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Abstract
We shall give a very natural and numerical real inversion formula

of the Laplace transform for general $L_{2}$ data following the ideas of best
approximations, generalized inverses, the Tikhonov regularization and
the theory of reproducing kernels. Furthermore, we shall additionally
use the Sinc functions (the Sinc method) to our general theory, to
solve the related integral equation. However, the new method in this
paper for the real inversion formula will be reduced to the solution
of linear simultaneous equations. This real inversion formula may
be expected to be practical to calculate the inverses of the Laplace
transform by computers when the real data contain noise or errors.
We shall illustrate examples and justify our computational work.

1 Introduction
We shall give a very natural and numerical real inversion formula of
the Laplace transform

$\underline{(\mathcal{L}F)(p)=f(}p)=\int_{0}^{\infty}e^{-pt}F(t)dt$ , $P>0$ (1.1)
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for functions $F$ of some natural function space. This integral transform
is, of course, very fundamental in mathematical science. The inversion
of the Laplace transform is, in general, given by a complex form,
however, we are interested in and are requested to obtain its real
inversion in many practical problems. However, the real inversion
will be very involved and one might think that its real inversion will
be essentialy involved, because we must catch “analyticity” from the
real or discrete data. Note that the image functions of the Laplace
transform are analytic on some half complex plane. For complexity
of the real inversion formula of the Laplace transform, we recall, for
example, the following formulas:

$\lim_{narrow\infty}\frac{(-1)^{n}}{n!}(\frac{n}{t})^{n+1}f^{(n)}(\frac{n}{t})=F(t)$

(Post [15] and Widder [27,28]), and

$\lim_{narrow\infty}\Pi_{k=1}^{n}(1+\frac{t}{k}\frac{d}{dt})[\frac{n}{t}f(\frac{n}{t})]=F(t)$ ,

([27,28]).

Furthermore, see [1-8,16,17,21,25,26,28,29] and the recent related
articles [10] and [11]. See ako the great references $[29,30]$ . The prob-
lem may be related to analytic extension problems, see [11] and [22].
In this paper, we shall give a new type and very natural real inversion
formula from the viewpoints of best approximations, generalized in-
verses and the Tikhonov regularization by combining these fundamen-
tal ideas and methods by means of the theory of reproducing kernels.
Furthermore, we shall use the sinc functions (the sinc method) as a
new approarch to solve the crucial Fredholm integral equation of the
second kind on the half space in our general theory. We shall also
propose a new method for the real inversion of the Laplace transform
based essentially on linear simultaneous equations. We may think that
this real inversion formula is practical and natural. Error analysis will
be also considered.

2 Background General Theorems
Let $E$ be an arbitrary set, and let $H_{K}$ be a reproducing kernel Hilbert
space (RKHS) admitting the reproducing kernel $K(p, q)$ on $E$. For
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any Hilbert space $\mathcal{H}$ we consider a bounded linear operator $L$ from
$H_{K}$ into $\mathcal{H}$ . We are generally interested in the best approximation
problem

$\inf_{f\in H_{K}}\Vert Lf-d\Vert_{\mathcal{H}}$ (2.2)

for a vector $d$ in $\mathcal{H}$ . However, this extremal problem is quite involved
in existence and representation. See [16,19,20] for the details.

Now, for the Tikhonov regularization, we set, for any fixed positive
$\alpha>0$

$K_{L}(\cdot,p;\alpha)=(L^{*}L+\alpha I)^{-1}K(\cdot,p)$ ,

where $L^{*}$ denotes the adjoint operator of $L$ . Then, by introducing the
inner product

$(f,g)_{H_{K}(L;\alpha)}=\alpha(f,g)_{H_{K}}+(Lf, Lg)_{\mathcal{H}}$ , (2.3)

we shall construct the Hilbert space $H_{K}(L;\alpha)$ comprising functions of
$H_{K}$ . This space, of course, admits a reproducing kernel. FMrthermore,
we dirctly obtain

Proposition 2.1 (/18-20]) The extremal function $f_{d,\alpha}(\rho)$ in the Tikhonov
regularization

$\inf_{f\in K}\{\alpha||f||_{H_{K}}^{2}+\Vert d-Lf\Vert_{?t}^{2}\}$ (2.4)

exists uniquely and it is represented in terms of the kemel $K_{L}(p, q;\alpha)$

$by$:

$f_{d,\alpha}(p)=(d, LK_{L}(\cdot,p;\alpha))_{\mathcal{H}}$ (2.5)

where the kemel $K_{L}(p, q;\alpha)$ is the reproducing kemel for the Hilbert
space $H_{K}(L;\alpha)$ and it is determined as the unique solution $\tilde{K}(p, q;\alpha)$

of the equation:

$\tilde{K}(p, q;\alpha)+\frac{1}{\alpha}(L\tilde{K}_{q}, LK_{p})_{\mathcal{H}}=\frac{1}{\alpha}K(p, q)$ (2.6)

with
$\tilde{K}_{q}=\tilde{K}(\cdot, q;\alpha)\in H_{K}$ for $q\in E$ , (2.7)

and
$K_{p}=K(\cdot,p)\in H_{K}$ for $p\in E$ .
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In (2.5), when $d$ contains errors or noise, we need its error estimate.
For this, we can use the general result:

Proposition 2.2 (/14]). In (2.5), we have the estimate

$|f_{d,\alpha}(p)| \leq\frac{1}{\sqrt{\alpha}}\sqrt{K(p,p)}\Vert d\Vert_{\mathcal{H}}$ .

For the convergence rate or the results for noisy data, see, ([9]).

3 A Natural Situation for Real Inver-
sion Formulas
In order to apply the general theory in Section 2 to the real inver-
sion formula of the Laplace transform, we shall recal the “natural
situation” based on [17].

We shall introduce the simple reproducing kemel Hilbert space
(RKHS) $H_{K}$ comprised of absolutely continuous functions $F$ on the
positive real line $R^{+}$ with finite norms

$\{\int_{0}^{\infty}|F’(t)|^{2}\frac{1}{t}e^{t}dt\}^{1/2}$

and satisfying $F(O)=0$. This Hilbert space admits the reproducing
kernel $K(t, t’)$

$K(t, t’)= \int_{0}^{\min(t,t’)}\xi e^{-\xi}d\xi$ (3.8)

$=\{\begin{array}{llll}-te^{-t}- e^{-t}+1 for t\leq t’-t’e^{-t’} -e^{-t}’+1 for t\geq t\end{array}\}$

(see [16], pages 55-56). Then we see that

$\int_{0}^{\infty}|(\mathcal{L}F)(p)p|^{2}dp\leq\frac{1}{2}||F||_{H_{K}}^{2}$ ; (3.9)

that is, the linear operator

$(\mathcal{L}F)(p)p$

on $H_{K}$ into $L_{2}(R^{+}, dp)=L_{2}(R^{+})$ is bounded. For the reproducing
kernel Hilbert spaces $H_{K}satis\phi ing(3.9)$ , we can find some general
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spaces ([17]). Therefore, from the general theory in Section 2, we
obtain

Proposition 3.1 $(l^{15}7)$ . For any $g\in L_{2}(R^{+})$ and for any $\alpha>0$ , the
best approximation $F_{\alpha,g}^{*}$ in the $8ense$

$\inf_{F\in H_{K}}\{\alpha\int_{0}^{\infty}|F’(t)|^{2}\frac{1}{t}e^{t}dt+\Vert(\mathcal{L}F)(p)p-g||_{L_{2}(R+}^{2})\}$

$= \alpha\int_{0}^{\infty}|F_{\alpha,g}^{*l}(t)|^{2}\frac{1}{t}e^{t}dt+||(\mathcal{L}F_{\alpha,g}^{*})(p)p-g\Vert_{L_{2}(R^{+})}^{2}$ (3.10)

exists uniquely and we obtain the representation

$F_{\alpha,g}^{*}(t)= \int_{0}^{\infty}g(\xi)(\mathcal{L}K_{\alpha}(\cdot,t))(\xi)\xi d\xi$ . (3.11)

Here, $K_{\alpha}(\cdot, t)$ is determined by the functional equation

$K_{\alpha}(t, t’)= \frac{1}{\alpha}K(t,t’)-\frac{1}{\alpha}((\mathcal{L}K_{\alpha,t’})(p)p, (\mathcal{L}K_{t})(p)p)_{L_{2}(R+})$ (3.12)

for
$K_{\alpha,t’}=K_{a}(\cdot, t’)$

and
$K_{t}=K(\cdot,t)$ .

4 Sampling Theory and Reproducing
Kernels
In order to solve the integral equation (3.11), numerically, we shall
employ the sinc method. At first we $shaU$ fix notations and basic
results in the sampling theory following the book by F. Stenger[23]
and at the same time we shall show the basic relation of the sampling
theory and the theory of reproducing kernels.

We shall consider the integral transform, for a function $g$ in

$L_{2}(-\pi/h, +\pi/h),$ $(h>0)$
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$f(z)= \frac{1}{2\pi}\int_{-\pi/h}^{\pi/h}g(t)e^{-izt}dt$ . (4.13)

In order to identify the image space following the theory ofreproducing
kernels [16], we form the reproducing kernel

$K_{h}(z, \overline{u})=\frac{1}{2\pi}\int_{-\pi/h}^{\pi/h}e^{-izt}\overline{e^{-iut}}dt$ (4.14)

$= \frac{1}{\pi(z-\overline{u})}\sin\frac{\pi}{h}(z-\overline{u})$

$:= \frac{1}{h}$Sinc $( \frac{z-\overline{u}}{h})$

$:= \frac{1}{h}S(k, h)(z-\overline{u}+hk)$ ,

by the notations in [23]. The image space of (4.13) is called the Paley-
Wiener space $W( \frac{\pi}{h})$ comprised of all analytic functions of exponential
type $satis\theta ing$ , for some constant $C$ and as $zarrow\infty$

$|f(z)|\leq C$ exp $( \frac{\pi|z|}{h})$

and
$\int_{R}|f(x)|^{2}dx<\infty$ .

From the identity
$K_{h}(jh,j’h)= \frac{1}{h}\delta(j,j’)$

(the Kronecker’s $\delta$), since $\delta(j,j’)$ is the reproducing kemel for the
Hilbert space $\ell^{2}$ , from the general theory of integral transforms and
the Parseval’s identity we have the isometric identities in (4.13)

$\frac{1}{2\pi}\int_{-\pi/h}^{\pi/h}|g(t)|^{2}dt$

$=h \sum_{j}|f(jh)|^{2}$

$= \int_{R}|f(x)|^{2}dx$ .
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That is, the reproducing kernel Hilbert space $H_{K_{h}}$ with $K_{h}$ ( $z$ , Of) is
characterized as a space comprising the Paley-Wiener space $W( \frac{\pi}{h})$

and with the norm squares above. Here we used the well-known result
that $\{jh)\}_{j}$ is a unique set for the Paley-Wiener space $W( \frac{\pi}{h})$ ; that is,
$f(jh)=0$ for all $j$ implies $f\equiv 0$ . Then, the reproducing property of
$K_{h}(z,\overline{u})$ states that

$f(x)= \langle f(\cdot), K_{h}(\cdot, x)\rangle_{H_{K_{h}}}=h\sum_{j}f(jh)K_{h}(jh, x)$

$= \int_{R}f(\xi)K_{h}(\xi,x)d\xi$ .

In particular, on the real line $x$ , this representation is the sampling
theorem which represents the whole data $f(x)$ in terms of the discrete
data $\{f(jh)\}_{j}$ . For a general theory for the sampling theory and error
estimates for some finite points $\{hj\}_{j}$ , see [16].

5 New Algorithm
By setting

$(\mathcal{L}K_{\alpha}(\cdot, t))(\xi)\xi=H_{\alpha}(\xi,t)$ ,

which is needed in (3.11), we obtain the Fredholm integral equation
of the second type

$\alpha H_{\alpha}(\xi, t)+\int_{0}^{\infty}H_{\alpha}(p,t)\frac{1}{(p+\xi+1)^{2}}dp$

$=f( \xi, t)=-\frac{e^{-t\xi}e^{-t}}{\xi+1}(t+\frac{1}{\xi+1})+\frac{1}{(\xi+1)^{2}}$ . (5.15)

We shall use the double exponential transform $f_{0}n_{oW}ing$ the idea [24]

$\xi=\phi(x)=\exp$ ( $\frac{\pi}{2}$ sinh $x$),

$\phi’(x)=\frac{\pi}{2}$ cosh $x\exp$ ( $\frac{\pi}{2}$ sinh $x$).

Note that this $\phi(x)$ is a monotonically increasing function and $\phi(-\infty)=$

$0$ and $\phi(\infty)=\infty$ . In addition, for examples

$\phi(-4)=2.416\cross 10^{-19}$
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and
$\phi(16)=5.860\cross 10^{3030999}$ .

So there is no need for setting so wide interval of integration from a
practical point of view.
Then, we have

$H_{\alpha}(\xi,t)=H_{\alpha}(\phi(x),t)=\tilde{H}_{\alpha}(x, t)$

and so,

$\tilde{H}_{\alpha}(x, t)=\sum_{j_{=-\infty}}^{j=\infty}\tilde{H}_{\alpha}(jh, t)Sinc(\frac{x}{h}-j)$

and
$\alpha\tilde{H}_{\alpha}(x,t)$

$+ \int_{-\infty}^{\infty}\tilde{H}_{\alpha}(z, t)\frac{1}{(\phi(z)+\phi(x)+1)^{2}}\phi^{j}(z)dz=f(\phi(x), t)$ . (5.16)

We shall approximate as follows:

$\tilde{H}_{\alpha}(x,t)\simeq\sum_{j=-N}^{j=N}\tilde{H}_{\alpha}(jh, t)Sinc(\frac{x}{h}-j)$ .

For error estimates for some finite points $\{hj\}_{j}$ , see [16]. Then, we
have

$\alpha\sum_{j}\tilde{H}_{\alpha}(jh,t)Sinc(\frac{x}{h}-j)$

$+ \int_{-\infty}^{\infty}\sum_{k}\tilde{H}_{\alpha}(kh, t)Sinc(\frac{z}{h}-k)\frac{1}{(\phi(z)+\phi(x)+1)^{2}}\phi’(z)dz=f(\phi(x),t)$ .
(5.17)

Rom the identities

$\int_{-\infty}^{\infty}Sinc(\frac{x}{h}-i)Sinc(\frac{x}{h}-j)dx=h\delta_{ij}$

and

$\int_{-\infty}^{\infty}\frac{1}{(\phi(z)+\phi(x)+1)^{2}}Sinc(\frac{x}{h}-l)dx=\frac{1}{(\phi(z)+\phi(lh)+1)^{2}}h$ ,

by setting
$A_{lk} \equiv\frac{1}{(\phi(kh)+\phi(lh)+1)^{2}}\phi’(kh)h$
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we obtain the equation

$\alpha\tilde{H}_{\alpha}(lh, t)+\sum_{k}\tilde{H}_{\alpha}(kh, t)A_{lk}=f(\phi(lh), t)\equiv f(lh, t)$ (5.18)

and the representation

$F^{*}(t)= \int_{0}^{\infty}g(\xi)H_{\alpha}(\xi,t)d\xi=\int_{-\infty}^{\infty}g(\phi(x))H_{\alpha}(\phi(x),t)\phi’(x)dx$

$\simeq h\sum_{i}g(\phi(ih))\tilde{H}_{\alpha}(ih,t)\phi’(ih)$ .

6 Inverses for More General FUnctions
As one of the main features of our method, we can easily generalize the
approximation function space. By a suitable transform, our inversion
formula in Section 5 is applicable for more general functions as follows:

We assume that $F$ satisfies the properties (P):

$F\in C^{1}[0, \infty)$ ,

$F’(t)=o(e^{\alpha t})$ , $0< \alpha<k-\frac{1}{2}$ ,

and
$F(t)=o(e^{\beta t})$ , $0<\beta<k$ 一 $\frac{1}{2}$

Then, the function

$G(t)=\{F(t)-F(O)-tF’(0)\}e^{-kt}$ (6.19)

belongs to $H_{K}$ . Then,

$( \mathcal{L}G)(p)=f(p+k)-\frac{F(0)}{p+k}-\frac{F’(0)}{(p+k)^{2}}$ . (6.20)

Therefore, if we know $F(O)$ and $F’(O)$ , then from

$g(p)=(\mathcal{L}G)(p)$

by the method in Section 5, we obtain $G(t)$ and so, $hom$ the identity

$F(t)=G(t)e^{kt}+F(0)+tF’(0)$ (6.21)

we have the inverse $F(t)hom$ the data $f(p),$ $F(O)$ and $F’(O)$ through
the above procedures.
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7 Numerical Experiments
We used $h=0.05$ and for $t$ , we take the span with 0.01. For the
simultaneous equations (5.18), we take from $\ell=-200$ to $\ell=799$ ;
that is, 1000 equations. We solved such equations for $[0,4.99]$ with
the span 0.01 for $t$ .

We shall give a numerical experiment for the typical example

$F_{0}(t)=K(t, 1)=\{\begin{array}{ll}\text{一} te^{-t}-e^{-t}+1 for 0\leq t\leq 11-2e^{-1} for 1\leq t,\end{array}$

whose Laplace transform is

$( \mathcal{L}F_{0})(p)=\frac{1}{p(p+1)^{2}}[1-(p+2)e^{-(p+1)]}$ . (7.22)

Figure 1: For $F_{0}(t)=K(t, 1)$ and for $\alpha=10^{-1},10^{-4},10^{-8},10^{-12},10^{-16}$.
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Figure 2: For the step
$10^{-1},10^{-4},10^{-8},10^{-12},10^{-16}$ .

function $F_{0}(t)$ and for $\alpha$

Figure 3: For the characteristic function $F_{0}(t)$ on [1/2, 3/2] and for $\alpha=$

$10^{-1},10^{-4},10^{-8},10^{-12},10^{-16}$ .
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Figure 4: For the function $F_{0}(t)=1/4-1/4e^{-2t}(1+2t)$ and for $\alpha=$

$10^{-1},10^{-2},10^{-3},10^{-4}$ .
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