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In a recent paper [3] J. Gao introduced the parameter $E(X)$ for a Banach space
$X$ by

$E(X)= \sup\{\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2} : \Vert x\Vert=\Vert y\Vert=1\}$

and investigated some sufficient conditions for $X$ to have normal structure in terms
of $E(X)$ . In this short note we shall present several recent results of the authors on
the parameter $E(X)$ , especially in connection with the von Neumann-Jordan type
constant $C_{t}(X)$ and the James type constant $J_{X,t}(\tau)$ . Some sufficient conditions so
that a Banach space $X$ has normal structure will be given. We shall also consider
relation between $E(X)$ and $E(X^{*})$ , where $X^{*}$ is the dual space of $X$ .

Let $X$ be a Banach space with dim $X\geq 2$ and let $-\infty\leq t<\infty$ .
(i) The James type constant $J_{X,t}(\tau),$ $\tau\geq 0$ , is defined by

$J_{X,t}(\tau)=\{\begin{array}{ll}\sup\{(\frac{\Vert x+\tau y\Vert^{t}+\Vert x-\tau y\Vert^{t}}{2})^{1} \text{ノ} t : \Vert x\Vert=\Vert y\Vert=1\} if-\infty<t<\infty,sup\{\min(\Vert x+\tau y\Vert, \Vert x-\tau y\Vert) : \Vert x =||y\Vert=1\} ift=-\infty.\end{array}$

(ii) The von Neumann-Jordan type constant $C_{t}(X)$ is defined by

$C_{t}(X)=$ $sup\{J_{X,t}(\tau)^{2}/(1+\tau^{2}):0\leq\tau\leq 1\}$ .

The folowing well-known constants are expressed by these constants.
James contan$b$. $J(X)=J_{X,-\infty}(1)$

von Neumann-Jordan constant $C_{NJ}(X)=C_{2}(X)$

modulus of smoothness: $\rho x(\tau)=J_{X,1}(\tau)-1$

$Gaos$ parameter: $E(X)=2J_{X,2}(1)^{2}$

$Zb\check{a}ganu$ constant: $C_{Z}(X)=C_{0}(X)$ .
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If-oo $\leq t\leq s<\infty$ , then $J_{X,t}(\tau)\leq J_{X,s}(\tau)$ for all $\tau\geq 0$ and $C_{t}(X)\leq C_{s}(X)$ .
Recall that $X$ is said to be uniformly non-square if $J(X)<2$ . It is well-known that
$X$ is uniformly non-square if and only if $X^{*}$ is uniformly non-square.

Theorem 1. $Let-\infty\leq t<\infty$ . Then the following are equivalent.
(i) $X$ is uniformly non-square.
(ii) $J_{X,t}(1)<2$ .
(iii) $J_{X,t}(\tau)<1+\tau$ for some $0<\tau<1$ .
(iv) $C_{t}(X)<2$ .
(v) $E(X)<8$ .
(vi) $\rho_{X}’(0)=\lim_{\tauarrow+0}\rho_{X}(\tau)/\tau<1$ .

It is easy to see that for any Banach space $X$

$2J(X)^{2}\leq 2J_{X,t}(1)^{2}\leq E(X)\leq 4C_{NJ}(X)$ if $-\infty\leq t\leq 2$ ,

where we have equality in all the inequalities if $X$ is an $L_{p}$-space, $1\leq p\leq\infty$ .

Theorem 2. For any Banach space $X$

$\frac{(1+\rho_{X}(1))^{2}}{2}\leq\frac{E(X)}{4}\leq 1+\rho_{X}(1)^{2}$ . (1)

Remark 1. In the first and second inequalities in (1) equality attains with an
$\ell_{2^{-}}\ell_{\infty}$ space and an $\ell_{2^{-}}\ell_{1}$ space, respectively. Equality attains in the both inequalites
in (1) if and only if $X$ is not uniformly non-square.

Theorem 3. For any Banach space $X$

$1+ \rho_{X}’(0)^{2}\leq\frac{E(X^{*})}{4}\leq 1+\rho_{X}(1)^{2}$ . (2)

Remark 2. If $X$ is uniformly smooth (i.e., $\rho_{X}^{j}(0)=0$), then $X$ is a Hilbert space
if and only if equality holds in the first inequality in (2). In this case the second
inequality is strict. Note that equality holds in the both inequalities of (2) if and
only if $\rho_{X}(\tau)=p_{X}(1)\tau$ for all $0\leq\tau\leq 1:p_{2^{-}}\ell_{\infty}$ and $l_{\infty}- l_{1}$ spaces are such examples
with this condition.

Theorem 4. For any Banach space $X$

$\frac{C_{1}(X)}{2}+\sqrt{C_{1}(X)-1}\leq\frac{E(X)}{4}\leq 1+$ $(\sqrt{2C_{1}(X)}$一$1)^{2}$ . (3)
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Remark 3. In the first and second inequalities of (3) we have equality with an
$\ell_{2^{-}}p_{\infty}$ space and an $P_{2^{-}}\ell_{1}$ space, respectively. We have equality in the both inequalities

of (3) if and only if $X$ is not uniformly non-square.

Theorem 5. For any Banach space $X$

$\frac{C_{1}(X)}{2}+\sqrt{C_{1}(X)-1}\leq C_{1}(X)\leq\frac{E(X^{*})}{4}\leq 1+(\sqrt{2C_{1}(X)}-1)^{2}$. (4)

Remark 4. If $X$ is an $P_{2^{-}}\ell_{1}$ space, we have equality in the second inequalty
of (4). It is easy to see that if equality holds in the first inequality of (4), $X$ is not
uniformly non-square and hence we have equality in the other inequalities.

Corollary 1. The following are equivalent.
(i) $X$ is a Hilbert space.
(ii) $E(X)=4$.
(iii) $C_{1}(X)=1$ .

Theorem 6. For any Banach spaoe $X$

$E(X^{*})\leq 4+(\sqrt{2E(X)}-2)^{2}$ . (5)

Remark 5. If $X$ is an $\ell_{2^{-}}\ell_{\infty}$ space, then $E(X)=3+2\sqrt{2}$ and $E(X^{*})=6$ ,

whence we have equality in (5). Note that since $E(X^{**})=E(X)$ , we also have the

estimate of $E(X^{*})$ from below by $E(X)$ :

$E(X^{*})\geq(2+\sqrt{E(X)-4})^{2}/2$ . (6)

Of course we have equality if $X$ is an $\ell_{2^{-}}\ell_{1}$ space.

A Banach space $X$ is said to have normal $st$ructure (resp. weak normal structure) if

$r(K)<diam(K)$ for every non-singleton closed bounded convex subset (resp. weakly

compact convex subset) $K$ of $X$ , where diam$(K)$ $:= \sup\{||x-y\Vert : x,y\in K\}$ and
$r(K);= \inf\{\sup\{\Vert x-y\Vert : y\in K\} : x\in K\}$ . It is clear that if $X$ is reflexive

and has weak normal structure, then $X$ has normal structure. The normal stru cture

coefficient of $X$ is the number:

$N(X)= \inf${$diam(K)/r(K)$ : $K\subset X$ bounded and convex, diam$(K)>0$}.
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Obviously $1\leq N(X)\leq 2$ . $X$ is said to have uniforn normal structure if $N(X)>1$ .
As is well-known, if $p_{X}’(0)= \lim_{\tauarrow+0}\rho_{X}(\tau)/\tau<1/2$, or, if $\delta_{X}(1)>0$ , then $X$ has
uniform normal structure (cf. [5]). Since $\rho_{X}’(0)<1/2$ if and only if $\delta_{X^{*}}(1)>0$ , we
have

Theorem 7. Let $1\leq t\leq 2$ . Then, $J_{X,t}’(0)=\rho_{X}’(0)$ . Hence, if $J_{X,t}’(0)<1/2$ ,
both $X$ and $X^{*}$ have uniform normal structure.

Gao [3] proved that if $E(X)<5,$ $X$ has unifom normal structure. We note that
if $E(X)<5$ , then by Theorem 3 $\rho_{X}.(0)<1/2$ and both $X$ and $X$‘ have uniform
normal structure. We shall give an improvement of this result.

Theorem 8. Let $C_{1}(X)<(3+\sqrt{5})/4$ . Then both $X$ and $X^{*}$ have uniform
nomal structure. In particular if $E(X)<3+\sqrt{5}$, both $X$ and $X^{*}$ have uniform
nornal structure.

Remark 6. For any Banach space $X,$ $C_{1}(X)\leq C_{NJ}(X)$ ; these two constants
are different in general. For example, if $X$ is an $l_{\infty}-p_{1}$ space, then $C_{1}(X)=5/4$ and
$C_{NJ}(X)=(3+\sqrt{5})/4$ . Therefore Theorem 8 may be considered as an improvement
of a result in [2] which assert that if $C_{NJ}(X)<(3+\sqrt{5})/4$ , then both $X$ and $X^{*}$ have
uniform normal structure. On the other hand Theorem 8 can be proved by using a
result in [1] which assert that if $J(X)<(1+\sqrt{5})/2,$ $X$ has uniform normal structure.
Let us mention that if $E(X)<3+\sqrt{5}$ , then $C_{1}(X^{*})<(3+\sqrt{5})/4$ by Theorem 5;
the converse is not true in general.

In [8] B. Sims gave a sufficient condition for the normal structure of a Banach
space $X$ by means of the modulus of convexity $\delta_{X}(\epsilon)$ and the coefficient of weak
$07thogonalityw(X)$ , which is defined to be the supremum of the set of all real numbers
$\lambda>0$ such that

$\lambda\lim_{narrow}\inf\Vert x+x_{n}\Vert\leq 1i\inf_{narrow\ovalbox{\tt\small REJECT}}\Vert x-x_{n}\Vert$

for all $x\in X$ and for all weakly null sequences $(x_{n})$ in $X$ . As was pointed out
in Jim\’enez-Melado, Llorens-HUster and Saejung [6], Sims’ result is equivalent to the
statement that any Banach space $X$ with $J(X)<2w(X)$ has normal structure. They
showed in [6] that if $J(X)<1+w(X),$ $X$ has normal structure. Note that since
$1/3\leq w(X)\leq 1$ , the condition $J(X)<2w(X)$ implies that $J(X)<1+w(X)$ .
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Recently Gao [4] also showed that if $E(X)<1+2w(X)+5(w(X))^{2},$ $X$ has normal
structure. It is easy to see that if $E(X)<1+2w(X)+5(w(X))^{2}$ , then $J(X)<$

$1+w(X)$ .

Theorem 9. Let $E(X)<1+2w(X)+5(w(X))^{2}$ . Then both of $X$ and $X^{*}$ have
normal structure.

Remark 7. $X$ is uniformly non-square if and only if $E(X)<8$ (see Theorem 1).

Hence if $X$ is umiformly non-square and $w(X)=1$ , both of $X$ and $X^{*}$ have normal
structure.
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