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1. INTRODUCTION

Throughout this paper, we assume that groups are always finite groups, group
actions are smooth and representations mean real representations.

In 1960, Paul A. Smith [$63\rfloor$ posted the foll.owing problem:

Problem. Let $G$ be a finite group whlch acts on a homotopy sphere with just two
fixed points. Then are the tangential spaces over the fixed points isomorphic as
representations or not?

We call two representations which are obtained as the tangential spaces over fixed
points from a finite group action on a sphere with just two fixed points are Smith
equivalent.

Atiyah-Bott [1] proved that Smith equivalent representations are always isomor-
phic for a cyclic group of prime order. According to Sanchez [60], they are always
isomorphic for a cyclic group of odd prime power order. By character theory, we
obtain they are also always isomorphic for the symmetric group on three letters and
a cyclic group of order 2,4, 6. On the other hand, Cappell-Shaneson proved that
there exist Smith equivalent representations which are not isomorphic for a cyclic
group of order $4q$ for $q\geq 2([6,7,8])$ . For different classes of finite groups, many
related results about this problem were obtained by Petrie, Dovermann, Suh, etc.
[37, 57, 58, 59, 17, 19, 21, 64, 9, 10, 22] before 1990. After that, Laitinen and
Pawatowski [36] obtained that there exists a pair of Smith equivalent nonisomor-
phic representations for a perfect group whose Laitinen number is greater than or
equal to 2. Here a real conjugacy class means $(g)^{\pm}$ $;=(g)\cup(g^{-1})$ and the Laiti-
nen number $a_{G}$ of $G$ is a number of all real conjugacy classes of $G$ represented by
elements not of prime power order. We assume that the identity is of prime power
order. Pawatowski and Solomon [54] showed there exists a pair of Smith equivalent,
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nonisomorphic representations for more groups. Most recently, Morimoto $[42, 43]$

presented the conceming results for groups including $Aut(A_{6})$ and $P\Sigma L(2,27)$ .
We show that there exists a pair of Smith equivalent, nonisomorphic represen-

tations for groups of the other classes. This report is including a joint work with
Krzysztof Pawaiowski.

Theorem 1.1. Suppose that $G$ is a nonsolvable group with $a_{G}\geq 2$ . If two Smith
equivalent representations are always isomorphic, then $G$ is isomorphic to $Aut(A_{6})$ .
Theorem 1.2. There exists a solvable Oliver group $G$ with $a_{G}\geq 2$ which possesses
a pair of two Smith equivalent, nonisomorphic representations.

2. $REPRESENTAI’ IONS$ AND REAL CONJUGACY CLASSES

In this section, we recall a necessary condition for which two representations
become Smith equivalent.

Let $G$ be a finite group and let $RO(G)$ be the real representation ring of $G$ . For
convenience, we define subgroups of $RO(G)$ . We denote by $PO(G)$ the subgroup of
$RO(G)$ of $G$ consisting of the differences $U-V$ of representations $U$ and $V$ such
that dim $U^{G}=\dim V^{G}$ and ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for any subgroup $P$ of $G$ of prime
power order. We note that in $|.541,$ $PO(G)$ is denoted by $IO(G,G)$ . Similarly, we
denote by $\overline{PO}(G)$ the subgroup of $RO(G)$ of $G$ consisting of the differences $U-V$
of representations $U$ and $V$ such that dim $U^{G}=$ dim $V^{G}$ and ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$

for any subgroup $P$ of $G$ of odd prime power order and order 2, 4. By a theorem of
Sanchez [60], the difference of two Smith equivalent representations lies in $\overline{PO}(G)$

and the difference of two 2-proper Smith equivalent representations lies in $PO(G)$ .
The concept of 2-proper is considered by Petrie. We will write the definition of
2-proper Smith equivalence in the section 3.

The rank of $PO(G)$ is equal to maximum of $0$ and the Laitinen number $a_{G}$ minus
1. Moreover the rank of $\overline{PO}(G)$ is equal to the rank of $PO(G)$ plus the number
of all real conjugacy classes represented by 2-elements of order $\geq 8$ . Now, let
$H$ be a normal subgroup of $G$ . We denote by $PO(G,H)$ the subgroup of $RO(G)$

consisting of the differences $U-V$ of representations $U$ and $V$ such that $U^{H}\underline{\simeq}V^{H}$

as representations over $G/H$, and ${\rm Res}_{P}^{G}(U)\cong{\rm Res}_{P}^{G}(V)$ for any subgroup $P$ of prime
power order. Again, we note that in [54], $PO(G,H)$ is denoted by $IO(G,H)$ . It
holds that $PO(G)=PO(G, G)$ . Let $b_{G}$ be the number of all real conjugacy classes
in $G/H$ which are sent from real conjugacy classes of $G$ represented by elements
not of prime power order by the surjection $Garrow G/H$. Then the rank of $PO(G,H)$

is equal to $a_{G}-b_{G/H}$ (See [54]).
For each prime $p$, let $O^{p}(G)$ be the minimal subgroup among normal subgroups

$N$ of $G$ with index a power of $p$ . Let $\mathcal{L}(G)$ be the set of subgroups $L$ of $G$ containing
$O^{P}(G)$ for some prime $p$ . A representation $U$ is said to be $\mathcal{L}(G)$ -free if dim $U^{L}=0$
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for any $L\in \mathcal{L}(G)$ . We denote by $LO(G)$ the subgroup of $PO(G)$ consisting of the
differences $U-V$ of representations $U$ and $V$ which are both $\mathcal{L}(G)$-free. Then it
holds that

$LO(G)\leq PO(G)\leq\overline{PO}(G)\leq RO(G)$

and Pawatowski and Solomon showed
$PO(G, G^{\prime lil})\leq LO(G)$ ,

where $G^{nil}$ is the minimal subgroup among normal subgroups $N$ of $G$ such that $G/N$

is nilpotent. Note that $G^{nil}= \bigcap_{p}O^{p}(G)$ .
We denote by $QO(G)$ the subgroup of $PO(G)$ consisting of the differences $U-V$

of representations $U$ and $V$ such that ${\rm Res}_{H}^{(\grave{r}}U\cong{\rm Res}_{H}^{G}V$ for any proper subgroup $H$

of $G$ .
Lemma 2.1. $PO(G)\otimes \mathbb{Q}$ is spanned by elements of $Ind_{C}^{G}QO(C)$ for all cyclic sub-
groups $C$ of $G$ not ofprime power order.

Corollary 2.2. Let $C_{1}$ and $C_{2}$ be cyclic subgroups of$G$ not ofprime power order. If
$C_{1}$ and $C_{2}$ are not conjugate then

$Ind_{C_{1}}^{G}QO(C_{1})\cap Ind_{C_{-}}^{G},QO(C_{2})=\{0\}$ .

3. FINm GROUP ACTIONS ON SPHERES $wrrH$ EXACTLY TWO FIXBD POINTS

We denote by $Sm(G)$ the subset of RO$(G)$ consisting the differences of two Smith
equivalent representations. A group action of a sphere $\Sigma$ is 2-proper, if $\Sigma^{\langle g\rangle}$ is con-
nected for any 2-element $g$ of $G$ of order $\geq 8$ . In accordance with Petrie’s definition,
two representations $U$ and $V$ are 2-proper Smith equivalent if there exists a 2-proper
action of $G$ on a sphere with exactly two fixed points at which tangential spaces are
isomorphic to $U$ and $V$ respectively. We denote by $LSm(G)$ the subset of $Sm(G)$

consisting the differences of two 2-proper Smith equivalent representations. Since
$LSm(G)\subset PO(G),$ $a_{G}\leq 1$ implies $LSm(G)=0$.

Pawalowski and Solomon showed that if $G$ is a gap Oliver group then $LO(G)\subseteq$

$LSm(G)$ , and moreover. if $G$ is a gap nonsolvable group with $a_{G}\geq 2$ and $G\not\cong$

$Aut(A_{6}),$ $P\Sigma L(2,27)$ then $PO(G, G^{ni\prime})\neq 0$ and thus $LSm(G)\neq 0$ . Recent works by
Morimoto gave us that $Sm(Aut(A_{6}))=0$ and $LSm(P\Sigma L(2,27))\neq 0$.

Now we recall the weak gap condition ([41]). A representation $V$ satisfies the
weak gap condition if it satisfies the following properties.

(1) If $P\in P(G)$ and $H>P$ , then 2 dim $V^{H}\leq\dim V^{P}$ .
(2) If $P\in \mathcal{P}(G),$ $H>P$ and 2dim $V^{H}=\dim V^{P}$ , then $[H : P]=2$, dim $V^{H}>$

dim $V^{K}+1$ for any $K>H$ .
(3) If $P\in \mathcal{P}(G),$ $[H;P]=2$ and 2dim $V^{H}=\dim V^{P}$, then $V^{H}$ is orientable so

that $g:V^{H}arrow V^{H}$ is orientation preserving for any $g\in N_{G}(H)$ .
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(4) If $P\in \mathcal{P}(G),$ $H>P,$ $K>P$ and 2 dim $V^{H}=2$ dim $V^{K}=\dim V^{P}$ , then the
smallest subgroup $\langle H, K\rangle$ including $H$ and $K$ does not belong to $\mathcal{L}(G)$ .

Here, $\mathcal{P}(G)$ is the set of all subgroups of $G$ of prime power order.
We denote by $Ymo(G)$ the subgroup of $LO(G)$ consisting of the differences $U-V$

of representations $U$ and $V$ such that both UeW and VeW are $\mathcal{L}(G)$-free and sati sfy
the weak gap condition. Note that $WLO(G)=LO(G)$ if $G$ is a gap group.
Lemma 3.1. It holds $mo(G)\subseteq LSm(G)$ for an Oliver group $G$ .

From now on, we investigate conditions for which Oliver groups $G$ satisfy that
$RO(G)\neq 0$.

4. A SUFFICIIENT CONDITION

We introduce a sufficient condition for Oliver groups $G$ to hold $\iota mo(G)\neq 0$ by
using elements of the groups.

A pair $(x,y)$ of elements $x,y\in G$ is called basic if the following two condition
hold.

(1) $x$ and $y$ are not of prime power order, and $x$ and $y$ are not real conjugate in
$G$ (and thus $a_{G}\geq 2$).

(2) $x$ and $y$ are in some gap subgroup of $G$ , or the orders $|x|$ and $|y|$ are even and
the involutions of $\langle x\rangle$ and $\langle y\rangle$ are conjugate in $G$ .

Moreover, we say that $(x,y)$ is an H-pair for a subgroup $H$ of $G$ , if $xH=yH$.
Theorem 4.1. If an Oliver group $G$ has a basic $G^{ni\prime}$-pair then $KO(G)\neq 0$ and
thus $LSm(G)\neq 0$ .

It is easy to see that $G$ has a basic $G^{nil}$-pair in some assumptions. The next
theorem is obtained by combining Theorem 5.1.

Theorem 4.2. $lf$ an Oliver group $G$ has an element of the center whose order is
divisible by at least 3 distlnct primes then $G$ has a basic $G^{nil}$-pair

In the case when $G$ has nontrivial center, if $G$ has no basic $G^{\prime\iota il}$-pair then the
structure of $G$ is almost determined. In this paper we omit it.

5. OUTLINE OF A PROOF OF THEOREM 1. 1

We introduce outline of a proof of Theorem 1.1. The following result is one of
keys.

Theorem 5.1. Let $G$ be an Oliver group with $a_{G}\geq 2$ . If $G/G^{nil}$ is isomorphic to
none of the following groups then $lLO(G)\neq 0$ .

(1) a p-groupfor a prime $p$

(2) $C_{2}\cross P$for an odd prime $p$ and a $p$-group $P$
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(3) $P\cross C_{3}$ fora2-grouPP suc,hthat any element ofP is self-conjugate

Conversely, we obtain

Proposition5.2. Let $N$ be a nilpotent group with $LO(N)=0$. Then $N$ is isomorphic
to (1), (2) or (3) in Theorem 5.1.

Let $G$ be a nonsolvable group with $a_{G}\geq 2$ . We point out again that Mo-
rimoto obtained $Sm(Aut(A_{6}))=0$ and $Sm(P\Sigma L(2,27))\neq 0$ . So, suppose that
$G\not\cong Aut(A_{6}),$ $P\Sigma L(2,27)$ .

Pawalowski and Solomon obtained that $a_{G}>b_{G/G^{nii}}$ and $LO(G)\supset PO(G,G^{nil})\neq$

$0$ . Clearly the existence of a basic $G^{nll}$-pair yields $a_{G}>b_{G/G^{ll}}u$ .
If $G$ is isomorphic to (1), (2) or (3) in Theorem 5.1, then we can show that there

exists a basic $G^{nil}$-pair by the similar argument of the section 2 in [54] and then
$LSm(G)\neq 0$ follows.

Remark 5.3. For a nonsolvable group with $a_{G}\geq 2,$ $LO(G)=0$ implies that $G$ is
isomorphic to either $Aut(A_{6})$ or $P\Sigma L(2,27)$ .

6. COMPUTATION BY GAP

We computed solvable Oliver groups $G$ with $LO(G)=0$ and $a_{G}\geq 2$ of order up
to 2000 by using a software GAP $|^{\vee}23$ ] and found twelve groups of which ten groups
are gap groups and the others are not.

Proposition 6.1. If $G$ is an Oliver group then the order of $G$ is divisible by at least
3 distinct primes.

We obtain 4 counterexamples to Laitinen’s Conjecture:

Laitinen’s Conjecture. It might hold $LSm(G)\neq 0$ for an Oliver group $G$ with
$a_{G}\geq 2$ .

A counterexample is found first by Morimoto for $G=Ant(A_{6})$ . The key point is
next.

Lemma 6.2 $(|42])$ . If $U$ and $V$ are Smith equivalent representations then $U^{N}$ and
$V^{N}$ are isomorphic for each subgroup $N$ of $G$ with index 1 or 2.

This means that

$Sm(G) \leq\bigcap_{N}\overline{PO}(G,N)$ and $LSm(G) \leq\bigcap_{N}PO(G,N)$

where $N$ runs over subgroups of $G$ with index 2.

Proposition 6.3. $IfG/G^{nil}$ is an elementary abelian 2-group then $LSm(G)\subseteq LO(G)$ .
In addition if $G$ is a gap Oliver group, it holds the equality $LSm(G)=LO(G)$ .
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$SG(72,44),$ $SG(288, 1025)$ , $SG(432,734),$ $SG(576, 8654)$ are our counterexam-
ples. Here $SG$($ord$, type) is denoted the group SmallGroup($ord$, type) in the soft-
ware GAP of order $ord$. Note that $SG(72.44)$ and $SG(288, 1025)$ are gap groups
and the others are not.

TABLE 1. Counterexamples to Laitinen’s Conjecture

For a subset $S$ of $RO(G)$ , we define rank $S$ by

rank $S= \max${ $rankA|A$ is a subgroup and $A\subseteq S$ }.

By definition it holds rank $WLO(G)\leq rankLSm(G)\leq rankPO(G, O^{p}(G))$ for each
$p\iota\cdot imep$ .

Morimoto shows $LSm(G)\neq 0$ for $G=SG(864, 2666)$ , $SG(864, 4666)$ as well as
$P\Sigma L(2,27)$ and then it is unknown whether $LSm(G)=0$ or not for the following
six gap groups $G$ .

7. PROBLBM

In the section we post a problem with respect to an approach to show $LO(G)\subseteq$

$LSm(G)$ .
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Problem 7.1. Let $G$ be an Oliver group which is not a gap group and let $K$ be a
subgroup of $G$ with $K>O^{2}(G)$ . Is either $C_{K}(x)$ or $C_{K}(y)$ a

$\nabla$

2-group for involutions
$x$ and $y$ of $K$ outside of $O^{2}(K)$ which are not conjugate in $G$ ?

The author confirmed that this problem is affirmative for all groups of order less
than 2000.

Theorem 7.2. Let $G$ be an Oliver group which is not a gap group. Suppose that the
problem is affirmatlve for each K. Then it holds $2LO(G)\subseteq lWO(G)\subseteq LO(G)$ . In
partlcular, it holds that rank $LO(G)\leq rankLSm(G)$ .

Note that $LO(G)=RO(G)$ if $G$ is a gap group.
Putting together with Proposition 6.3, we obtain

Corollary 7.3. Let $G$ be an Oliver group which is not a gap group. Suppose that
the problem is affirmative for each K. If $G/G^{\prime il}$ is an elementary abelian 2-group
then it holds $KO(G)=LO(G)=LSm(G)$ . In particular, $LSm(G)$ is a group.

Finally we point out that the problem is affirmative if and only if there exists
$U-V\in LO(G)$ such that both two representations $U\oplus W$ and $V\oplus W$ satisfy (1) of
the weak gap condition for any representation $W$. The author hope the problem will
be solved affirmative.
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