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An inverse numerical method by reproducing kernel
Hilbert spaces and its application to Cauchy
problem for an elliptic equation.
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Tomoya Takeuchi*and Masahiro Yamamoto!

Abstract

We propose a discretized Tikhonov regularization for a Cauchy
problem for an elliptic equation by a reproducing kernel Hilbert space.
We prove the convergence of discretized regularized solutions to an ex-
act solution. Our numerical results demonstrate that our method can
stably reconstruct solutions to the Cauchy problems even in severe
cases of geometric configurations.

1 Discretized Tikhonov regularization

Many inverse problems can be reduced to a linear ill-posed operator equa-
tion: '

Kf=g, (1)

by choosing suitably Hilbert spaces V and W and a linear compact operator
K:V — W. Henceforth (-, )y means the inner product in V, and by || - ||lv
we denote the norm in V if we need to specify the space V.

We aim at the reconstruction of fo satisfying K fo = go by means of
noisy data g; satisfying ||go — gs|lw < J, where § > 0 is a noise level. We
assume that the value of 4 is known a priori.

In order to stably reconstruct fo from some noisy data gs, we consider
the Tikhonov regularization [13]. Let V, be a finite dimensional linear sub-
space. Let {f"}1<j<m be a linearly independent set of V. We denote Pr,
to be the orthogonal projection of V onto V;,. Moreover, we define the func-
tion spaces Win C W by Wy, := span{K(f]") | f" € Vm j =1,...,m}. For
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any given go, we expand gy in the finite subspace W,,. This is done by con-
sidering the minimization problems xen‘gx llg — gsllw = }lel%ln K (f) — gsllw-
g m m
Once the expanded coefficients of fmin := arg j%‘i/n |K(f) — gsllw are ob-
tained, we can regard fmin 88 an approximation to fy. However, due to
the ill-posedness of the compact operator K, the function fpni, needs not
approximate the solution fo reasonably even when gs = go. In order to
overcome this difficulty, we introduce the regularization term with the norm

of V. Thus, we arrive at a discretized Tikhonov regularization on the finite
dimensional space Vi,:

. — aell2 2
min K f = gslliw + el fIIvs (2)

where a > 0 is called the regularization parameter. The formulation (2)
corresponds to a Ritz approach in [4] where V, C Vj,41 is assumed.

We know that there exists a unique minimizer fg s s of (2) for any a > 0,
0 > 0 and m € N. Moreover, the minimizer is given by

fams = (K:nKm + aI)_lK:,'.,ga,

where K,, = KP,,. We denote the minimizer when § = 0 by fo,m. With
some a priori choices of & and m for given § > 0, we can prove the conver-
gence of the Tikhonov regularized solutions.

We can now prove the convergence of the minimizer (2) to the solu-
tion K1gg, where Ktgp is the unique minimum least-squares solution for
mingev | K f — gol|- Let vm = [|[K(I = Pm)|l.

Proposition 1 ([12]). Suppose that 'r}l_r.noo Ym = 0.
1. Let "}51100 am = 0. If ym = O(y/am), then "}1_120 famm = Klgy in V.

2. Suppose that "P_z.noo NI — Pp)fl| =0 forall feV. Let }in})m(d) =00
and lim o(6) = 0. If ym = O(v/@), & = O(V/a), then i fo(5),m(s)6 =
K'go weakly in V.

2 Reproducing kernel Hilbert spaces

In this section, we introduce a reproducing kernel Hilbert space. One can

refer to [1, 11, 14] for detailed treatises.

Let E be an arbitrary non-empty subset of R. We call a symmetric
function ®: E x E — R a kernel. A kernel @ is said to be positive definite
(respectively, positive semi-definite), if for all N € N and all sets of pairwise
distinct points X = {z1,...,zn} C E, the matrix [®(zi, z;))i; is positive
definite (respectively, positive semi-definite).
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Definition 2. Let H be a real Hilbert space with the inner product (-, )3
whose elements are some real-valued functions defined in E. A function
$: Ex E— R is called a reproducing kernel for M if

1. ®(,z)eH forallz € E,
2. f(z) = (f,®(-,x))n. forall feHandall z € E.

We define the norm by ||flln = (f, f)é{'

A Hilbert space of functions that admits a reproducing kernel is called a
reproducing kernel Hilbert space (in short, RKHS).
For a finite set of points X := {z;,...,zn} and f € H, we define
N

sy x(z) by sy x(z) = Zakd’(x, xx), where the coefficients {ax} , are
k=1
determined by the conditions ssx(zx) = f(zx), 1 < k < N. Since the

matrix [®(z, z;))i; is positive definite, {ax}i_; are uniquely determined.
We define a subspace by Vx := span{®(-,z)|z€ X} C H, and an
operator Px: H — Vn C H Px(f)(z) = 85,x(z).

Proposition 3 (see [14]). Px is an orthogonal projection of M onto the
closed subspace V.

Define the fill distance hx of X by hx g = sup,eg ming, e x| — z;|. We
choose some finite sets of points X, m € N of E such that hx,, g > hx,..E
for all m < m’ € N and mlimoo hxn,,e =0. We set Vj, := Vx, and Pp, :=

Py,,. In general, we cannot guarantee that the union J_, Vi, is dense in
H nor mhlnm lf = Pm(f)llx = 0. However, with a moderate assumption
on the kernel ®, we can prove these properties, which are crucial in our
regularization method.

Lemma 4 ([12]). If the reproducing kernel & is uniformly continuous on
E x E, then we have

[> <]
1. U Vm 18 dense in H.

m=1

2. lim |If — Pn(f)ll3 =0 for all f € H.
3 Discretized Tikhonov regularization by repro-
ducing kernel Hilbert spaces

In this section, we apply the general results to the case when V is a RKHS.
Let E be a subset of R%. Let (E,F,u) be a measure space on E. Let
®: E x E — R be a reproducing kernel. We assume that ® is uniformly
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continuous on E x E. We define a RKHS H on E generated by the kernel
®. Let K: H — W be a linear compact operator, where W is a Hilbert
space. We consider the problem of finding the solution fo € H in K fo = go
by means of noisy data gs satisfying

lg — gsllw < 4.

We choose finite sets of points X,,, m € N of E such that mli_x.rcn,o hxm,E =
0. We set a finite dimensional subspace V;, := Vx, and the projection
P, := Py,. By Lemma 4, we have "}1_13100 NI = Pr)f]l = 0 for all f € H.
Set ym = |K(I — Pp)||. Henceforth we assume that mli_rp@ Ym = 0, which is

satisfied by many reproducing kernels [14].

Let fo,m,s be a unique solution of (2) when V = H and let f,m be a
unique solution of (2) when the data gs = go. From the results obtained
above and the property of a RKHS, we have the following results.

Theorem 5 ([12]). Under the above settings, we have the followings:
1. Let lim amy =0. Suppose sup &(z,z) < oo.
m—oo z€E

If ym = O(y/am), then "}1_1}1& | fam,m = K190||L°°(E,u) =0.
2. Let }iné m(d) = oo and }in(l) a(d) = 0. Suppose [ ®(z, z)du(z) < oo.

If ym = O(Ve), § = O(v/a), then Lim || fa(s)m(s)6 — K Yg0ll L3,y = O

4 Tikhonov regularization by a reproducing ker-
nel Hilbert space for the Cauchy problem for an
elliptic equation

In this section, we consider a classical ill-posed problem, the Cauchy problem
for an elliptic equation: Given h, g, and gy, find u inside of 2 or u|sn\r Where

Au=h, req,
ull‘ =41, (3)
aAull"‘ = g2

In (3), the domain Q@ C R™ is a bounded domain whose boundary 810 is of C?

class, I is a relatively open subset of 8Q2, and Au(z) =3} ij=10i(aij (z)aju(z))+

c(z)u, z € N, v = v(z) is the unit outward normal vector to 8 at z,
Bau =30 ;j=18ij (%) (Oju)vi. Moreover, we assume that a;; = a;; € ci(Q),
1<14,j <n, ce L*(N2) and that there exists a constant o > 0 such that

> a2 2 0 Z{f, €, &,..&neR

i,j=1 j=1
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This problem appears in many applications for example in the cardiography,
the nondestructive testing, etc. Stable and efficient numerical methods are
of high importance. However, it is well-known that the Cauchy problem
for an elliptic equation is ill-posed without any a priori bounds of u (e.g.,
Tikhonov and Arsenin [13]). However, under a priori bounds of u, we can
restore the stability and, for stable numerical reconstructions of solutions,
we can use regularization techniques. There are a large number of works
devoting to stable numerical methods. We cannot list all works completely
and the following is a partial list: Cheng, Hon, Wei and Yamamoto [2], Hao
and Lesnic [5], Klibanov and Santosa [8], Lattes and Lions [9], Reinhardt,
Han and Hao [10)].

4.1 Conditional stability

First, we mention the conditional stability estimates for the Cauchy problem

(3).

Theorem 6 (boundary conditional stability,[12]). Let n > 2§2. For 0 <

kg < 1, there exists a constant C > 0 such that

1

lullzeo@anry < Cllull gagn) (108

The theorem says that if the norm ||\g1lz2(r) + llg2llL2(r) + lIRll L2y of
data tends to zero, then ||u|| L (g0\r) approaches 0 provided that we know
an a priori bound for ||ul|gn(q). The rate of convergence of ||u|L=(sa\r) is
logarithmic.

4.2 Reconstruction method

We assume that the problem (3) admits a unique solution ug € H %(Q) for
g1 and go. In this section, we show a reconstruction method by means of the
discretized Tikhonov regularization proposed in the previous section. We
assume that Q2 C R? for simplicity. We also assume that there exists a C®
map II: [0,1] — 8Q\T such that II is injective and II([0,1]) = OQ\I'. Set
L= 0Q\I'. Let ®(z,y): [0,1] x [0,1] — R be a positive definite kernel on
[0,1]. Let H be the RKHS on [0, 1] generated by the kernel . We denote
o(I~Y(z)) by I.p(z) for ¢ € H and z € E. For m € N, we define a set of
points X, C [0,1]. We define the finite subspace V;,, by V;,, := Vx,, and P,
by Pm := Py,,, respectively.

We pose the following two assumptions on the positive definite kernel
that is satisfied by many type of positive definite kernels [14].
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Assumption 7. We assume that the kernel ® is uniformly continuous on

I.

Assumption 8. Suppose there erists a function p: Ry — R, satisfying
l%p(r) = 0 such that the estimate holds || f — P flLo(0,1) < P(hx.)|| fll.

for all f € H. Here hx,, := sup min |z — zi|.
z€(0,1] Tk€Xm

Firstly, we construct an approximation to 84up|g of the solution of (3).
After obtaining the approximation, we solve a boundary value problem
which is well-posed and obtain an approximation to the solution of (3).
Thus it suffices to approximate 4up|z.

We define a Hilbert space on £ by Hy := {Il,p: £ —» R | ¢ € H},
equipped with an inner product (IL.1, Ilw2)my = (1, w2)n, where ¢; €
H. It is easy to check that Hy is a RKHS generated by the kernel ¥(z,y) :=
(I~ (), 11 (y)).

Let I'p be a relatively open subset of I'. Let ug denote the unique solution
of (3). We assume that 84uo(TI(t)) € H. Suppose that the noisy data g¢
and g§ satisfy

lgr — gilizary < 6, and |lgz — gllLar) < 6.
We first consider the direct problem

Au = h, z € Q,
Oaulg =01,

4
ulr, = 62, (4)

daulr\r, = 03,

for 8, € L?(X), 62 € L*(Tp) and 6; € L?(I'\I'g). We denote the solution of
(4) by (61,62, 03, h).
Let L and g° be defined, respectively, by

Ly := u’(‘P! 0,0, O)IF\FO’ g5 = g‘f - U(O, 9{, gg’ h)l[‘\[‘o'
Note that the map ¢ € L3(X) — u(y,0,0, O)lr\r, € L?(T'\T'p) is compact
and injective. In fact, the injectivity follows from the unique continua-
tion (e.g., Isakov [6]). The compactness is seen as follows; the map ¢ —
u(, 0,0,0) is continuous from L%(X) to H(f2) by a variational formulation
or the Lax-Milgram theorem. Since the embedding H#(I"\T'g) — L3(I"\To)

is compact, we see from the trace theorem that the map is compact. More-

over, the RKHS My is continuously embedded into L2(X). Therefore, L
is & linear and injective compact operator from Mg to L?(I'\Iy). Let K
be defined by K¢ := L(Il,). It is clear that K is a linear and injective
compact operator from H to L2(I'\I'p). Also, we have g; € L?(T'\T'p). We
set go = g1 — (0, 91, 92, h)ll"\[‘o-
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Lemma 9 ([12]). Let ¢ € H. Then K(p) = go and Il.p = aug|s are

equivalent.

From Lemma 9, the problem of finding 84up|g from gf and gg is equiv-
alent to the problem of finding the solution ¢ € H in K¢ = go from g5. We
solve the problem by the method introduced in section 1; that is, we expand
the data g§ in terms of {K(®(-,zx)); zx € Xm} on L2(['\I'p). In order to cir-
cumvent the instability of the inverse problem, the Tikhonov regularization
is applied

neuvl',l,. 1K (¢) - 96”%2(1*\[*0) + 01”90"%[2,

where a > 0 is a regularization parameter. We know that there exists
a unique minimizer which we denote by @a,ms. BY @am, we denote the
minimizer when g5 = go.

We can apply Theorem 5 in section 3, we show the convergence of Pam,é-

Theorem 10 ([12]). Under the above settings, we have:
(i) Let n}i_rpwam = 0. If p(hx,,) = O(\/am). Then, we have

Am |Ipa,m — BauollL2(s) = 0.

(it) Let }iném(d) = oo and }irxéa(é) = 0. If p(hx,,) = O(Va) and 6§ =
O(v@). Then, we have }u% IMs@a,m,s — BauollL2(s) = 0.

We solve the boundary value problem

Au=h, T €N,
aA'UIE = nt¢am6,

’ 5
u|r, __g415’ ®)

daulrr, = g3,

We denote a unique solution of (5) by uams. BY uam, we denote the

solution obtained by using ¢om and the noise-free data g1 and gz in (5).
The function ug — ua,m s satisfies (4) with 6, = G4up — o m s, 02 =

g1 — g} and 63 = go — g§. Hence, by Theorem 10, we have }i_r.r(l) flug —

Ua,msllL2(q) = 0. For given data 98,9% and a finite set of points Xy, of
[0,1], the minimizer wams € Vin can be written in the form: Pams =
k=1 A®(:, k). The coefficients {\;} ., are obtained by solvmg the linear

aJii) =0, k=1,..,m, where J(A) := ‘K(Z)‘kq’( zk)) =

system
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m
gﬁll%ﬂ(p\ro)+al| Z Ae®(-, zx)||3,. It is easy to check that the resultant system
k=1
is ‘
(A+aB)) = Gs. (6)
In (6),

[4)i; = /r‘\r‘o K(®(-,z:))K(®(,z5))dS, [Bli; = ®(xi,z;),

Gsli = K(®(-,z;))gsdS.
M\l

We note that K(®(-,z;)) = L(IL.®(-,z;)), 1 < i < m is the trace on
T'\I'g of the solution u; of the following direct problem

Au; =0 in Q,

aAuiIE = @(H-l(')’xi)y

uilro = 0’ (7)
aAu,:Ip\po =0.

The direct problem can be solved numerically by using a conventional method
such as a finite element method, a finite difference method, a boundary ele-
ment method, the method of fundamental solution and the Kansa's method,
[7], etec.

5 Numerical experiments

In this section, we verify the numerical efficiency of the proposed method for
the Cauchy problem (3). We reconstruct an approximate solution to (3) for
any given m in X,,. We only focus on the case when A= A and A =0, i.e,
the Laplace equation. Firstly, we give an approximation to 84ug|z. Then, by
using such approximation, we solve equation (5) to obtain an approximate
solution to (3). The regularization parameter o is chosen by the L-curve
method (e.g., (3]).

We consider a two-dimensional case where 2 = [—1,1] x [0,1] and two
cases of I': (i) OQ\T = [-1,1] x {1} and (ii) T = [~1,1] x {0}.

We fix the boundary 'y = [-0.1,0.1] x {0} in all the cases.

We choose the following functions as test examples:

Example 1 uo(z,y) = 3 — 3zy® + e*¥sin 2z — e¥ cos z.
Example 2 ug(z,y) = cos 7z cosh wy.
We use two positive definite kernels among ®; and ®;:

Kernel 1 ®;(t,s) := exp(—10|t — s/?).

8
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Kernel 2 ®,(t,s) := (|t — s|), where ¢(r) := (1 —r)3(3r +1) and t4 =
max{t, 0}.

Each kernel satisfies the Assumption 8 with p(r) = C; exp(-—-c;z) for the
Kernel 1 and p(r) = Csr? for the Kernel 2, respectively, where C;, C; and
Cj3 are positive constants {14, Section 11.4].

For the case (i) I' = [-1, 1] x {0}, the boundary £ = dQ\T is composed
by three segments: X; := {(s,1);s € [~1,1]}, B2 := {(-1,8);s € [0,1]}
and X3 := {(1, s); s € [0,1]}. We define maps II;: [0,1] — £;, i =1,2,3 by
Oy (t) = (-1,¢), Ha(t) = (=1 + 2¢,1) and II3(t) = (1,¢t) for t € [0, 1].

We take two finite sets of points X0 and Xgp in [0, 1]. The fill distances
of both IT;(X10) and II3(X;0) are equal to that of ITI3(X20).

The noisy data {g‘f, gg} are obtained by adding random numbers to the
exact data {g1,92} = {uolr,auo|r} by

(6 = 9:(6) + 75 maxlai(2)lrend(6), §=1,2,
for £ € T, where rand(£) is a random number between [—1,1] and 6% €
{0,1,5,10} is the noise level.

For all given noisy data { gf, 98} with various noisy levels, we apply Algo-
rithm to obtain an approximate solution to ug in each example. We denote
by ug, the approximate solution obtained with using the kernel ®;,i = 1,2
in Algorithm. For the numerical error estimations, we compute the relative
error by of ug, over the whole domain :

fluo — ua, | L2(q)
Er(ua,) = lluollL2(n)

for i = 1,2. Table 1 shows the relative errors for Example 1 and Example
2. In Figure 1, we show the solution up in Example 2 for the comparison
to approximate solution ug,. The solutions ug, obtained by using different
noisy data with noise level § = 0,1, 5,10 are given in Figure 2 - Figure 5,
respectively.

In order to study the error profiles of our numerical solution to ug,, in
Figure 6 and Figure 7, we draw the absolute error

Eo(z,y) := luo(z, y) — ue,(z,9)], (2,y) €2

In this experiment, the noise level is set to be § = 10 and both Example 1
and Example 2 are tested. We observe that the errors becomes larger near
the boundary ¥ in the both examples. This corresponds to the conditional
stability estimate up to the boundary as we stated in Theorem 6 where
the rate of the convergence to the exact solution is only logarithmic. By
the interior conditional stability estimate for Cauchy problem [6], we may
expect that the accuracy of the numerical solution will be improved in a

9
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small part of the subset w C {2 whose boundary dw does not touch X. In [8],
the reconstruction was done in a subdomain w for the same Cauchy problem
for the Laplace equation. For comparisons, we choose the same subdomain
w:

T \2

w = {(z,y);y + 0.6 (0'6) ~06<0, y>0}

and consider the relative error in w

fluo — uollLa@wy .
er(ug,) := Tl i=12

In Table 2, we can see that all the accuracies have improved.

Finally, we compute the numerical approximate solution to ug when the
Cauchy data is given on the boundary ¥ = {(z,1);z € [—1,1]}. Table 3 and
Table 4 show the relative errors in each domain respectively.

Examplel Example2
Noise E (us,) Er(up,) Er(us,) Er(us,)
0%  0.0428 0.0338 0.0919  0.0667
1%  0.0507 0.0606 0.1099 0.0781
5%  0.2449 0.2340 0.3055 0.3186

10% 0.2797  0.2682  0.3410  0.3149

Table 1: The relative errors ug, ¢ = 1,2 on the whole domain 2 when the

Cauchy data are given on the boundary I' = [~1,1] x {0}.

10
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Examplel Example2
Noise er(us;) er(us,) er(us,) er(ug,)
0% 0.0044 0.0040 0.0023 0.0019
1%  0.0041 0.0074 0.0072 0.0052

5% 0.0717 0.0677 0.0638 0.0786
10% 0.0879 0.0830 0.0768 0.0763

Table 2: The relative errors ug,, i = 1,2, in the interior part w where the

Cauchy data is given on the boundary T = [-1,1] x {0}.

Examplel Example2
Noise E, (u@1) E, (u@z) Er (ud’x) Ey (u‘i’z)
0% 0.0069 0.0043 0.0037 0.0044

1% 0.0153 0.0106 0.0166  0.0046
5% 0.0375  0.0218 0.0361  0.0198
10% 0.0414 0.0425 < 0.0539  0.0292

Table 3: The relative errors ug,, i = 1,2, on the whole domain §2 where the

Cauchy data is given on the boundary I' such that 8Q\I' = [—-1,1] x {1}.
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Figure 1: Surface plot for the function ug(z,y) = cos mz cosh 7y in example

2.

Figure 2: Numerical approximate sol’u“cion ug, to the solution of example 2

using noisy data when § =0
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Figure 3: Numerical approximate solution ug, to the solution of example 2

using noisy data when 6 = 1

Figure 4: Numerical approximate solluiion ugp, to the solution of example 2

using noisy data when § = 5
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Figure 5: Numerical approximate solution ug, to the solution of example 2

using noisy data when § = 10

Figure 6: Absolute error |ug(z,y) — 'lueq,, (z,y)| by the Cauchy dataon I"' =
[-1, 1] x {0} with 10% noise.
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Figure 7: Absolute error |ug(z,y) — ug,(z,y)| by the Cauchy data on I' =

[-1,1] x {0} with 10% noise.
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