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FINITE GROUPS POSSESSING SMITH EQUIVALENT,
NONISOMORPHIC REPRESENTATIONS
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1. INTRODUCTION

Throughout this paper, we assume that groups are always finite groups, group
actions are smooth and representations mean real representations.
In 1960, Paul A. Smith [63] posted the following problem:

Problem. Ler G be a finite group which acts on a homotopy sphere with just two
fixed points. Then are the tangential spaces over the fixed points isomorphic as
representations or not?

We call two representations which are obtained as the tangential spaces over fixed
points from a finite group action on a sphere with just two fixed points are Smith
equivalent.

Atiyah-Bott [1] proved that Smlth equivalent representations are always isomor-
phic for a cyclic group of prime order. According to Sanchez [60], they are always
isomorphic for a cyclic group of odd prime power order. By character theory, we
obtain they are also always isomorphic for the symmetric group on three letters and
a cyclic group of order 2,4,6. On the other hand, Cappell-Shaneson proved that
there exist Smith equivalent representations which are not isomorphic for a cyclic
group of order 44 for g = 2 ([6, 7, 8]). For different classes of finite groups, many
related results about this problem were obtained by Petrie, Dovermann, Suh, etc.
[37, 57, 58, 59, 17, 19, 21, 64, 9, 10, 22] before 1990. After that, Laitinen and
Pawatowski [36] obtained that there exists a pair of Smith equivalent nonisomor-
phic representations for a perfect group whose Laitinen number is greater than or
equal to 2. Here a real conjugacy class means (g)* := (g) U (g7!) and the Laiti-
nen number ag of G is a number of all real conjugacy classes of G represented by
elements not of prime power order. We assume that the identity is of prime power
order. Pawatowski and Solomon [54] showed there exists a pair of Smith equivalent,

2000 Mathematics Subject Classification. 57517, 20C135.

Key words and phrases. representation, Smith equivalent.

The author was partially supported by Grand-in-Aid for Scientific Research (C) (2)
(No. 17540084) of the Japan Society for the Promotion of Science.



171

nonisomorphic representations for more groups. Most recently, Morimoto [42, 43]
presented the concerning results for groups including Aut(Ag) and PXL(2,27).

We show that there exists a pair of Smith equivalent, nonisomorphic represen-
tations for groups of the other classes. This report is including a joint work with
Krzysztof Pawatowski.

Theorem 1.1. Suppose that G is a nonsolvable group with ag > 2. If two Smith
equivalent representations are always isomorphic, then G is isomorphic to Aut(Ag).

Theorem 1.2. There exists a solvable Oliver group G with ag > 2 which possesses
a pair of two Smith equivalent, nonisomorphic representations.

2. REPRESENTATIONS AND REAL CONJUGACY CLASSES

In this section, we recall a necessary condition for which two representations
become Smith equivalent.

Let G be a finite group and let RO(G) be the real representation ring of G. For
convenience, we define subgroups of RO(G). We denote by PO(G) the subgroup of
RO(G) of G consisting of the differences U — V of representations U and V such
that dim U® = dim V° and Res$(U) = Res$(V) for any subgroup P of G of prime
power order. We note that in [54], PO(G) is denoted by IO(G, G). Similarly, we
denote by PO(G) the subgroup of RO(G) of G consisting of the differences U — V
of representations U and V such that dim U9 = dim V© and Res3(U) = Res$(V)
for any subgroup P of G of odd prime power order and order 2,4. By a theorem of
Sanchez [60], the difference of two Smith equivalent representations lies in PO(G)
and the difference of two 2-proper Smith equivalent representations lies in PO(G).
The concept of 2-proper is considered by Petrie. We will write the definition of
2-proper Smith equivalence in the section 3.

The rank of PO(G) is equal to maximum of O and the Laitinen number a; minus
1. Moreover the rank of PO(G) is equal to the rank of PO(G) plus the number
of all real conjugacy classes represented by 2-elements of order > 8. Now, let
H be a normal subgroup of G. We denote by PO(G, H) the subgroup of RO(G)
consisting of the differences U — V of representations U and V such that UF = V#
as representations over G/H, and ResGP(U ) = Resg(V) for any subgroup P of prime
power order. Again, we note that in [54], PO(G, H) is denoted by I0(G, H). It
holds that PO(G) = PO(G, G). Let bg be the number of all real conjugacy classes
in G/H which are sent from real conjugacy classes of G represented by elements
not of prime power order by the surjection G — G/H. Then the rank of PO(G, H)
is equal to ag — bg/y (See [54]).

For each prime p, let O?(G) be the minimal subgroup among normal subgroups
N of G with index a power of p. Let £L(G) be the set of subgroups L of G containing
OP(G) for some prime p. A representation U is said to be .£(G)-free if dim Uk=0
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for any L € .L(G). We denote by LO(G) the subgroup of PO(G) consisting of the
differences U — V of representations U and V which are both £(G)-free. Then it
holds that

LO(G) € PO(G) < PO(G) < RO(G)
and Pawatowski and Solomon showed
PO(G,G") < LO(G),

where G" is the minimal subgroup among normal subgroups N of G such that G/N
is nilpotent. Note that G* = N,0F(G).

We denote by QO(G) the subgroup of PO(G) consisting of the differences U -V
of representations U and V such that Resﬁ'} U= Resf, V for any proper subgroup H
of G.

Lemma 2.1. PO(G) ® Q is spanned by elements of Indg QO(C) for all cyclic sub-
groups C of G not of prime power order.

Corollary 2.2. Let C and C, be cyclic subgroups of G not of prime power order. If
C\ and C, are not conjugate then

IndZ QO(C)) N Indg, QO(C,) = {0}.

3. FINITE GROUP ACTIONS ON SPHERES WITH EXACTLY TWO FIXED POINTS

We denote by S m(G) the subset of RO(G) consisting the differences of two Smith
equivalent representations. A group action of a sphere X is 2-proper, if £ is con-
nected for any 2-element g of G of order > 8. In accordance with Petrie’s definition,
two representations U and V are 2-proper Smith equivalent if there exists a 2-proper
action of G on a sphere with exactly two fixed points at which tangential spaces are
isomorphic to U and V respectively. We denote by LS m(G) the subset of Sm(G)
consisting the differences of two 2-proper Smith equivalent representations. Since
LS m(G) c PO(G), ag < 1 implies LSm(G) =0

Pawatowski and Solomon showed that if G is a gap Oliver group then LO(G) €
LS m(G), and moreover, if G is a gap nonsolvable group with ac = 2 and G %
Aut(Ag), PXL(2,27) then PO(G,G™") # 0 and thus LS m(G) # 0. Recent works by
Morimoto gave us that S m(Aut(Ag)) = 0 and LSm(P2'L(2,27)) # 0.

Now we recall the weak gap condition ([41]). A representation V satisfies the
weak gap condition if it satisfies the following properties. :

(1) If P € P(G)and H > P, then 2dim V¥ < dim V*.

(2) If P € P(G), H > P and 2dim V¥ = dim V?, then [H : P] = 2, dim VH
dim VX + 1 for any K > H.

(3) If P e P(G), [H: P] =2 and 2dim V¥ = dim V", then V¥ is orientable so
that g: V¥ — VH is orientation preserving for any g € Ng(H).
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(4) If P e P(G), H> P,K > Pand 2dim V¥ = 2dim VX = dim V?, then the
smallest subgroup (H, K) including H and K does not belong to £(G).
Here, P(G) is the set of all subgroups of G of prime power order.
We denote by WLO(G) the subgroup of LO(G) consisting of the differences U -V
of representations U and V such that both U&W and Ve W are L(G)-free and satisfy
the weak gap condition. Note that WLO(G) = LO(G) if G is a gap group.

Lemma 3.1. It holds WLO(G) € LS m(G) for an Oliver group G.

From now on, we investigate conditions for which Oliver groups G satisfy that
WLO(G) # 0.

4. A SUFFICIENT CONDITION

We introduce a sufficient condition for Oliver groups G to hold WLO(G) # O by
using elements of the groups. |
A pair (x,y) of elements x,y € G is called basic if the following two condition
hold. '
(1) xandy are not of prime power order, and x and y are not real conjugate in
G (and thus ag = 2). '
(2) xandy are in some gap subgroup of G, or the orders |x| and |y| are even and
the involutions of {x) and (y) are conjugate in G.

Moreover, we say that (x, y) is an H-pair for a subgroup H of G, if xH = yH.

Theorem 4.1. If an Oliver group G has a basic G™-pair, then WLO(G) # 0 and
thus LS m(G) # 0.

It is easy to see that G has a basic G™-pair in some assumptions. The next
theorem is obtained by combining Theorem 5.1.

Theorem 4.2. If an Oliver group G has an element of the center whose order is
divisible by at least 3 distinct primes then G has a basic G™-pair.

In the case when G has nontrivial center, if G has no basic G"-pair then the
structure of G is almost determined. In this paper we omit it.

5. OUTLINE OF A PROOF OF THEOREM 1.1

We introduce outline of a proof of Theorem 1.1. The following result is one of
keys.

Theorem 5.1. Let G be an Oliver group with ag > 2. If G/G™ is isomorphic to
“none of the following groups then WLO(G) # 0.

(1) a p-group for a prime p
(2) C, X P for an odd prime p and a p-group P
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(3) P X Cjs for a2-group P such that any element of P is self-conjugate
Conversely, we obtain

Proposition 5.2. Let N be a nilpotent group with LO(N) = 0. Then N is isomorphic
to(1),(2)or (3)in Theorem 5.1.

Let G be a nonsolvable group with ag > 2. We point out again that Mo-
rimoto obtained Sm(Aut(4s)) = 0 and Sm(PXL(2,27)) # 0. So, suppose that
G # Aut(Agq), PY'L(2,27).

Pawalowski and Solomon obtained that ag > bg g and LO(G) > PO(G,G™) #
0. Clearly the existence of a basic G*'-pair yields ag > bggu.

If G is isomorphic to (1), (2) or (3) in Theorem 5.1, then we can show that there
exists a basic G™-pair by the similar argument of the section 2 in [54] and then
LS m(G) # 0 follows.

Remark 5.3. For a nonsolvable group with ag > 2, LO(G) = 0 implies that G is
isomorphic to either Aut(Ag) or PXL(2,27).

6. CoMpPUTATION BY GAP

We computed solvable Oliver groups G with LO(G) = 0 and ag > 2 of order up
to 2000 by using a software GAP [23] and found twelve groups of which ten groups
are gap groups and the others are not.

Proposition 6.1. If G is an Oliver group then the order of G is divisible by at least
3 distinct primes.

We obtain 4 counterexamples to Laitinen’s Conjecture:

Laitinen’s Conjecture. It might hold LSm(G) # 0 for an Oliver group G with
ac 2 2.

A counterexample is found first by Morimoto for G = Aut(Ag). The key point is
next.

Lemma 6.2 (|42)). If U and V are Smith equivalent representations then U" and
VN are isomorphic for each subgroup N of G with index | or 2.

This means that

Sm(G) < ﬂﬁ'o'(G, N) and LSm(G) < ﬂ PO(G, N)
N N

where N runs over subgroups of G with index 2.

Proposition 6.3. IfG/G" is an elementary abelian 2-group then LS m(G) < LO(G).
In addition if G is a gap Oliver group, it holds the equality LS m(G) = LO(G).
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SG(72,44), SG(288, 1025), SG(432,734), SG(576, 8654) are our counterexam-
ples. Here SG(ord, type) is denoted the group SmallGroup(ord, type) in the soft-
ware GAP of order ord. Note that SG(72,44) and S G(288, 1025) are gap groups
and the others are not.

G ac LSm(G)=0 8condition Sm(G)=0
SG(72,44) 2 True Hold True
SG(288,1025) | 2 True Hold True
SG(432,734) | 2 True Not hold True
SG(576,8654) | 3 True Hold True

TaBLE 1. Counterexamples to Laitinen’s Conjecture

For a subset § of RO(G), we define rank §' by
rank § = max{rank A | Aisa subgroupand AC S }.

By definition it holds rank WLO(G) < rank LS m(G) < rank PO(G, O?(G)) for each
prime p.

Morimoto shows LS m(G) # 0 for G = S G(864,2666), S G(864, 4666) as well as
PXL(2,27) and then it is unknown whether LS m(G) = O or not for the following
six gap groups G.

G ac rank LSm(G) G/G™ LSm(G) = Sm(G)
S G(864,4663) 3 0,1,2. Cs False
SG(864,4672) 5 0,1 Qs X C3 True
SG(1176,220) 2 0,1 Cs True
SG(1176,221) 2 0,1 Cs True
SG(1152,155470) | 3 0,1 Ce True
SG(1152,157859) | 3 0,1 Ce True
7. PROBLEM

In the section we post a problem with respect to an approach to show LO(G) <
LS m(G).
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Problem 7.1. Let G be an Oliver group which is not a gap group and let K be a
subgroup of G with K > O*(G). Is either Cx(x) or Cx(y) a 2-group for involutions
x and y of K outside of O*(K) which are not conjugate in G?

The author confirmed that this problem is affirmative for all groups of order less
than 2000.

Theorem 7.2. Let G be an Oliver group which is not a gap group. Suppose that the
problem is affirmative for each K. Then it holds 2LO(G) € WLO(G) € LO(G). In
particular, it holds that rank LO(G) < rank LS m(G).

Note that LO(G) = WLO(G) if G is a gap group.
Putting together with Proposition 6.3, we obtain

Corollary 7.3. Let G be an Oliver group which is not a gap group. Suppose that
the problem is affirmative for each K. If G/G™ is an elementary abelian 2-group
then it holds WLO(G) = LO(G) = LS m(G). In particular, LS m(G) is a group.

Finally we point out that the problem is affirmative if and only if there exists
U — V € LO(G) such that both two representations U & W and V @ W satisfy (1) of
the weak gap condition for any representation W. The author hope the problem will
be solved affirmative.
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