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1. PROBLEMS AND RESULTS

Throughout this paper, let G be a finite group. A real G-representation of finite
dimension is meant by a real G-module, a smooth manifold is meant by a manifold,
and a smooth G-manifold is meant by a G-manifold. For a G-manifold X, let TR(X)
denote the set of all isomorphism classes (as real G-modules) of tangential representations
T,(X), where z runs over the G-fixed point set X¢. We are interested in TR(X) for
manifolds X such that X€ consists of exactly two points. In particular, the case where

X are homotopy spheres has been studied as Smith Problem.

Smith Problem. Let ¥ be a homotopy sphere with G-action such that the G-fixed
point set consists of exactly two points a, b. Are the tangential representations T,(X)
and Ty(X) isomorphic to each other (namely |[TR(Z)| =1) ?

We have affirmative answers (e.g: Atiyah-Bott, Milnor, Sanchez) as well as negative
answers (e.g. Petrie, Cappell-Shaneson, Petrie-Randall, Petrie-Dovermann, Dovermann-
Washington, Dovermann-Suh, Laitinen-Pawatowski, Pawalowski-Solomon), to Smith Prob-
lem under various hypotheses. There are surveys relevant to studies on Smith Problem
in [24], [18] and [6]. |

To study the problem, we define the following relations ~p, ~g and ~pg. In the

definition below, V' and W are real G-modules.

(1) V ~p W if there exists a disk D with G-action such that D¢ = {a,b} and
{IV), W]} = TR(D). |

(2) V ~g W if there exists a homotopy sphere £ with G-action such that £¢ = {a, b}
and {[V],[W]} = TR(Z).

(3) V ~ps Wif V ~p Wand V ~g W.

2000 Mathematics Subject Classification. Primary: 57517, 57825, 55M35. Secondary: 20C05.



53

Here ~5 and ~pg may not be equivalence relations, although they stably yield equiva-
lence relations. We have been interested in the relation ~g (namely the Smith equiva-
lence), but in the present paper we will mainly pay our attention to the relation ~gpg.

Let RO(G) denote the real representation ring. We define the subsets D(G), G(G)
and DG(G) of RO(G) by

D(G)={V-WEeRO(G) |V ~p W}

S(G)={V -W cRO(G) | V ~g W}

PG(G) =9(G)NGB(G) _
The set &(G) was usually denoted by Sm(G). By R. Oliver [16], there exists a disk with
G-action with |D®| = 2 if and only if G is an Oliver group (namely, G is not a mod
P hyperelementary group). Thus it is worthwhile to study D(G) and D&(G) only for
Oliver groups G.

If M is a subset of RO(G) then for families .A, B consisting of subgroups of G we

define
Mi Y (g€ M|resSc =0V H € A}
MEE (oa=V-WeM|VE=0=W¥VK c B}
MEE (g=V-WeM,|VE=0=WKVYK eB}.
Using the notation with the families '

P=P(G) ¥ {P<G||P|=p* (p aprime)}

No=N(@)E{NQG|IG/N| =1, 2}

N =N(G) = {N QG| |G/N|=1or a prime}

L= L(G) %f {L <G| L 2G? for some prime p},
we study the subsets D(G), &(G) and DS(G) of RO(G). Here the group G is the
smallest normal subgroup of G with prime power index, namely

Gt = N H.
H4Gi|G/H|=p® for some a
An element in £ defined above is called a large subgroup of G.

Many authors (e.g. Petrie-Randall, Petrie-Dovermann, Dovermann-Washington,
Dovermann-Suh, Laitinen-Pawalowski, Pawalowski-Solomon) found various pairs (V, W)
of nonisomorphic DS-related real G-modules V, W. But their (V, W) with V ~pg W
satisfy VN = 0 = W¥ for all N <G with prime index. In other words, they showed

DS(GYV #£0
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for various G. Now we recall the next proposition.
Proposition 1 ( [12], [13] ). The implications G(G) C RO(G’)’g2 and DG(G) C
RO(G)y? hold.

These facts motivate us to study the following problem.
Problem A. Does there exist a finite group G satisfying DS(G) # DS(G)V ?

The notion gap module is convenient to study this problem as well as Smith Problem.
A real G-module V is called a gap module if it satisfies the following conditions.

(1) VE =0 for all L € L(G).

(2) dim V¥ > dim V¥ for all pairs (P, H) of subgroups of G such that P € P(Q)
and H > P. '

A finite group G is called a gap group if G admits a gap real G-module. Pawalowski-
Solomon showed in [18] that for an arbitrary nonsolvable gap group G with ag > 2 and
G % PYL(2,27), |

DS(G) 2 RO(G)5 # 0.
Since the appearance of this result, the next problem has been asked.
Problem B. Are the sets G(G) and QG(G) nontrivial in the case G = PXL(2,27) ?
The purpose of the present paper is to answer to Problems A and B, and we obtained
the following results.

Theorem 2. For each odd prime p, there exist a gap Oliver group G and real G-modules
V and W such that V ~pg W, dim V¥ > 0 and dimW?¥ = 0 for some N <« G with
|G/N| = p, hence DS(GQ) # DS(G)V.

Let SG(m, n) denote the small group of order m and type n appearing in the computer
software GAP [5].

Theorem 3. Let G = PXL(2,27), SG(864,2666), or SG(864,4666). Then RO(G)5 =0
but ‘

6(G) = D(G) = D6(G) =RO(G)IF > z.

2. ADDITIONAL INFORMATION

For g € G, let (g) denote the conjugacy class of g in G. The real conjugacy class (g)*

of g is the union of (g) and (g~!). Let ag denote the number of all real conjugacy classes
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of elements g of G such that g does not have prime power order. By the representation

theory, we have
ac = rank RO(G)p.
Let § denote the homomorphism from RO(G)p to Z given by
§([V] = [W]) = dimVC - dim WC.
Then by definition,
RO(G)¥} = Ker[s : RO(G)p — Z].
B. Oliver {17] showed that if ag > 1 then
Image[d : RO(G)p — Z] D 2Z.

Thus the next proposition immediately follows.
Proposition (Laitinen-Pawalowski [8]). If ag > 1 then rank RO(G);G} =ag — 1.

In addition, B. Oliver [17] implies the next result.
Theorem (Oliver). If G is an Oliver group then ®(G) = RO’(G)i,G}.

Viewing these facts, E. Laitinen conjectured the next.
Laitinen’s Conjecture. If G is an Oliver group with ag > 2 then D&(G) # 0.

This conjecture had been positively expected until 2006. We, however, have a negative
example.
Theorem 4 ([12], [13]). Let G = Aut(Ag). Then Laitinen’s Conjecture fails, in fact
ag =2 and 6(G) = 0 = DS(G).

Most finite Oliver groups are gap groups, but neither S5 nor Aut(Ag) is a gap group,
where S5 is the symmetric group on five letters and A is the alternating group on six

letters. Pawalowski-Solomon [18] showed the next theorem using a deleting-inserting

theorem of G-fixed point sets to disks ([10], [15, Appendix]).
Theorem (Pawalowski-Solomon [18]). If G is a gap Oliver group then

| RO(G)5 € D6(G).
On the other hand, they also showed the next result using the finite group theory.

Theorem (Pawalowski-Solomon [18]). Let G be a nonsolvable gap group with ag > 2.
If G 2 PXL(2,27) then
RO(G)5 # 0.
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Putting these results together, we obtain a corollary.

Corollary (Pawalowski-Solomon [18]). Let G be a nonsolvable gap group with ag > 2.
If G 2 PXL(2,27) then DS(G) # 0.

Since S5 x Cs, where C; is the cyclic group of order 2, is not a gap group, the next

result is also interesting.

Theorem (X.M. Ju [6]). In the case G = S5 x Cs, the equalities
6(G)=D6(G) =RO(G)s 2

hold.

We obtained a deleting-inserting theorem [14] of new kind by employing an equivariant
interpretation of Cappell-Shaneson’s surgery obstruction theory for getting homology
(possibly, not homotopy) equivalences as well as employing the induction theory of Wall’s

surgery obstruction groups. We state here the theorem in a simplified form.

Theorem 5. Let G be an Oliver group andY a disk with G-action. Suppose the following

conditions are satisfied.

(1) Y° ={y1,...,Ym}, wherem > 1.

(2) YL =0 for all L € L(G).

(3) dimY# > 5 for all mod P cyclic subgroups H, i.e. 1 < P cyglic H.

4) dimY”* > 2(dimY# + 1) for all P € P(G) and H > P.

5) |m(YF)| < 0o and (|m (YF)|,|P|) =1 for all P € P(G).

6) The inclusion induced maps m,(8YF) — m (Y'F) are isomorphisms for all P €
P(G).

(
(
(

Then there exists a disk X with G-action such that 8X = 8Y and X€ = 0.

Remark that the union ¥ = X Up Y identified along the boundaries of X and Y in
the theorem above is a homotopy sphere such that 7R(X) = TR(Y). Since various
G-actions on disks Y are constructed by Oliver’s theory [17], we would obtain G-actions

on homotopy spheres ¥ from those on disks. In fact, the next result is an outcome of

Theorem 5.

Theorem 6. Let p be an odd prime. Let G be an Oliver group such that G = G1¢ for
all primes q # p and |G/G'?Y| = p. If G has a dihedral subquotient Dy, (order 2qr) with

distinct primes q and r and further that G contains distinct real G-conjugacy classes
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(2)%, (y)* of elements x, y not of prime power order, then DS(Q) contains a direct
summand of RO(G) of rank 1.

Theorems 2 and 3 follow from Theorem 6. In addition, we conclude the next.

Theorem 7. Laitinen’s Conjecture is affirmative for any finite nonsolvable gap group.
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