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Abstract. Our purpose in this article is to discuss new nonlinear operators in a Banach
space which are related to nonexpansive mappings and to obtain convergence theorems for
the operators. We first deal with a nonlinear operator called a relatively nonexpansive map-
ping which generalizes a nonexpansive mapping in a Hilbert space. Using this operator, we
prove a strong convergence theorem which generalizes Nakajo and Takahashi [29]. We also
obtain another theorem for relatively nonexpansive mappings which is connected with Reich’s
theorem [33]. Next, we define another nonlinear operator in a Banach space called a gener-
alized nonexpansive mapping. This mapping also generalizes a nonexpansive mapping in a
Hilbert space. Using this mapping, we also get a strong convergence theorem which is related
to Nakajo and Takahashi [29] and is different from the theorem above. Further, we obtain a
weak convergence theorem of Reich’s type. Finally, we prove a strong convergence theorem for

nonexpansive mappings in a Banach space which is closedly related to Nakajo and Takahashi
[29].

1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm ||-|| and let C be a nonempty
closed convex subset of H. Then, a mapping T of C into itself is called nonexpansive if
1Tz — Ty|| < ||z — y|| for all z,y € C. We denote by F(T) the set of fixed points of T'.

Mann [22] introduced the following iterative sequence to approximate a fixed point of a
nonexpansive mapping: £; = x and '

Tntl = AnTp + (1 —0n)Tzn, n=12,...,

where {an} is a sequence in [0, 1]. Reich [33] proved the following weak convergence theorem
for such a sequence. For the proof, see Takahashi [46].

Theorem 1.1 (Reich [33]). Let C be a closed convex subset of a Hilbert space H and let T
be a nonezpansive mapping of C into itself such that F(T) is nonempty. Let P be the metric
projection of H onto F(T'). Let x € C and let {z,} be a sequence defined by z, = = and

Tn+l = QpZn + (1 - an)T:cn, n=12,...,
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where {an} C [0,1] satisfies

(o <]
0<a,<1 and Zan(l-—an)=oo

n=1
Then, {z,} converges weakly to z € F(T), where z = limp o0 PTy,.

Reich [33] proved really such a theorem in a uniformly convex Banach space whose norm
is a Fréchet differentiable. On the other hand, we know many problems in nonlinear analysis
and optimization which are formulated as follows: Find

u € H such that 0 € Au, (1.1)

where A is a maximal monotone operator from H to H. Such u € H is called a zero point
(or a zero) of A. A well-known method for solving (1 1) in a Hilbert space H is the proximal
point algorithm: z; € H and

Tn1 = Jr Tn, n=12,..., (1.2)

where {r,} C (0,00) and J, = (I +rA)~! for all 7 > 0. This algorithm was first introduced
by Martinet [23]. In [39], Rockafellar proved that if liminf, . r, > 0 and A710 # @, then
the sequence {z,} defined by (1.2) converges weakly to a solution of (1.1). Motivated by
Rocksfellar’s result, Kamimura and Takahashi [16] proved the following convergence theorem.

Theorem 1.2 (Kamimura and Takahashi [16]). Let H be a Hilbert space and let A C
H x H be a mazimal monotone operator. Let J, = (I + rA) =1 for allr > 0 and let {z,} be a
sequence defined as follows: €1 =x € H and

Tp41 = nZn+ (1 —an)tr.zn, n=12...,
where {an} C [0,1] and {r,} C (0,00) satisfy

limsupa, <1 and liminfr, > 0.
n—o0 n—oo

If A=10 # @, then the sequence {z,} converges weakly to an element v of A~'0, where v =
limp—.oo Pz, and P is the metric projection of H onto A~10.

Solodov and Svaiter [41] also proved the following strong convergence theorem by the hybnd
method in mathematical programming.

Theorem 1.3 (Solodov and Svaiter [41]). Let H be a Hilbert space and let AC H x H
be a mazimal monotone operator. Let ¢ € H and let {x,} be a sequence defined by
'1'1 =z € H,
1
0=v, + r—(yn = Zn), Un € Ayn,
n
1 Hn={z€H: (z = Yn,vn) <0},
={z€ H:(z—xp,z1 —xn) <0},
| Tnt+1 = PH,aw,Z1, n=1,2,.

where {r,} is a sequence of positive numbers. If A=10 # ¢ and liminfp .o Tn > 0, then {z,}
converges strongly to Pa-1921.
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Motivated by Solodov and Svaiter [41], Nakajo and Takahashi [29] proved the following

strong convergence teorem by using the hybrid method for nonexpansive mappings in a Hilbert
space.

Theorem 1.4 (Nakajo and Takahashi [29]). Let C be a closed conver subset of a Hilbert
space H and let T be a nonezpansive mapping of C into itself such that F(T) is nonempty.
Let P be the metric projection of H onto F(T). Let z; =z € C and

Yn = @nZTn + (1 — an)Tzy,
Con={2€C:|lyn— 2| < |lzn — 2|},
Qn={2€C: (:vn—-z,wl—;cn) > 0},
ZTn+1 = Po,nq.(z1), n=12,...,

where {a,} C [0,1] satisfies limsup,,_,,, an < 1 and Pc,nq, is the metric projection of H
onto C, N Qn. Then, {z,} converges strongly to Px, € F(T).

After Nakajo and Takahashi [29], many reseachers have studied such theorems by hybrid
methods in a Hilbert space; see, for instance, {14, 24, 42, 55]. However, we can not find a
theorem for nonexpansive mappings in a Banach space which generalizes Nakajo and Takahashi
[29].

Our purpose in this article is to consider new nonlinear operators in a Banach space for
extending Nakajo and Takahashi’s result [29] in ‘a Hilbert space to that in a Banach space.

In Section 3, we deal with a nonlinear operator in a Banach space called a relatively non-
expansive mapping which generalizes a nonexpansive mapping in a Hilbert space. We know
that a relatively nonexpansive mapping in a Banach space is completely different from a non-
expansive mapping in a Banach space. In this section, we state a strong convergence theorem
for relatively nonexpansive mappings which generalizes Nakajo and Takahashi [29]. We also
obtain another theorem for relatively nonexpansive mappmgs which is connected with Reich’s
theorem [33].

In Section 4, we define another nonlinear operator in a Banach space which generalizes a
nonexpansive mapping in a Hilbert space. We call such a nonlinear operator a generalized
nonexpansive mapping. In this section, we obtain a strong convergence theorem which is
related to Nakajo and Takahashi [29] and is different from the result in Section 3. Further, we
obtain a weak convergence theorem of Reich’s type. Finally, in Section 5, we prove a strong

convergence theorem for nonexpansive mappmgs in a Banach space which is closedly related
to Nakajo and Takahashi [29].

2 Preliminaries

Let E be a real Banach space with norm || - || and let E* denote the dual of E. We denote
the value of y* € E* at = € E by (z,y*). When {z,} is a sequence in E, we denote the strong
convergence of {z,} to z € E by z, — = and the weak convergence by z,, — z. The modulus
0 of convexity of E is defined by

o) = nt {1 B oy < ol < 1, - ol 2
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for every € with 0 < ¢ < 2. A Banach space E is said to be uniformly convex if §(¢) > 0 for
every € > 0. If E is uniformly convex, then ¢ satisfies that 6(¢/r) > 0 and

<r(1-5(Y)

for every z,y € E with ||z|| < r, ||yll < r and ||z —y|| > €. Let C be a nonempty closed convex
subset of a uniformly convex Banach space E. Then we know that for any x € E, there exists
a unique element z € C such that ||z — z|| < |lz — y|| for all y € C. Putting z = Pc(z), we call
P the metric projection of E onto C. The duality mapping J from E into 2E is defined by

zT+Yy
2

Jz ={z" € E” : (z,2") = ||z|I* = ||z*|”}

for every z € E. Let U = {z € E : ||z|| = 1}. The norm of FE is said to be Géteaux
differentiable if for each z,y € U, the limit -

oo o tyll = f12]

lim . (2.1)

exists. In the case, F is called smooth. The norm of E is said to be uniformly Gateaux
differentiable if for each y € U, the limit (2.1) is attained uniformly for z € U. It is also
said to be Fréchet differentiable if for each x € U, the limit (2.1) is attained uniformly for
y € U. A Banach space FE is called uniformly smooth if the limit (2.1) is attained uniformly
for z,y € U. It is known that if the norm of E is uniformly Géteaux differentiable, then the
duality mapping J is single valued and uniformly norm to weak* continuous on each bounded
subset of E. We know the following result: Let E be a smooth Banach space. Let C be a
nonempty closed convex subset of E and z, € E. Then, zo = Pc(z;) if and only if

(o — 1y, J(z1 — %0)) =2 0

for all y € C, where J is the duality mapping of E.

A Banach space FE is said to satisfy Opial’s condition [31] if for any sequence {z,} C E,
ZTn — y implies :
liminf ||z, — y|| < liminf ||z, — z||

n—o0 n—oo

for all z € E with 2z # y. A Hilbert space satisfies Opial’s condition.

Let C be a closed convex subset of E. A mapping T: C — E is said to be nonexpansive if
Tz — Ty|| < ||z —y|| for all z,y € C. We denote the set of all fixed points of T' by F(T). Let
D be a subset of C and let P be a mapping of C into D. Then P is said to be sunny if

P(Pz + t(z — Px)) = Px

whenever Pz + t(z — Pz) € C for x € C and t > 0. A mapping P of C into C is said to be a
retraction if P2 = P. We denote the closure of the convex hull of D by &D. _

A multi-valued operator A: E — E* with domain D(A) = {z € F : Az # 0} and range
R(A) =J{Az: z € D(A)} is said to be monotone if (z; — z2,y1 — y2) = 0 for each z; € D(A)
and y; € Az;, i = 1,2. A monotone operator A is said to be maximal if its graph G(4) =
{(z,y) : y € Az} is not properly contained in the graph of any other monotone operator. The
following theorems are well known; for instance, see [46].

Theorem 2.1. Let E be a reflexive, strictly convez and smooth Banach space and let A: E —
2E" be a monotone operator. Then A is mazimal if and only if R(J +rA) = E* for allT > 0.
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Theorem 2.2. Let E be a strictly conver and smooth Banach space and let x,y € E. If
(x—y,Jz—Jy) =0, thenz =y.

A duality mapping J of a smooth Banach space is said to be weakly sequentially continuous
if £, — z implies that Jx, — Jz, where = means the weak* convergence.

3 Relatively nonexpansive mappings

In this section, we first deal with a strong convergence theorem in a Banach space which
generalizes Nakajo and Takahashi's theorem (Theorem 1.4) in a Hilbert space.

Let E be a reflexive, strictly convex and smooth Banach space. The function ¢: E x E —
(—o0, 00) is defined by |

¢(z,y) = |lzl* - 2(z, Jy) + lyl®

for ,y € E, where J is the duality mapping of E; see [1] and [18]. Let C be a nonempty
closed convex subset of E and let z € E. Then there exists a unique element z¢ € C such that

¢(zo, ) = inf{p(z,z) : z € C}. (3.1)

Now, we define the mapping Q¢ of E onto C by Qcz = z¢, where z is defined by (3.1). Such
Qc is called the generalized projection of E onto C. It is easy to see that in a Hilbert space,
the mapping Q¢ is coincident with the metric projection.

Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty closed convex subset of
E, letx € E and let xo € C. Then, the following (1) and (2) are equivalent:

(1) ¢(xo, z) = minyec ¢(y, z);

(2) (xo — y, Jx — Jzo) > 0 for ally € C.

Let E be a smooth Banach space. Let C be a closed convex subset of E, and let T be a
mapping from C into itself. We denote by F(T') the set of fixed points of T. A point p in C is
said to be an asymptotic fixed point of T [36] if C contains a sequence {z,} which converges
weakly to p and the strong lim,_.o(z, — TZ,) = 0. The set of asymptotic fixed points of T'
will be denoted by F(T'). A mapping T from C into itself is called relatively nonexpansive if
F(T) = F(T) and ¢(p, Tz) < ¢(p,z) for all z € C and p € F(T). '

The following is a strong convergence theorem for relatively nonexpansive mappings in a
Banach space which generalizes Nakajo and Takahashi’s theorem [29] in a Hilbert space.

Theorem 3.2 (Matsushita and Takahashi [26]). Let E be a uniformly convez and uni-
formly smooth Banach space, let C be a nonempty closed convex subset of E, let T be a
relatively nonezpansive mapping from C into itself with F(T) # ¢ and let {on,} be a sequence
of real numbers such that 0 < a, < 1 and limsup,,_, ., &, < 1. Suppose that {x,} is given by

ry=x2€C, ‘

Un = J Y anJzy + (1 — an)JTzy),

H, ={z € C:¢(z,yn) < d(2,zn)},
Wp={2€C: {(x, - 2,Jz— Jz,) = 0},
Tnt1 = QH.W, T

foralln =1,2,..., where J is the duality mapping on E. Then {z,} converges strongly to
Qr(T)%, where Qr(T) is the generalized projection from C onto F(T).
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Using Theorem 3.2, we can prove Nakajo and Takahashi’s theorem (Theorem 1.4) as follows:
To show Nakajo and Takahashi’s theorem, it is sufficient to prove that if T is nonexpansive,
then T is relatively nonexpansive. It is obvious that F(T) ¢ F(T). If u € F(T), then there
exists {zn,} C C such that z, — u and z, — Tz, — 0. Since T is nonexpansive, T is
demiclosed. So, we have u = Tu. This implies F(T) = F(T). Further, in a Hilbert space H,

we know that
#(z,y) = Iz — y||?

for every =,y € H. So, ||Tz ~ Ty|| < ||z — y|| is equivalent to ¢(Tz, Ty) < ¢(z,y). Therefore,
T is relatively nonexpansive. Using Theorem 3.2, we obtain the desired result.

Using Theorem 3.2, we can prove a strong convergence threorem for maximal monotone
operators in a Banach space. Before stating the theorem, we define the following resolvents
for maximal monotone operators in a Banach space. Let E be a reflexive, strictly convex
and smooth Banach space, and let A be a maximal monotone operator from F to E*. Using
Theorem 2.1 and the strict convexity of E, we obtain that for every r > 0 and z € E, there
exists a unique z, € D(A) such that

Jz € Jz, + TAz,. (3.2)

If Q,r = z,., then we can define a single valued mapping Q,. : E — D(A) by Q, = (J+rA4)~J
and such Q, is called the relative resolvent of A. We know that A~10 = F(Q,) for all r > 0;
see [45, 46] for more details.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space, let A be a
mazimal monotone operator from E to E*, let Q, be the relative resolvent of A, where r > 0.
If A=10 is nonempty, then Q, is a relatively nonerpansive mapping on E.

Using this result and Theorem 3.2, we prove a strong convergence theorem for relative
resolvents of maximal monotone operators in a Banach space.

Theorem 3.4. Let E be a uniformly conver and uniformly smooth Banach space, let A be a
mazximal monotone operator from E to E*, let Q, be the relative resolvent of A, where T > 0
and let {an} be a sequence of real numbers such that 0 < a, < 1 and limsup,_,, on < 1.
Suppose that {z,} is given by .

1=z €E,

Yn = J HanJzn, + (1 — 0,)JQr2,,),
Hn = {z €E: ¢(Z, 'yn) S ¢(z7 xn)}a
W,={2€E: {(xn, - 2z,Jz — Jz,) >0},
Znt1 = QH,.AW, T

for alln = 1,2,..., where J is the duality mapping on E. If A~10 is nonempty, then {z,}
converges strongly to Qa-1ox, where Q 4~1¢ is the generalized projection from E onto A~10.

Next, we obtain a weak convergence theorem for relatively nonexpansive mappings in a
Banach space which is connected with Reich'[33], Browder and Petryshyn’s theorem [6] and
Rockafellar’s theorem [39]. Before proving it, we need the following proposition.

Proposition 3.5 (Matsushita and Takahashi v{25]). Let E be a uniformly conver and
uniformly smooth Banach space, let C be a nonempty closed convex subset of E, and let T
be a relatively nonexpansive mapping from C into itself such that F(T) # 0. Let {an} be a
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sequence of real numbers such that 0 < a, < 1. Let ; € C and let {z,} be the sequence
defined by

forn=1,2,.... Then {Qr(r)Tn} converges strongly to a fized point of T, where Q F(T) 1 the
generalized projection from C onto F(T).

Using Proposition 3.5, we can prove the following weak convergence theorem.

Theorem 3.6 (Matsushita and Takahashi [25]). Let E be a uniformly convez and uni-
formly smooth Banach space, let C be a nonempty closed convez subset of E, and let T be a
relatively nonezpansive mapping from C into itself such that F(T') # 0. Let {an} be a sequence
of real numbers such that

0<a,<1 and liminfa,(l —a,)>0.
n—oo

Let 2, € C and let {x,} be the sequence defined by
Tnt1 = QcJ N anJTn + (1 ~ 0n)JTxy)

for n = 1,2,.... If J is weakly sequentially continuous, then {z,} converges weakly to u,
where u = limp .00 Qr(1)Trn and Qr(r) is the generalized projection from C onto F(T)
Using Theorem 3.6, we can prove the following two weak convergence theorems.

Theorem 3.7 ([6]). Let C be a nonempty closed conver subset of a Hilbert space H, let T
be a nonezpansive mapping from C into itself such that F(T) # @ and let \ be a real number
such that 0 < A < 1. Let x; € C and let {z,} be the sequence defined by

Tpt1 = AZp + (1 - N)Tz,

forn=1,2,.... Then {zn} converges weakly to u, where u = limp_.co Pr(7)Tn and Pr(t) i3
the metric projection from C onto F(T')

Theorem 3.8. Let E be a uniformly convez and uniformly smooth Banach space, let A be a
mazimal monotone operator from E to E* such that A~10 # 0, let Q, be the relative resolvent
of A where r > 0, and let {an} be a sequence of real numbers such that

0<a,<1 and liminfe,(1-a,)>0.
n—oo
Let z; € E and let {z,} be the sequence defined by
for n = 1,2,.... If J is weakly sequentially continuous, then {x,} converges weakly to u
in A~10, where u = limp 0o Qa-10Zn and Q4-1¢ is the generalized projection from E onto
Ao,

Kamimura and Takahashi [18] extended Solodov and Svaiter’s result [41] to the fbllowing
theorem by using Lemma 3.1 and the resolvents defined by (3.2).
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Theorem 3.9 ([18]). Let E be a uniformly convez and uniformly smooth Banach space and let
A be a mazimal monotone operator from E into E* such that A~10 # ¢. Let Q, = (J+rA)~1J
for allr > 0 and let {z,} be a sequence generated by

’131 G E,

Yn "—’anxn’

Hpn={2€ E: (2= yn, Jzn — Jyn) < 0},
Wo={2€E:(z—zpn,Jz1 — Jz,) <0},
(Zn+1 = QH, W, Z1, n=1,2,...,

where {r,} is a sequence of positive numbers such that liminf, ..o7n > 0. Then, {z,}
converges strongly to Q s-10z1, where Q 4-1¢ is the generalized projection of E onto A~10.

Kamimura, Kohsaka and Takahashi [15] also proved a weak convergence theorem of Mann’s
type for maximal monotone operators in a Banach space. Before stating the theorem, we need
the following strong convergence theorem.

Theorem 3.10 ([15]). Let E be a smooth and uniformly convez Banach space. Let A C
E x E* be a mazimal monotone operator such that A=10 is nonempty, let Q, = (J +rA)~1J
for all v > 0 and let Q4-10 be the generalized projection of E onto A~'0. Let {z,} be a
sequence defined as follows: z; = x € E and

. Tn+1 = J_l(an'](l'n) + (1 - an)J(anxn))s n=1,2,...,

where {a,} C [0,1] and {rn} C (0,00). Then, the sequence {Qs-19(Zn)} converges strongly
to an element of A~10, which is a unique element v € A~10 such that
Jim_ (v, zq) =  in, Tm ¢(y, Zn)-

| Using Theorem 3.10, we can prove the following theorem in a Banach space which generalizes
the results of Rockafellar [39] and Kamimura and Takahashi [16] in a Hilbert space.

Theorem 3.11 ([15]). Let E be a smooth and uniformly convexr Banach space whose duality
mapping J is weakly sequentially continuous. Let A C E x E* be a mazimal monotone
operator such that A~0 is nonempty, let Q, = (J+rA)~1J for allT > 0 and let Q 4-1¢ be the
generalized projection of E onto A=10. Let {z} be a sequence defined as follows: z, =z € E
and

Tn1 = I (and (z0) + (1—-an)d(@r.zn))y n=1,2,...,
where {an} C [0,1] and {r,} C (0,00) satisfy

limsupa, <1 and liminfr, > 0.
n—oo n—0oo

Then, {z,} converges weakly to an element v of A=10, where v = limp .00 Qa-10(Tn).
As a direct consequence of Theorem 3.11, we obtain the following:

Theorem 3.12. Let E be a smooth and uniformly convex Banach space whose duality mapping
J is weakly sequentially continuous. Let A C E x E* be a mazimal monotone operator such
that A~10 is nonempty, let Q. = (J +rA)~1J for all T > 0 and let Q4-1o be the generalized
projection of E onto A~0. Let {z,} be a sequence defined as follows: z; = z € E and

Tn+1 = QraZn, n=12,...,
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where {r,} C (0,00) satisfies liminf, ,o 7, > 0. Then, the sequence {z,} converges weakly
to an element v of A=10, where v = limp—00 Q 4—10(Zn)-

Problem. If E and E* are uniformly convex Banach spaces, does Theorem 3.12 hold without
assumming that J is weakly sequentially continuous ?

4 Generalized nonexpansive mappings

Let E be a smooth Banach space and let D. be a nonempty closed convex subset of E. A
mapping R: D — D is called generalized nonexpansive if F(R) # @ and

¢(Rz,y) < ¢(z,y), Vze D,Vye€ F(R),

where F(R) is the set of fixed points of R. A point p in C is said to be a generalized

asymptotic fixed point of T' [13] if C contains a sequence {z,} such that Jz, — Jp and the
strong limy, oo (Jrn, — JTz,) = 0. The set of generalized asymptotic fixed points of T will be
denoted by F(T).

Let E be a reflexive and smooth Banach space and let B C E* x E be a maximal monotone
operator. For each A > 0 and z € E, consider the set

Ryz:={2€ E:z € z+ ABJ(2)}.

Then Ryx consists of one point. We also denote the domain and the range of Ry by D(R,) =

R(I+ ABJ) and R(R)) = D(BJ), respectively. Such R, is called the generalized resolvent of
B and is denoted by

Ry = (I+ABJ)"L.
We get some properties of Ry and (BJ)~10.

Proposition 4.1 ([12]). Let E be a reflexive and strictly convez Banach space with a Fréchet
differentiable norm and let B C E* x E be a mazimal monotone operator with B=10 # 0. Then
the following hold:

1. D(Ry) = E for each A > 0;

2. (BJ)~10 = F(R)) for each A > 0, where F(R)) is the set of fized points of Ry;
3. (BJ)~10 is closed;

4. Ry is generalized nonexpansive for each A > 0.

Proposition 4.2 ([13]). Let E be a smooth and uniformly conver Banach space, let B C
E*xFE be a mazimal monotone operator with B ~10 #£ 0, and let Ry be the generalized resolvent
of B for A > 0. Then F(R)) = F(R)).

Next, we get the following result for generalized nonexpansive mappings.

Proposition 4.3. Let C be a nonempty closed subset of a smooth and strictly convex Banach
space E. Let Rc be a retraction of E onto C. Then R¢ is sunny and generalized nonezpansive
if and only if

(zx — Rcz,J(Rez) — J(y)) >0

foreachz € E andy e C.
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Let E be a smooth and strictly convex Banach space and let C be a nonempty closed subset
of E. Then, a sunny generalized nonexpansive retraction of F onto C is unique. In fact, let
R, S be two sunny generalized nonexpansive retractions of £ onto C. Then, by Proposition
4.3, for each = € E, we have

(z — Rz, J(Rx) — J(y)) 2 0, (z — Sz, J(Sz) — J(y)) > O,. Vy e C.
From Rz, Sz € C, we get
(z — Rz, J(Rz) — J(Sz)) > 0, (z — Sz, J(Sz) — J(Rz)) > 0.
From these inequalities, we have
(Sz — Rz, J(Rx) — J(Sx)) > 0.

Since E is strictly convex, we get St = Rxz.

Before showing an example of sunny generalized nonexpansive retractions, we recall the
following theorem.

Theorem 4.4 ([34]). Let E be a Banach space and let A C E x E* be a mazimal monotone
operator with A~*0 # (. If E* is strictly convez and has a Fréchet differentiable norm. Then,
for each x € E, limy o0 (J + AA) "1 J(2) ezists and belongs to A~10.

Using Theorem 4.4, we get the following result.

Theorem 4.5 ([12]). Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let B C E* x E be a mazimal monotone operator with B—10 # 0. Then the following
hold:

1. For each z € E, limy_.oo Rax ezists and belongs to (BJ)~10;
2. If Rz := limy_o Raz for each x € E, then R is a sunny generalized nonezpansive
retraction of E onto (BJ)™10.

Next, we discuss proximal point algorithms for generalized resolvents of a maximal monotone
operator B C E* x E. We start with the following lemma. Compare this lemma with the
results in Kamimura and Takahashi [18], and Kohsaka and Takahashi [20].

Lemma 4.6. Let E be a reflezive, strictly convez, and smooth Banach space, let BC E* x E
be a mazimal monotone operator with B~10+# 0, and R, = (I + rBJ)™! for allr > 0. Then

¢(z, Rrz) + ¢(Rrz,u) < ¢(z,u)
forallr >0, ue (BJ)"'0, andz € E.

The following is a strong convergence theorem for generalized nonexpansive mappings in a
Banach space which is related to Nakajo and Takahashi’s theorem [29] in a Hilbert space.

Theorem 4.7 (Ibaraki and Takahashi [13]). Let E be a uniformly convex and uni-
formly smooth Banach space, let T' be a generalized nonezpansive mapping from E into it-
self with F(T) # ¢ and let {an} be a sequence of real numbers such that 0 < a, < 1 and
limsup,,_,o, @n < 1. Suppose that {zn} is given by

=z € FE,

Yn = QnZn + (1 — an)Txy,),

Hy, = {2z € E: ¢(2,yn) < ¢(2,7n)},
Wo={2€E: (zn, -2 Jz—Jz,) 20},
Tnt1 = Ry,aw,z
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for alln = 1,2,..., where J is the duality mapping on E. If F(T) = F(T), then {z,}
converges strongly to Rp(Tyz, where Rp(r) is the sunny generalized nonezpansive retraction
from C onto F(T).

We can also prove the following weak convergence theorem, which is a generalization of
Kamimura and Takahashi’s weak convergence theorem (Theorem 1.2).

Theorem 4.8. Let E be a smooth and uniformly conver Banach space whose duality mapping
J is weakly sequentially continuous. Let B C E* x E be a mazimal monotone operator, let
R, = (I+rBJ)~! for allr > 0 and let {z,} be a sequence defined as follows: x, = z € E and

m"'Ir'*']. =aﬂ.xﬂ,+(1_an)anzn, n=1,2,...,
where {a,} C [0,1] and {r,} C (0,00) satisfy

limsupay, <1 and liminfr, > 0.
n—00 n—oo

If B=10 # 0, then the sequence {z,} converges weakly to an element of (BJ)~10.

5 Concluding remarks

Recently, Matsushita and Takahashi [27] proved the following strong convergence theorem

for nonexpansive mappings in a Banach space which is related to Nakajo and Takahashi’s
theorem [29].

Theorem 5.1 (Matsushita and Takahashi [27]). Let E be a uniformly convez and smooth
Banach space, let C be a nonempty bounded closed convez subset of E and let T be a nonez-
pansive mapping from C into itself. Let {z,} be a sequence in C defined by

1=z € C,

Crn=20{z€C:|z—ynll < |z —znl},
D,={z€C:(xp—2zJz— Jzy) SO},
Tnt+1 = Pc,nD,T

foralln =1,2,..., where Pg,np, is the metric projection from E onto C, N Dy, and {t,} is
a sequence in (0,1) with t, — 0. Then {z,} converges strongly to the element Pr(r)x, where
Prp(r) is the the metric projection from E onto F(T).

For the proof of Theorem 5.1, Matsushita and Takahashi [27] used essentially the following
Bruck’s theorem (7]:

Theorem 5.2 (Bruck [7]). Let C be a closed conver subset of a uniformly convez Banach
space E. Then for each r > 0, there erists a strictly increasing convex continuous function
A : [0,00) — [0,00) such that A(0) =0 and

A (NT(;AJ-::,') - Jz:%z\ij,-

for alln € N, {\;} € A", {z;} C CN B, and T € Lip(C,1), where A™ = {{Xo,M1,...,An}
0< A and YJ oA =1}, B = {z € E : ||lz| < r} and Lip(C,1) is the set of all
nonezpansive mappings of C into E.

) < oo (leg =zl = |T2; — Tael)
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Problem. Can we prove Theorem 5.1 under assuming that C is a closed and convex subset
of E and T': C — C is a nonexpansive mapping with F(T) # 0 7
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