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ABSTRACT. H\"older’s inequality is considered as an estimation of the arithmetic mean
to the power mean for positive numbers. The generalized Kantorovich constant $K(h,p)$

is used in a reverse $H\ddot{o}lder’ s$ inequality where $h$ represents the bound of the ratio for
given positive numbers. On the other hand, the Specht ratio $S=S(h)$ was introduced
as the ratio of the arithmetic mean to the geometric mean. It is a special case of ratios
$\{S(h, r, \epsilon);-1\leq r<\epsilon\leq 1\}$ among power means. In this note, we give an interpretation
to $S(h, s, r)$ for $r<s$ and investigate several useful properties of them, one of which is
the inversion formula $S(h,r, s)=S(h,s, r)^{-1}$ . Another is a clear relation: $S(h,r, s)=$
$K(h^{r}, \frac{\epsilon}{f})^{A}$ . By these properties, one can understand the context of a masterly formula
$S=e^{K’(1)}=e^{-K’(0)}$ due to Furuta. Moreover we give the some reverse inequalities by
using the Specht ratio $S(h)$ and the generalized Kantorovich constant $K(h,p)$ .

1. INTRODUCTION

This note is a short survey related to estimations represented to a reverse H\"older’s

inequality ([3]).
Let $a_{1},$ $\ldots,$

$a_{n}$ be positive real numbers and $(w_{1}, \ldots,w_{n})$ be a weight. Then, H\"older’s

inequality is equivalent to

(1) $( \sum_{i=1}^{n}w_{i}a_{i}^{p})^{\frac{1}{p}}$ $\leq\sum_{i=1}^{n}w_{i}a_{i}$ $(0\leq p\leq 1)$ .

The following Kantorovich inequality is studied as one of reverse H\"older’s inequalities:

(2) $\sum_{i=1}^{n}w_{i}a_{i}\leq\frac{(M+m)^{2}}{4Mm}(\sum_{i=1}^{n}w_{i}a_{i}^{-1})^{-1}$

where $0<m\leq\Phi\leq M$ . The estimation $\frac{(M+m)^{2}}{4Mm}$ is called the Kantorovich constant.
This constant represents an estimation of the arithmetic mean by the harmonic mean.
Furuta continuously generalized Ky Fan’s result associated with H\"older-McCarthy and
Kantorovich inequalities in [6, Theorem 1.5] : If a positive operator $A$ on a Hilbert space
$H$ satisfies $0<m\leq A\leq M$ for some $m<M$ and $x\in H$ is a unit vector, then

(3) $\langle Ax, x\rangle^{p}\leq(A^{p}x,x\rangle\leq K_{\pm}(m, M,p)\langle Ax, x\rangle^{p}$
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for $p>1$ and $p<0$ respectively, where

$K_{+}(m, M,p)= \frac{(p-1)^{p-1}(M^{p}-m^{p})^{p}}{p^{p}(M-m)(mM^{p}-Mm^{p})^{p-1}}$ for $p>1$ ,

and
$K_{-}(m, M,p)= \frac{(mM^{p}-Mm^{p})}{(p-1)(M-m)}(\frac{(p-1)(M^{p}-m^{p})}{p(mM^{p}-Mm^{p})})^{p}$ for $p<0$ .

Furuta [7] proposed to reformulate the constants $K_{\pm}(m, M,p)$ as follows, cf. [6, Corollary
1.2] : For a given $h>0$ , put

(4) $K(h,p)= \frac{1}{h-1}\frac{h^{p}-h}{p-1}(\frac{p-1h^{p}-1}{h^{p}-hp})^{p}$

for all $p\in$ R. Following him, we call it the generalized Kantorovich constant. It is
easily checked that if we take $h= \frac{M}{m}$ then $K(h,p)=K_{+}(m, M,p)$ for $p>1$ and
$K(h,p)=K_{-}(m, M,p)$ for $p<0$ . This formula (4) says that it can be defined for all
$p\in \mathbb{R}$ , and it has the symmetric property $K(h,p)=K(h, 1-p)$ , that is, $K(p)=K(h,p)$
is a symmetric function with respect to $p= \frac{1}{2}$ . The inequality (3) implies that

(5) $\sum_{i=1}^{n}w_{i}a_{i}\leq K(h,p)^{-\frac{1}{p}}(\sum_{i=1}^{n}w_{i}a_{1}^{p})^{\frac{1}{p}}$ $(0\leq p\leq 1)$ .

as a reverse inequality of (1).
On the other hand, the Specht ratio is introduced in [10] as the ratio of the arithmetic

mean to the $g\infty metric$ mean, that is, it is the best constant $S(h)satis\theta ing$ the reverse
inequality

(6) $\frac{a_{1}+\cdots+a_{n}}{n}\leq S(h)(a_{1}\cdots a_{n})^{\frac{1}{n}}$

for all $0<m\leq a_{1},$ $\ldots,$
$a_{n}\leq M$ , where $h=e$ for some $m<M$ . Following Specht [10],

it is exactly given by

(7) $S(h)= \frac{h^{\frac{1}{h-1}}}{e\log h\overline{h}^{\llcorner}-1}$ ,

see also [2]. It is also expressed as a constant enjoying that if $0<m\leq a,$ $b\leq M$ , then

(8) $(1-t)a+tb\leq S(h)a^{1-t}b^{t}$

for all $t\in[0,1]$ , see also [11].
By the way, we recognize the importance of the family of power means $M_{r,t}(r\in \mathbb{R})$ .

The mean of 1 and $x\geq 0$ by $M_{r,t}$ with weight $\{1-t, t\}(t\in[0,1])$ is defined by

$M_{r,t}(x)=(1-t+tx^{r})^{\frac{1}{r}}$ .

From this point of view, one could understand that Specht discussed the ratio among
power means in the following general setting: If-l $\leq r<s\leq 1$ , then $M_{r,t}(x)\leq M_{t}(x)$

and

(9) $\frac{M_{s,t}(x)}{M_{r_{1}l}(x)}\leq(\frac{s-r}{r}\frac{h^{\delta}-1}{h^{\epsilon}-h^{r}})^{\frac{1}{r}}(\frac{r}{s-r}\frac{h^{s}-h^{r}}{h^{r}-1})^{1}=S(h, r, s)$
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for $\frac{1}{h}\leq x\leq h$ . We note that $S(h_{7}r, s)$ is the best constant for upper bounds of $\frac{M_{l}}{M_{r}}$ Since
$M_{0,t}(x)=x^{t},$ (8) is the special case $r=0$ and $s=1$ in (9). In other words, $S(h, 0,1)$ is
the Specht ratio $S(h)$ , i.e., $\lim_{rarrow+0}S(h, r, 1)=S(h)$ .

The most crucial result on the the generalized Kantorovich constant and Specht ratio
is the following formula due to Furuta:

(10) $S=e^{K’(1)}=e^{-K’(0)}$ ,

where $S=S(h)$ and $K(p)=K(h,p)$ for a fixed $h>1$ . In the below, this formula (10) is
called the Furuta formula (on the generalized Kantorovich constant).

Motivated by the Furuta formula, we investigate several useful properties of $S(h,r, s)$

and $K(h,p)$ in this note. For this, we give an interpretation to $S(h, s,r)$ for $r<s$ .
Consequently we have the inversion formula $S(h, r, s)=S(h, s, r)^{-1}$ . On a relationship of
$S(h, s,r)$ to the generalized Kantorovich constant $K(h,p)$ , we get

$S(h,r, s)=K(h^{r}, \frac{s}{r})^{1}*$

for all $r,$ $s\in \mathbb{R}$ with $rs\neq 0$ . By these properties, one can understand the context of the
Furuta formula (10). As a consequence, we have the following result:

The Furuta formulas
(FO) : $S=e^{-K’(0)}$ and (F1) : $S=e^{K’(1)}$

are equivalent to the Yamazaki-Yanagida formulas [13]

(KO) : $\lim_{parrow+0}K(h^{p},\frac{1}{p})=S$ and (K1): $\lim_{parrow+0}K(h^{p},\frac{p+1}{p})=S$ ,

respectively. Rom this result we see that (5) implies (6) by $parrow 0$ .
Moreover we give the some reverse inequalities by using $tS(h)$ and $K(h,p)$ .

2. FUNDAMENTAL PROPERTIES OF $S(h),$ $S(h,r, s)$ AND $K(h,p)$

Firstly, we mention some properties of this Specht ratio $S(h)$ :

Lemma 1. Let $h>0$ be given. Then
(1) $S(h)=S( \frac{1}{h})$ .
(2) $L(1, \frac{1}{h})\leq S(h)\leq L(1, h)$ for $h\geq 1$ where the logari thmic mean $L(s,t)$ is defined by
$L(s, t)$ $:= \frac{t-\epsilon}{\log t-\log l}$ for $0<s,$ $t,$ $s\neq t$ .
(3) lim工 nh\rightarrow l $S(h)=1$ .

Secondary, we state some important properties of $K(h,p)$ and $S(h,r, s)$ which will be
needed in the below.

Lemma 2. Let $h>0$ be given. Then
(0) $K(h,p)$ is defined for all $p\in \mathbb{R}$ .
(1) $K(h,p)=K( \frac{1}{h},p)$ for all $p\in \mathbb{R}$ .
(2) $K(h,p)=K(h, 1-p)$ for all $p\in \mathbb{R}$ .
(3) $K(h, 0)=K(h, 1)=1$ and $K(1,p)=1$ for all $p\in \mathbb{R}$ ,
where $K(h, 0)= \lim_{parrow 0}K(h,p),$ $K(h, 1)=\varliminf_{\rangle p0}K(h, 1+p)$ and $K(1, p)=\lim_{harrow 1}K(h,p)$ .
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The property (1) in Lemma 2 is imagined by that in Lemma 1.
Related to a result of Mond and Pe\v{c}ari\v{c} [9], the following relationship was presented

in our seminar talk about five years ago, which is implicitly appeared in [12, Remark 2].

Lemma 3. Let $h>0$ and $r,$ $s\in \mathbb{R}$ . Then

$S(h, r, s)=K(h^{r}, \frac{s}{r})^{\frac{1}{s}}$ if $rs\neq 0$ ,

$S(h, 0, s)=S(h^{l})$ and $S(h, r, 0)=S(h^{r})^{-1}$ .

By the above lemma, one could recognize that Lemma 2 (0) is quite meaningful. As a
corollary, we have the following variant of the Yamazaki-Yanagida fomula [13]:

Corollary 4. For $h>0$ ,

(KO) $\lim_{rarrow 0}K(h^{r}, .\frac{1}{r})=S(h)$ .

Proof. The continuity of $S(h, r, s)$ and Lemma 3 imply that

$S(h)= \lim_{rarrow 0}S(h, r, 1)=\lim_{rarrow 0}K(h^{r}, \frac{1}{r})$ .

口

Lemma 5. (Inversion formula) Let $h>0$ and $r,$ $s\in \mathbb{R}$ . Then

$S(h,r, s)=S(h, s,r)^{-1}$ .

Consequently, if $rs\neq 0$ , then

$K(h^{r}, \frac{s}{r})^{1}=K(h^{s}, \frac{r}{s})^{-1}r$

In particular, if $r\neq 0$ , then

$K(h^{r}, \frac{1}{r})=K(h, r)^{-1}r$

Incidentally, since $M_{r,t}(x)\leq M_{\epsilon,t}(x)$ for $r<s,$ $S(h, s, r)$ for $r<s$ might be defined by
the lower bound of

$S(h, s, r)M_{\epsilon,t}(x)\leq M_{r,t}(x)$ .

It is rephrased by

$\frac{M_{\epsilon,t}(x)}{M_{r,t}(x)}\leq S(h, s, r)^{-1}$ .

Hence the inversion formula could be expected.
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3. EQUIVALENT RELATION BETWEEN FURUTA AND $YAMAZAKI-YANAGIDA$ FORMULAS

First of all, we cite the representation of the Specht ratio by the limit of the generalized
Kantorovich constant due to Yamazaki and Yanagida [13].

Theorem A. The Specht ratio $S=S(h)$ and the generalized Kantorovich constant
$K(h,p)$ are defined in (7) and (4), respectively, and take $h>0$ . Then

(KO): $\lim_{parrow+0}K(h^{p},\frac{1}{p})=S$ and (K1): $\lim_{parrow+0}K(h^{p},\frac{p+1}{p})=S$ .

Now we consider the Furuta formulas
(FO): $S=e^{-K’(0)}$ and (F1) : $S=e^{K’(1)}$ .

Since $K(O)=K(h, 0)=1$ and $K(1)=K(h, 1)=1$ by Lemma 2 (3), they should be
understood as

respectively, where
$K(p)=K(h,p) fixedh\log S=-\frac{K’(0)}{K(0),fora}\bm{t}d>0$

. $Therefore,$

$if\log S=\frac{K’(1)}{K(1)}$
,

we put $f(p)=\log K(p)$ ,
then

(FO): log $S=-f’(0)$ and (F1) : log $S=f’(1)$ .
By the way, since $f(O)=0$ , we have

$-f^{j}(0)=- \lim_{parrow 0}\frac{f(p)-f(0)}{p}=-\lim\frac{f(p)}{p}=\lim_{pparrow 0arrow 0}\frac{\log K(p)}{-p}=\lim_{parrow 0}\log K(p)^{-1}p$

Moreover the inversion formula $K(h^{p}, \frac{1}{p})=K(h,p)^{-1}p=K(p)^{-\frac{1}{p}}$ implies that

$-f’(0)= \log\lim_{parrow 0}K(h^{p},\frac{1}{p})$ .

It says that (FO) is equivalent to (KO) in Theorem A.
Next we discuss the equivalence between (F1) and (K1) in Theorem A. Since $f(1)=0$,

we have
$f’(1)= \lim_{parrow 0}\frac{f(p+1)-f(1)}{p}=\lim_{parrow 0}\frac{f(p+1)}{p}=\lim_{parrow 0}\frac{\log K(p+1)}{p}=\lim_{parrow 0}$ log $K(p+1)^{A}p$ .

Using the symmetric property $K(h,p)=K(h, q)$ for $p+q=1$ by Lemma 2 (2) and the

inversion formula $K(h^{r}, \frac{1}{r})=K(h, r)^{-\frac{1}{r}}$ , we have

$K(h^{p}, \frac{p+1}{p})^{p}=K(h^{p+1}, \frac{p}{p+1})^{-(P+1)}=K(h^{p+1},\frac{1}{p+1})^{-(P+1)}=K(h,p+1)$.

Taking the power $\frac{1}{p}$ on both sides,

$K(p+1)^{\perp}p=K(h,p+1)^{\frac{1}{p}}=K(h^{p}, \frac{p+1}{p})$ .

Therefore it follows that
$f’(1)= \log\lim_{parrow 0}K(h^{p},\frac{p+1}{p})$ ,

which means that (F1) is equivalent to (K1) in Theorem A.
Summing up the above argument, we have the following conclusion:
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Theorem 6. The Funuta $f_{07}mulas$

(F0): $S=e$一$K’(0)$ and (F1): $S=e^{K’(1)}$

are equivalent to the Yamazaki-Yanagida $fo$rmulas

(KO): $\lim_{parrow+0}K(h^{p},\frac{1}{p})=S$ and (K1): $\lim_{parrow+0}K(h^{p},\frac{p+1}{p})=S$ ,

respectively.

4. SOME REVERSE INEQUALITIES BY $S(h)$ AND $K(h,p)$

The generalizd Kantorovich constant $K(h,p)$ and the Specht ratio $S(h)$ appear in
some reverse inequalities. In this section we note some examplev.

The reverse H\"older-McCarthy inequality (3) leads for $0\leq p\leq 1$

(11) $\langle Ax, x\rangle\leq K(h,p)^{-\frac{1}{p}}\langle A^{p}x,x\rangle^{\frac{1}{p}}$ .

Moreover since

$\lim_{p\downarrow 0}\log\langle A^{p}x, x\rangle^{1}p=\lim_{p\downarrow 0}\log\frac{(A^{p}x,x\rangle}{p}=\lim_{p\downarrow 0}\frac{d\langle A^{p}x,x\rangle/dp}{\langle A^{p}x,x\rangle}$

$= hm\frac{(A^{p}\log Ax,x\rangle}{\langle A^{p}x,x)}=p\downarrow 0\langle(\log A)x, x\rangle$

and
$\lim_{p\downarrow 0}K(h,p)^{-\frac{1}{p}}=\lim_{p\downarrow 0}K(h^{p},\frac{1}{p})=S(h)$

by Lemma 5 (Inversion formula) and Yamazaki and Yanagida (KO), we have

(12) $\langle Ax, x\rangle\leq S(h)\exp\langle(\log A)x, x\rangle$ .

In 2005, Bebiano, Lemos and Provid\^encia [1] showed the following norm inequdity: For
$A,$ $B\geq 0$

(13) $\Vert A^{\lrcorner\underline{t}}B^{t}A^{1t}+||\iota_{2}\leq\Vert A^{1}z(A^{\theta}5B^{\delta}A\dot{\S})^{\iota_{A};}l\Vert$

for all $s\geq t\geq 0$ . In [4], we gave a reverse inequality of (13) by using the generalized
Kantorovich constant $K(h,p)$ as follows:

Corollary 7. Let $A$ and $B$ be positive operators such that $0<m\leq B\leq M$ for some
scalars $0<m<M$ and $h:= \frac{M}{m}>1$ . Then

(14) $\Vert A^{\iota}2(A^{\xi}B^{\delta}A^{\frac{*}{2}})^{\underline{t}}\cdot A^{\frac{1}{2}}||\leq K(h^{t},$
$\frac{s}{t})^{\underline{t}}\Vert A^{\iota_{2}\underline{t}}B^{l^{1}}A^{\lrcorner_{2}\underline{t}}\lrcorner||$

for $s\geq t\geq 0$ .
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5. CONCLUDING REMARKS

Concluding this note, we add to two remarks on the Yamazaki-Yanagida formulas
(KO), (K1) and a comment on references of Kantorovich type inequalities for readers’
convenience.

(i) Though a short proof of (KO) is given as Corollary 4, we cite a direct proof of it.

$K(h^{p}, \frac{1}{p})=S(h,p, 1)$

$= \frac{p1h-h^{p}}{h^{p}-1_{(1-p)-p}\perp 1-p}(\frac{h-1}{h-h^{p}})^{\frac{1}{p}}$

$arrow\frac{1}{\log h}\frac{1}{e}(h-1)h^{\frac{1}{h-1}}=S(h)$ as $parrow+O$,

where the convergence of the final tem is assured by 1‘Hospital theorem as follows:

$\lim_{parrow+0}\frac{\log(h-1)-\log(h-h^{p})}{p}=\lim_{parrow+0}\frac{h^{p}\log h}{h-h^{p}}=\frac{\log h}{h-1}=1ogh^{\frac{1}{h-1}}$ .

(ii) The equivalence between (KO) and (K1) is ensured by Theorem 6 because of the
symmetric property $K(p)=K(1-p)$ . However, we can show it by a direct computation,
in which the symmetric property is used, of course. As a matter of fact, it folows from
Lemma 2 (2) that

$K(h^{p}, \frac{p+1}{p})=K(h^{p}, 1-\frac{p+1}{p})=K((\frac{1}{h})^{-p}, \frac{1}{-p})$ .

Therefore (K1) holds for $h$ if and only if so does (KO) for – by noting that $S(h)=S( \frac{1}{h})$ ;
thus we have the equivalence between (KO) and (K1). We here want to remark that
Lemma 2 (0) played an important role in the above discussion, and that we identified
(KO) with

$\lim_{parrow 0}K(h^{p},\frac{1}{p})=S$

by virtue of Corollary 3.
(iii) Finally we mention that the paper [6] by Furuta is quite valuable in this field and

that [5] and [8] are a suitable textbook for Kantorovich type inequalities.
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