零次元代数的局所コホモロジーの計算法とスタンダード基底計算について II

田島慎一

SHINICHI TAJIMA

新潟大学工学部

FACULTY OF ENGINEERING, NIIGATA UNIV.*

\(\mathfrak{C}^n \) の原点 \(O \) の近傍 \(X \) 上正則に、原点 \(O \) を含む特異点として持つ関数 \(f \) に対し、原点 \(O \) に台を持つ代数的局所コホモロジー類であり \(f \) のヤコビデイアル \(\mathcal{J} \subseteq \mathcal{O}_{X,0} \) により annihilate されるもの全体のなす集合を考え、それを \(\mathcal{W}_f \) で表す:

\[
\mathcal{W}_f = \{ \psi \in \mathcal{H}^0_{\mathfrak{C}^n}(\Omega_X^n) \mid g\psi = 0, g \in \mathcal{J} \}.
\]

ベクトル空間 \(\mathcal{W}_f \) は剰余空間 \(\mathcal{O}_{X,0}/\mathcal{J} \) の双対ベクトル空間と同一視することができる。

論文 [4] では、ベクトル空間 \(\mathcal{W}_f \) の基底を求める方法を与え、さらに多変数微係数に関する Grothendieck 双対性に基づくことで、ヤコビデイアル \(\mathcal{J} \) に関する membership 問題への応用について論じた。また \(\mathcal{J} \subseteq \mathcal{O}_{X,0} \) のスタンダード基底を求めうことが可能であることを述べた。ここでは、[4] の議論を補う形で、Normal form、スタンダード基底やグレートプル基底の具体的な計算の仕方等について述べる。

1 スタンダード基底

原点 \(O \) に台を持つ代数的局所コホモロジー \(\mathcal{H}^0_{\mathfrak{C}^n}(\Omega_X^n) \) の元は、開集合対 \((X, X - \{O\}) \) に対する標準的な相対被覆を定める相対チェックコホモロジーの元として

\[
\sum_{\lambda} c_{\lambda}\frac{dx}{x^{\lambda+1}} \quad (c_{\lambda} \in \mathbb{C}, \lambda = (l_1, l_2, \ldots, l_n) \in \mathbb{N}^n)
\]

なる有限和の形の表現を持つ（ただし、\(dx = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n, \lambda + 1 = (l_1 + 1, l_2 + 1, \ldots, l_n + 1), 1 = (1, 1, \ldots, 1) \)）。代数的局所コホモロジー \(\mathcal{H}^0_{\mathfrak{C}^n}(\Omega_X^n) \) と形式微積分 \(h(x) \in \mathcal{O}_{X,0} \) との pairing を与える有数

\[
\text{res}_0(h(x), \frac{dx}{x^\lambda}) = \text{res}_0(h(x)dx, x^{-\lambda})
\]

は、\(h(x) \) を \(h(x) = \sum h_\alpha x^\alpha \) と展開すると

\[
\text{res}_0(h(x), \frac{dx}{x^{\lambda+1}}) = h_{\lambda}
\]

となる。この事に注目し、代数的局所コホモロジー類 \(\sum_{\lambda} c_{\lambda}\frac{dx}{x^{\lambda+1}} \in \mathcal{H}^0_{\mathfrak{C}^n}(\Omega_X) \) を、\(\xi = (\xi_1, \xi_2, \ldots, \xi_n) \) を変数とする \(n \) 変数多項式 \(\sum_{\lambda} c_{\lambda}\xi^\lambda \) により表現することにする。また、このような多項式を代数的局所コホモロジー類の多項式表現と言うことにする。

* tajima@ie.niigata-u.ac.jp
\(W_I \) の元の多項式表示全体がなすベクトル空間を \(V \) で表す。多項式環 \(\mathbb{C}[\xi_1, \xi_2, \ldots, \xi_n] \) に \(\xi_1 \succ \xi_2 \succ \cdots \succ \xi_n \) なる全次数辞書式順序 \(\succ \) を入れ、"この順序に従うような"ベクトル空間 \(V \) の基底を \(B \) で表す。（ただし、\(B \) に属する基底多項式の主項の係数はすべて1に正規化しており、基底多項式の低階項に他にこの基底多項式的主項が現れないよう reduce してあるものとする。この様な基底 \(B \) の構成法については、[4], [1], [5] を参照されたい。基底 \(B \) に属するような単項式すべてがなす集合を \(B_M \) で表し、基底 \(B \) に属するような（積項以外の）多項式がなす集合を \(B_P \) で表す。

\[B_M = \{ \xi^\lambda \mid \xi^\lambda \in B \}, \quad B_P = B - B_M. \]

\(B_M \) に属するような単項式 \(\xi^\lambda \) の指数 \(\lambda \) 全体がなす集合を \(\Lambda_M \) とおき、\(B_P \) に属する多項式の展開式に表れる単項式の指数全体のなす集合を \(\Lambda_P \) とする。

いま、\(p = \# B_P \) であるとし、\(B_P \) は \(p \) 個の多項式 \(b_1(\xi), b_2(\xi), \ldots, b_p(\xi) \) から成るとする。

\[B_P = \{ b_1(\xi), b_2(\xi), \ldots, b_p(\xi) \}. \]

ここで、\(b_i(\xi) \) または \(b_i(\xi) \) の主項を \(\text{ht}(h_i) \) で表したとき、\(\text{ht}(b_1) \succ \text{ht}(b_2) \succ \cdots \succ \text{ht}(b_p) \) を満たす順番に並んでいるとする。\(p \times q \) 行列 \(\Phi \) を、各 \(b_i(\xi) \) の展開式

\[b_i(\xi) = \sum_{\lambda \in \Lambda_P} c_{i,\lambda} \xi^\lambda \]

の係数 \(c_{i,\lambda} \) を用いて

\[\Phi = (c_{i,\lambda_{j}})_{1 \leq i \leq p, 1 \leq j \leq q} \]

で定める。ただし、\(\Lambda_P = \{ \lambda_1, \lambda_2, \ldots, \lambda_q \} \)、\(q = \# \Lambda_P \) であり、\(\lambda_1 \succ \lambda_2 \succ \cdots \succ \lambda_q \) の順になっており、

多項式 \(h(x) = \sum_{\lambda \in \Lambda_P} h_\lambda x^\lambda \) に対して、ベクトル \(h \) を \(h = (h_{\lambda_1}, \ldots, h_{\lambda_q}) \) で定める。

Lemma \(h(x) = \sum_{\lambda \in \Lambda_P} h_\lambda x^\lambda \) なる多項式に対し、\(h(x) \in J \) となることは \(\Phi h = 0 \) と同値である。

各 \(b_i(\xi) \) の主項 \(\text{ht}(b_i) \) の指数を \(\kappa_i \) とし、さらに

\[K_P = \{ \kappa_1, \kappa_2, \ldots, \kappa_p \}, \quad \Lambda'_P = \Lambda_P - K_P \]

とおく。\(b_i(\xi) \) の主項の係数が1であることと、\(B \) が reduce された基底であることから、\(b_i(\xi) \) は

\[b_i(\xi) = \xi^{\kappa_i} + \sum_{\lambda \in \Lambda'} c_{i,\lambda} \xi^\lambda \]

なる形をしていることが分かる。即ち、行列 \(\Phi \) は階段行列である。

Lemma \(\lambda \in \Lambda' \) とする。このとき、

\[x^\lambda = -c_{1,\lambda} x^{\kappa_1} - \cdots - c_{p,\lambda} x^{\kappa_p} \mod J \]

が成り立つ。

Lemma \(O_{X,O}/J \cong \text{Span}_\mathbb{C}\{x^\lambda, \mid \lambda \in \Lambda_M \cup K_P \} \).

これらのことから、局所環 \(O_{X,O} \) に \(1 \succ x_n \succ x_{n-1} \succ \cdots \succ x_1 \succ x_2^2 \succ \cdots \) なる全次数辞書式順序（スタンダード基底の意味での順序）をいった時、\(\{ x^\lambda \mid \lambda \in \Lambda_M \cup K_P \} \) が \(\text{O}_{X,O}/J \) の基底単項式を与えることが直ちに分かる。
E_{12} 情報点 $x^3 + y^7 + xy^5 = 0$ を例にとり、そのヤコピデオアル J のスタンダード基底の計算法を説明する。

$B_M = \{1, \eta, \xi, \eta^2, \xi^2, \eta^3, \xi^2 \eta^2, \eta^4, \xi, \eta^3 \xi, \eta^5, \xi^2 \eta^3, \eta^6, \xi^3 \eta, \xi \eta \} \setminus \{0\}$ である。ここで

$$b_1 = \eta^7 - \frac{7}{5}\xi \eta^6 - \frac{1}{3}\xi^2 \eta^2 + \frac{7}{15}\xi^3, b_2 = \eta^6 - \frac{7}{5}\xi \eta^4 - \frac{1}{3}\xi^2 \eta,$$

である。

b_1, b_2, b_3 に含まれる単項を全次数辞書式順序に並べると $\eta^7, \xi \eta^6, \eta^6, \xi \eta^4, \eta^5, \xi^2 \eta^2, \xi^3 \eta, \xi^2 \eta \xi^2$ となり、これら

の単項式の係数を並べて行列

$$
\Phi = \begin{pmatrix}
1 & -\frac{7}{5} & 0 & 0 & 0 & -\frac{1}{3} & \frac{7}{15} & 0 & 0 \\
0 & 0 & 1 & -\frac{7}{5} & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0
\end{pmatrix}
$$

を得る。

$h(x, y) = h_0 \eta y^7 + h_1 \xi xy^6 + h_2 \eta^2 y^6 + h_3 \xi^2 y^4 + h_2 \xi^2 \eta^2 y^2 + h_1 \eta^3 y + h_2 \eta^2 \xi^2 y + h_2 \eta \xi^2 y^2 + h_2 \eta^2 \eta^2 y$ とおく。係数 $(h_0, h_1, h_2, h_3, h_4, h_5, h_6, h_7)$ をベクトル h と見なすことにより、$h \in J$ となる必要十分条件は

$$
\Phi \text{h} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
$$

と表すことができる。

- Normal form の計算

xy^5 の normal form を求めるため、$u_{(1, 5)} = \{h_0, h_1, h_2, h_3, h_4, h_5, h_6, h_7\}$ とおく。条件 $\Phi u_{1, 5} = 0$

列ベクトルのうち $\xi \eta^5$ に対応するのは、2 番目の列ベクトルが $(0, 2)$ であることに注目する。この列ベクトルの第一、第二、第三成分は、xy^5 の normal form の y^7, y^6, y^5 の係数が夫々対応している。つまり、xy^5 の normal form は行列 Φ の第二列ベクトルとして既に求まっていることになる。

- スタンダード基底

$\Lambda_M = \{(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (0, 3), (1, 2), (0, 4), (1, 3)\}, K_P = \{(0, 7), (0, 6), (0, 5)\}$ である

ことから、ヤコピデオアル J のスタンダード基底の主項の指数は $(0, 2), (1, 4), (0, 8)$ で与えられることが分かれる。行列 Φ の列ベクトルのうちこれらの指数に対応するのは、9 列目と 4 列目であり、9 列目は指数 $(0, 2)$ に対応する。4 列目は指数 $(1, 4)$ に対応する。また、行列 Φ の列ベクトルで指数

$(0, 8)$ に対応するものは存在しない。これらのことから、

$$\{xy^4 + \frac{7}{5}y^4, x^2 + \frac{1}{3}y^8, y^6\}$$

がヤコピデオアル J の関数順序 $x > y > x > y^2 > xy > x^2 > \cdots$ に関するスタンダード基底であることが直ちに分かる。
2 グレブナ基底

曲面が多項式 f により $f = 0$ と定義されているとする。多項式環 $\mathbb{C}[x_1, x_2, ..., x_n]$ での f のヤコビイデアル $J = \langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \rangle$ の準素イデアル分解をとり、その原点 O (孤立特異点) に対応する J の準素成分を J_O とする。この節では、行列 Φ を用いると、準素イデアル分解アルゴリズム等を経由せずに J_O のグレブナ基底が直接生成できる事を示す。この計算法は、論文 [1] で用いた方法等に比べてはるかに計算効率がよい。基本的なアイデアはスタンダード基底の計算と同じである。相違点は、行列 Φ の列を順序の小さいものの係数が左に来るように入れ替えた行列 Φ' に対して行基本操作を施すことで得られる階層行列を、グレブナ基底計算に用いることにある。

$f = x^3 + y^7 + xy^8$ の場合に全次数辞書順序 $(x > y)$ でのグレブナ基底を計算してみよう。

1. $B_P = \{b_1, b_2, b_3\}$ の展開式に表れる単項式を降順の小さい順に並べる。

\[\xi^2, \xi^2\eta, \xi^3, \xi^2\eta^2, \eta^5, \xi\eta^4, \eta^6, \xi\eta^5, \eta^7 \]

2. 行列 Φ をこの順番に書き直す。

\[
\Phi' = \begin{pmatrix}
-\frac{1}{2} & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 & -\frac{7}{15} & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{15} & -\frac{1}{5} & 0 & 0 & 0 & -\frac{7}{16} & 1
\end{pmatrix}
\]

3. 行基本操作を施すことにより、階層行列に変形する。

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{7}{6} & -3 & 0 & 0 \\
0 & 0 & 1 & -\frac{7}{16} & 0 & 0 & 0 & -3 & \frac{16}{7}
\end{pmatrix}
\]

(1)

4. 基底単項式

剰余空間 $\mathbb{C}[x, y]/J_O$ の基底単項式は、B_M と行列 (1) のビットに対応する単項式 x^2, x^2y, x^3 からなる。

5. グレブナ基底

行列 (1) の列ベクトルは、第 1 成分、第 2 成分、第 3 成分が夫々 x^2, x^2y, x^3 の係数に対応している。この事から、

\[x^2y^2 + \frac{5}{7}x^3, y^5 + 3x^2, xy^4 - \frac{21}{5}x^2y, y^6 + 3x^2y, xy^5 + 3x^3, y^7 + \frac{15}{7}x^2 \]

はイデアル J_O に属する多項式であることが分かる。さらに、$xy^4, y^5, x^4, x^3y, x^2y^2$ がグレブナ基底の主項となることが分かるのでグレブナ基底

\[\{xy^4 - \frac{21}{5}x^2y, y^5 + 3x^2, x^4, x^3y, x^2y^2 + \frac{5}{7}x^3\} \]

をえる。

3 計算例

例 1 (W_{12} 特異点) 関数 $f(x, y) = x^4 + y^5 + x^2y^3$ に対して、J のスタンダード基底、ならびに、J_O のグレブナ基底を計算しよう。
\[B_M = \{1, \eta, \xi, \xi^2, \eta^2, \xi^3, \eta^3, \xi \eta^2, \xi^2 \eta\}, \ B_P = \{b_1(\xi, \eta), b_2(\xi, \eta), b_3(\xi, \eta)\} \]ただし

\[b_1 = \xi^2 \eta^3 - \frac{3}{5} \eta^5 - \frac{1}{2} \xi^4, \ b_2 = \xi^2 \eta^2 - \frac{3}{5} \eta^4, \ b_3 = \xi \eta^3 - \frac{1}{2} \xi^3 \]
である。多項式 \(b_1, b_2, b_3 \) の（全次数辞書式順序に並べてある）単項式の列 \(\xi^2 \eta^3, \eta^5, \xi^4, \xi^2 \eta^2, \xi \eta^3, \eta^4, \xi^3 \) に関する係数行列 \(\Phi \) は

\[
\begin{pmatrix}
1 & -\frac{3}{5} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -\frac{3}{5} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -\frac{3}{5} & 0 & 0
\end{pmatrix}
\]
で与えられる。これより、項順序 \(1 \succ y \succ x \succ y^2 \succ xy \succ x^2 \succ \cdots \) に関する \(J \) のスタンダード基底

\[\{x^3 + \frac{1}{2}xy^3, y^4 + \frac{3}{5}x^2y^2\} \]
を得る。次に、\(x \succ y \) なる辞書式順序に関するグレプナ基底を計算しよう。多項式 \(b_1, b_2, b_3 \) と \(b_4, b_5 \) に現れる単項式を \(\xi \succ \eta \) なる辞書式順序で並べるならと \(\eta^4, \xi^5, \xi \eta^3, \xi^2 \eta^2, \xi^2 \eta, \xi^3, \xi^4 \) となる。この順序に従って行列 \(\Phi \) の列ベクトルの並べ換え等を行い、対応する行列

\[
\begin{pmatrix}
-\frac{3}{5} & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -\frac{3}{5} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -\frac{3}{5} & 0
\end{pmatrix}
\]
を得る。行基本変形を施し

\[
\begin{pmatrix}
1 & 0 & 0 & -\frac{3}{5} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -\frac{3}{5} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -\frac{3}{5} & 0
\end{pmatrix}
\]
をえる。これより \(J_0 \) のグレプナ基底

\[\{x^3 + \frac{1}{2}xy^3, x^2y^2 + \frac{3}{5}y^4, xy^4, y^6\} \]
を得る。

例 2 \((E_{18} \text{ 特異点}) \) \(f = x^3 + y^{10} + axy^7 + bxy^9 \) のヤコピデアル \(J \) のスタンダード基底と \(J_0 \) のグレプナ基底を計算しよう。ここで、\(a, b \) は零ではない任意の数とする。

\(V \) の基底多項式は \(\xi^l \eta^k, 0 \leq l_1 \leq 1, 0 \leq l_2 \leq 5 \) および \((l_1, l_2) = (0, 6) \) なる単項式と

\[
\begin{align*}
\omega_1 &= \eta^{11} - \frac{10}{7a} \xi \eta^8 + \frac{806}{49a^2} \xi \eta^7 - \frac{6408}{343a^3} \xi \eta^6 - \frac{1}{3} \xi^2 \eta^4 - \frac{1}{3} \xi \eta^2 \xi \eta^3 + \frac{10}{21} \xi^3 \eta - \frac{10b}{147a} \xi^4, \\
\omega_2 &= \eta^{10} - \frac{10}{7a} \xi \eta^7 + \frac{806}{49a^2} \xi \eta^6 - \frac{1}{3} \xi^2 \eta^3 - \frac{1}{3} \xi \eta^2 \xi \eta^2 + \frac{10}{21} \xi^3, \\
\omega_3 &= \eta^9 - \frac{10}{7a} \xi \eta^6 - \frac{1}{3} \xi^2 \eta^2 - \frac{1}{3} \xi \eta^2, \\
\omega_4 &= \eta^8 - \frac{1}{3} \xi^2 \eta - \frac{1}{3} \xi \eta^2, \\
\omega_5 &= \eta^7 - \frac{1}{3} \xi \eta^2
\end{align*}
\]
である。多項式 \(b_1, b_2, b_3, b_4, b_5 \) に現れる単項式を全次数辞書式順序に並べ、\(\eta^{11}, \eta^{10}, \xi \eta^9, \eta^9, \xi \eta^8, \xi \eta^7 \) と \(\xi \eta^6 \)，
\[\eta^7, \xi^2 \eta^4, \xi^3 \eta, \xi^2 \eta^2, \xi^2 \eta^3, \xi^3 \eta^2, \xi^2 \eta^4, \eta^{7}, \xi^2 \eta, \xi^3 \eta, \xi^2 \eta^{2}, \xi^3 \eta, \xi^2 \eta^{3}, \xi^3 \eta^3, \xi^2 \eta^4, \xi^3 \eta^4, \eta^7, \xi \eta^6, \eta^8, \xi \eta^7, \eta^9, \xi \eta^8, \eta^{10}, \eta^{11} \] と得る．これらに関する \(b_1, b_2, b_3, b_4, b_5 \) の係数行列は
\[
\begin{pmatrix}
1 & 0 & -10 & 0 & \frac{80b}{49a^2} & 0 & -\frac{640b^2}{343a^3} & 0 & -\frac{10}{3}a & -\frac{1}{3}b & 10 & 0 & -\frac{10b}{147a} & 0 & 0 \\
0 & 1 & 0 & 0 & -10 & 0 & \frac{80b}{49a^2} & 0 & 0 & -\frac{1}{3}a & 0 & -\frac{10b}{21} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{3}a & 0 & -\frac{1}{3}b & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{3}a & -\frac{1}{3}b & 0
\end{pmatrix}
\]
となる．ここで，\(x^2, xy, y^2, xy, x^2 \rightarrow y \rightarrow x^2 \rightarrow \cdots \) なる値が辞書式順序に関するスタンダード基底の主項となることが分かれる．上記の行列第 15 列と第 7 列がそれぞれ \(x^2, xy^6 \) に対応している．従って，\(y^{12} \) と第 15 列と第 7 列が定める多項式が求めるスタンダード基底をなすことが分かる．

また，\(b_1, b_2, b_3, b_4, b_5 \) の \(\xi, \xi \eta, \xi \eta^2, \xi \eta^3, \xi \eta^4, \eta^7, \xi \eta^6, \eta^8, \xi \eta^7, \eta^9, \xi \eta^8, \eta^{10}, \eta^{11} \) に関する係数行列は
\[
\phi' = \begin{pmatrix}
-\frac{1}{3}a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{3}b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 10 & 0 & -\frac{1}{3}b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 10 & 0 & -\frac{1}{3}b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -10b & 0 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
で与えられるが，行基本操作により次を得る．
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{1}{270}b^3 - \frac{7}{10}b - \frac{7}{10}a & \frac{1}{80}b^4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{270}b^3 - \frac{7}{10}b - \frac{7}{10}a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{147}b^3 - \frac{192}{49}b^2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{80}b^4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{80}b^4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{147}b^3 - \frac{192}{49}b^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{80}b^4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{147}b^3 - \frac{192}{49}b^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{80}b^4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{147}b^3 - \frac{192}{49}b^2 & 0 & 0 & 0
\end{pmatrix}
\]
これより，\(xy^6, y^3, x^2 y^3, x^3 y^2, x^4 \) が求めるグレブナ基底の主項となることが分かるので，先ほどと同様に，上記の行列から対応する列ベクトルを見ることでグレブナ基底を構成できる．

