Construction of solutions $f'(x) = af(\lambda x)$, $\lambda > 1$.

東大数理 米田 剛 (Tsuyoshi Yoneda)

Graduate School of Mathematical Sciences
The University of Tokyo

1. MAIN RESULT

We denote by $C^\infty(\mathbb{R})$ the set of all infinitely differentiable functions on \mathbb{R}. Let

$$C^\infty_0(\mathbb{R}) = \left\{ f \in C^\infty(\mathbb{R}) : \frac{d^\ell f}{dx^\ell}(x) \to 0 \text{ as } |x| \to \infty, \ \ell = 0, 1, 2, \cdots \right\},$$

$$C^\infty_{\text{comp}}(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) : f \text{ has a compact support} \}.$$

We denote by $\chi_{[r,s)}$ the characteristic function of the interval $[r,s)$. Let X be the set of all step functions

$$p = \sum_{j=1}^{m} c_j \chi_{[r_{j-1},r_j)},$$

such that $m = 1, 2, \cdots$ and

$$\begin{align*}
 c_j &\in \mathbb{R} \quad (j = 1, 2, \cdots, m), \quad c_1 = 1, \\
 r_0 &= 0, \quad 0 < r_1 < r_2 < \cdots < r_m < \infty, \\
 \sum_{j=1}^{m} c_j (r_j - r_{j-1}) &= 1.
\end{align*}$$

We note that $\int_{\mathbb{R}} p(x) dx = 1$ for $p \in X$.

For $\lambda > 1$ and $p \in X$, we define an operator $T = T_{\lambda,p} : L^1(\mathbb{R}) \to L^1(\mathbb{R})$ (by [17] (p. 149, Remark 2) and [2], we can say that $T_{\lambda,p} : B^{s}_{1,\infty}(\mathbb{R}) \to B^{s+1}_{1,\infty}(\mathbb{R})$ for $s \in \mathbb{R}$, since $\lambda p(\lambda \cdot) \in B^{1}_{1,\infty}(\mathbb{R})$) as follows:

$$Tf(x) = T_{\lambda,p} f(x) = \lambda (p \ast f)(\lambda x).$$

We note that $Tf \in L^1(\mathbb{R}) \cap C(\mathbb{R})$, since $f \in L^1(\mathbb{R})$ and $p \in L^\infty_{\text{comp}}(\mathbb{R})$.

If $f \in B^{s}_{1,\infty}(\mathbb{R})$ we have $\hat{f}(1 + |\cdot|^2)^{s/2} \in L^\infty(\mathbb{R})$ (see [15]). Therefore we have $T^k f \in L^2(\mathbb{R}) \cap C(\mathbb{R})$ for $k > -s - 1$ if $f \in B^{s}_{1,\infty}(\mathbb{R})$.
Theorem 1.1. For \(\lambda > 1 \) and \(p \in X \), let \(T \) be the operator defined by (1.2). Then there exists a function \(u = u_{\lambda,p} \in C_{\text{comp}}^\infty(\mathbb{R}) \) such that, for all \(f \in L^1(\mathbb{R}) \) (or for all \(f \in \bigcup_{s \in \mathbb{R}} B_{1,\infty}^{s}(\mathbb{R})_{f} \) which function set is strictly bigger than \(L^1(\mathbb{R}) \)),

\[
\lim_{\ell \to \infty} T^\ell f(x) = c_f u(x) \quad \text{uniformly with respect to } x \in \mathbb{R},
\]

where \(c_f = \hat{f}(0) \).

Moreover,

1. \(Tu = u; \)
2. \(\int_{\mathbb{R}} u(x) \, dx = 1; \)
3. \(\frac{d^k}{dx^k} u(0) = 0 \) for all \(k = 0, 1, 2, \ldots; \)
4. if \(p \geq 0 \), then \(u \geq 0; \) and,
5. if \(\text{supp } p \subset [0, r] \), then \(\text{supp } u \subset [0, r/(\lambda - 1)] \).

In the above statement \(\text{supp } f \) denotes the support of \(f \).

Remark 1.1. If \(p_1 \neq p_2 \), then \(u_{\lambda,p_1} \neq u_{\lambda,p_2} \).

2. APPLICATION

To construct solutions for the following equation,

\[
\begin{cases}
 f'(x) = \lambda^2 f(\lambda x), & x \in \mathbb{R}, \\
 f(0) = 0,
\end{cases}
\]

we use \(u = u_{\lambda,p} \) in Theorem 1.1 with \(\lambda > 1 \) and \(p = \sum_{j=1}^{m} c_j \chi_{[r_{j-1}, r_j)} \in X \), and we define a sequence of functions \(\{v_\ell\} \) inductively as follows:

\[
\begin{cases}
 v_0(x) = u(x) + \sum_{j=1}^{m} \tilde{c}_j u(x - r_j), \\
 v_{\ell+1}(x) = v_\ell(x) + \sum_{j=1}^{m} \tilde{c}_j v_\ell(x - \lambda^{\ell+1} r_j), & \ell = 0, 1, 2, \ldots,
\end{cases}
\]

where \(\tilde{c}_j = -(c_j - c_{j+1}), \) \(j = 1, 2, \ldots, m - 1, \tilde{c}_m = -c_m. \)

Then \(v_\ell \in C_{\text{comp}}^\infty(\mathbb{R}), \) \(\ell = 0, 1, 2, \ldots, \) and

\[
v_\ell(x) = v_{\ell+1}(x), \quad x \in (-\infty, \lambda^{\ell+1} r_1], \quad \ell = 0, 1, 2, \ldots.
\]

Therefore we get a function \(f = f_{\lambda,p} \in C^\infty(\mathbb{R}) \) such that

\[
f(x) = v_\ell(x), \quad x \in (-\infty, \lambda^{\ell+1} r_1], \quad \ell = 0, 1, 2, \ldots.
\]

Since \(f(x) = u(x) \) near \(x = 0, \frac{d^k}{dx^k} f(0) = 0 \) for all \(k = 0, 1, 2, \ldots. \)
Theorem 2.1. Let $\lambda > 1$. For every $p \in X$, the function $f = f_{\lambda,p}$ given by the above method is a solution for (2.1).

Remark 2.1. By the property (5) in Theorem 1.1 and the definition of v_{ℓ},

\[
supp u \subset [0, r_{m}/(\lambda - 1)], \\
supp(v_{0} - u) \subset [r_{1}, r_{m}\lambda/(\lambda - 1)], \\
supp v_{\ell} \subset [0, r_{m}\lambda^{\ell+1}/(\lambda - 1)], \\
supp(v_{\ell+1} - v_{\ell}) \subset [r_{1}\lambda^{\ell+1}, r_{m}\lambda^{\ell+2}/(\lambda - 1)].
\]

Therefore, if $r_{m}/(\lambda - 1) < r_{1}$, then $f(x) = 0$ on $[r_{m}\lambda^{\ell}/(\lambda - 1), r_{1}\lambda^{\ell}]$, $\ell = 0, 1, 2, \ldots$, and f is bounded (See the graph (S12)). Let

\[
p_{i} = \sum_{j=1}^{m_{i}} c_{i,j} \chi_{[r_{i,j-1}, r_{i,j})} \in X, \quad i = 1, 2.
\]

If $p_{1} \neq p_{2}$ and there exists $R > 0$ such that $r_{i,m_{i}}/(\lambda - 1) < R < r_{i,1}$, $i = 1, 2$, then $f_{\lambda,p_{1}} \neq f_{\lambda,p_{2}}$ by Remark 1.1, while $\int_{0}^{R} f_{\lambda,p_{i}}(x) dx = \int_{0}^{R} u_{\lambda,p_{i}}(x) dx = 1$, $i = 1, 2$.

Remark 2.2. In the definition (1.1), let $m = \infty$ with the condition \(\sum_{j=1}^{\infty} |c_{j+1} - c_{j}| < \infty\). Then the derivative of p in the sense of distribution is a finite Radon measure and the Fourier transform of the derivative is an almost periodic function. With some conditions we can also construct solutions for (2.1) from such functions. For the Fourier preimage of the space of all finite Radon measures, see, for example, [6, 7].

In the rest of this section, we give graphs of solutions for $f'(x) = 4f(2x)$, $f'(x) = (3/2)^{2}f(3x/2)$ and $f'(x) = 9f(3x)$ with $f(0) = 0$.

Let p be as in Table 1. Then, calculating $T_{p}^{d}x(0,1)$ numerically by computer, we get the graphs of solutions (S1)–(S7) in Figure 1, (S8)–(S11) in Figure 2 and (S12)–(S13) in Figure 3.

REFERENCES

FIGURE 1. Solutions of $f'(x) = 4f(2x)$.
<table>
<thead>
<tr>
<th>λ</th>
<th>$p \in X$</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1)$</td>
<td>(S1)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + (3/4)\chi[1/2,7/6)$</td>
<td>(S2)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + (1/2)\chi[1/2,3/2)$</td>
<td>(S3)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + (1/4)\chi[1/2,5/2)$</td>
<td>(S4)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + (5/4)\chi[1/2,9/10)$</td>
<td>(S5)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + (3/2)\chi[1/2,5/6)$</td>
<td>(S6)</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>$\chi[0,1/2) + 2\chi[1/2,3/4)$</td>
<td>(S7)</td>
</tr>
<tr>
<td>$\lambda = 3/2$</td>
<td>$\chi[0,1)$</td>
<td>(S8)</td>
</tr>
<tr>
<td>$\lambda = 3/2$</td>
<td>$\chi[0,1/2) + (5/4)\chi[1/2,9/10)$</td>
<td>(S9)</td>
</tr>
<tr>
<td>$\lambda = 3/2$</td>
<td>$\chi[0,1/2) + (3/2)\chi[1/2,5/6)$</td>
<td>(S10)</td>
</tr>
<tr>
<td>$\lambda = 3/2$</td>
<td>$\chi[0,1/2) + 2\chi[1/2,3/4)$</td>
<td>(S11)</td>
</tr>
<tr>
<td>$\lambda = 3$</td>
<td>$\chi[0,1)$</td>
<td>(S12)</td>
</tr>
<tr>
<td>$\lambda = 3$</td>
<td>$\chi[0,1/2) + (1/4)\chi[1/2,5/2)$</td>
<td>(S13)</td>
</tr>
</tbody>
</table>

Table 1. λ, p and the solution $f_{p,\lambda}$.

Figure 2. Solutions of $f'(x) = (3/2)^2 f(3x/2)$.

Figure 3. Solutions of $f'(x) = 9f(3x)$.

[13] E. Nakai and T. Yoneda Construction of solutions for the functional-differential equation $f'(x) = af(\lambda x), \lambda > 1$, with $f(0) = 0$, preprint.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO,
3-8-1 KOMABA, MEGURO-KU TOKYO 153-8914, JAPAN
E-mail address: yoneda@ms.u-tokyo.ac.jp