e^{-(p+1)} \right].
\]
\[
(5.17)
\]
We set
\[
g(\xi) = (\mathcal{L}F_0)(\xi)\xi
\]
in (3.11) with \((\mathcal{L}K(\cdot, t))(\xi)\xi = H(\xi, t)\), then
\[
F_0^{\ast}(t) \sim F_0(t)
\]
for a small \(\alpha\) ?
For fixed $t$, we calculate the integral (4.16) over $[0, 50]$ with span 0.01 by the trapezoidal rule. Here we solve the linear simultaneous linear equations of 5000 by using Matlab. For $t$, we take the values over $[0, 5]$ with span 0.01. By (3.11), we calculate the inversion by the trapezoidal rule over $[0, 50]$ with the span 0.01.

![Graph](image)

Figure 1: For $F_0(t)$ and for $\alpha = 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, 10^{-10}$.

**Acknowledgements**

Al-Shuaibi visiting Gunma University was supported by the Japan Cooperation Center, Petroleum, the Japan Petroleum Institute (JPI) and King Fahd University of Petroleum and Minerals, and he wishes to express his deep thanks Professor Saburou Saitoh and Mr. Hideki Konishi of the JPI for their kind hospitality. S. Saitoh is supported in part by the Grant-in-Aid for Scientific Research (C)(2)(No. 16540137) from the Japan Society for the Promotion Science. S. Saitoh and T. Matsuura are partially supported by the Mitsubishi Foundation, the 36th, Natural Sciences, No. 20 (2005-2006).

**References**

Figure 2: For $F(t) = \chi(t, [1/2, 3/2])$, the characteristic function and for
$\alpha = 10^{-1}, 10^{-4}, 10^{-8}, 10^{-12}, 10^{-16}$. $(\mathcal{L}F)(p) = \frac{1}{p}(\exp(-\frac{1}{2}p) - \exp(-\frac{3}{2}p))$.

Figure 3: For $U(t, [1, \infty])$, the step function and for $\alpha = 10^{-1}, 10^{-4}, 10^{-8}, 10^{-12}, 10^{-16}$. $(\mathcal{L}U)(p) = \frac{1}{p}e^{-p}$. 
Figure 4: For $F(t) = \frac{1}{2}t^2 \exp(-2t)$ and for $\alpha = 10^{-1}, 10^{-4}, 10^{-8}$. $(\mathcal{L}F)(p) = \frac{1}{(p+2)^3}$.

Figure 5: For $H_\alpha(\xi, t)$ and for $\alpha = 10^{-4}$. 
Figure 6: For $H_{\alpha}(\zeta, t)$ and for $\alpha = 10^{-8}$.


