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Abstract

This report highlights the author’s recent study with W. S. Koon (Caltech),
J. E. Marsden (Caltech), and I. G. Kevrekidis (Princeton University). Molecular
reactions as well as functional motions of biopolymers are typically large-amplitude
collective motions that involve a large number of degrees of freedom in a coherent
manner. It has been a significant challenge to understand the mechanism for such
collective motions. By taking up a six-atom cluster as an illustrative example, we
develope a methodology to understand collective motions of molecules with many
degrees of freedom in terms of the reduced dynamics of gyration radii, which serve
as predominant collective variables. We highlight the competition between two
different kinds of forces that essentially mediate the dynamics of gyration radii: One
is the ordinary potential force that originates from the potential energy function of
the system, and the other is an internal centrifugal force that originates from the
intrinsic non-Euclidean nature of molecular internal space. While the potential
force generally works to keep the mass distribution of the system compact and
symmetric, the internal centrifugal force works to inflate and elongate it. We show
that the internal centrifugal force induces a significant dynamic barrier for reaction,
which can often overshadow the original potential energy barrier. This kind of
geometry-related dynamical effects should shed new light on the conventional picture
of molecular reactions.

Introduction

84

Dimension Reduction and Identification of Dynamic

Large-amplitude collective motions play an essential role in chemical reactions as well
as in the functional motions of biomolecules. .Understanding the mechanism for such
collective motions has been a significant challenge in current molecular science. Since
such collective motions involve a large number of degrees of freedom in a coherent manner,
reducing the dimensionality by using a small number of appropriate collective variables
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is crucially important. Indeed, dimensionality reduction has been a long-standing issue
in nonequilibrium statistical mechanics [1-3], molecular dynamics [4-6], Monte Carlo
methods [7], and in reaction path theories [8-10].

The first issue of this report is to find out appropriate collective variables (or equiv-
alently reaction coordinates) that play predominant roles rather ubiquitously in a wide
class of large-amplitude motions of molecular systems. We specifically highlight the three
gyration radii of a molecule as such collective variables in this study. Physically, the
gyration radii are the measure of mass distribution of a system along the three princi-
pal axes. We investigate the three-dimensional dynamics of gyration radii of a general
n-atom molecule both analytically and numerically at the level of their classical equations
of motion. To this end, we first reduce the three translational and three rotational de-
grees of freedom from the 3n total degrees of freedom configuration space correctly using '
the framework of standard reduction theory for symmetric systems following (11, 12] and
the gauge theory [13-19]. In order to carry out further reduction in dimensions, beyond
symmetry reduction, we employ the principal-axis hyperspherical formalism, which was
initiated in an early paper by Eckart [20] and reformulated in the hyperspherical context
by Chapuisat et al. [21, 22] and Kuppermann {23-25)].

In the principal-axis hyperspherical formalism, the instantaneous principal axes of
the system are used as a body frame. Then the (3n — 6) internal degrees of freedom
are parametrized by the three gyration radii and the (3n — 9) hyperangles. While the
gyration radii characterize the mass distribution of the system, hyperangles are associated
with cyclic and democratic deformation of the system called kinematic rotation, which
was scrutinized by Littlejohn et al. [26-28] and Aquilanti et al. [29-31]. It was shown in
Refs. [20-22] that the use of (3n — 9) quasivelocities instead of the hyperangles simplifies
the expression of kinetic energy of n-body systems remarkably. By taking the advantage
of this concise expression for kinetic energy, we here derive classical equations of motion,
which are also concise and physically appealing.

In the present study, the three gyration radii are regarded as slow collective variables
that essentially dominate large-amplitude motions of the system, while the hyperangular
variables are regarded as fast “bath” modes. This distinction of variables is based mainly
on time scale separation and kinetic energy partitioning as will be shown in this report.
Based on this classification of the variables, we average out the hyperangular variables that
appear in the equations of motion for the gyration radii to obtain a set of approximately
closed equations of motion for the gyration radii.

The averaged equations of motion for the gyration radii shed hght on the mechanism of
competition between the potential force and a dynamic force in large-amplitude motions
of polyatomic molecules. The dynamic force has its origin in the kinematic coupling of
gyration radii with the hyperangular modes (kinematic rotations) via the non-Euclidean
metric of the internal space. This dynamic force is essentially an internal centrifugal force
arising from the internal motions themselves. Generally speaking, the potential force
works to keep the internal mass distribution of a molecule symmetric and compact. On
the other hand, the internal centrifugal force has the remarkable effect of elongating and
inflating the internal mass distribution of the molecule. In other words, the molecular
vibrations induce a spontaneous tendency of deformation. In this way, the internal cen-
trifugal force can be the critical driving force for a molecule to move from one potential
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well to another. We show that this dynamic force induces a significant dynamic barrier
for reaction, which can often overshadow the original potential energy barrier. The effects
of the internal centrifugal force in three-atom and four-atom reactions have been studied
in Refs. [32-34]. In this report, we present a generalized method of these results to larger -
n-atom molecules involving systematic averaging based on our recent publication [35].

As an illustrative example, we take up the structural transition dynamics of a six-atom
Morse cluster, which represents an Arg-like cluster [36-38], with constant energy and with
zero total angular momentum. The cluster possesses two kinds of geometrically distinct
isomers, one of which has a regular octahedron structure, which is highly symmetric,
and the other has a elongated structure. The octahedron structure lies at the bottom
of a much deeper potential well. Interestingly, this cluster shows a clear switching of
structural preference depending on its total energy. In the low energy range (solid-like
phase), the cluster spends more time in the potential well of the octahedron structure,
while in the high energy range (liquid-like phase), the cluster spends more time in the
competing potential well. This kind of two-state switching is a general feature of the first-
order phase transitions as is observed in larger clusters [39-41] and proteins [42, 43]. We
will provide a novel explanation for such switching in terms of the competition between
the potential force and the internal centrifugal force.

This report is organized as follows. In Sec. 2, after introducing the model system, the
six-atom Morse cluster, we present how the structural transition dynamics of the cluster
is coarsely characterized by the gyration radii. In Sec. 3, we introduce the principal-axis
hyperspherical coordinates, and derive general equations of motion for the gyration radii
of isolated n-atom systems. By averaging these equations of motion for the gyration radii,
the competition between a kinematic force and the potential force is characterized in Sec.
4. Mechanism of switching of structural preference of the cluster is explained in terms of
a dynamic barrier. The report concludes in Sec. 5 with some remarks regarding future
studies.

2 Collective Variables in Structural Transition Dy-
namics of Clusters

2.1 Model cluster and residence probabilities

We first introduce our prototypal model for the study of molecular conformational tran-
sitions; an atomic cluster composed of six identical atoms that mutually interact through
the pairwise Morse potential, This is called an Mg cluster. The dimensionless Hamiltonian
of the system is given by

H 1, . —2(dy- (g
L DT IS Bl e R P &
€ i=1 i<j ,

where r,; (i =1,.-.,6) is the three-dimensional position vector of the atom i. The

subscript s represents the quantity with respect to the space-fixed frame. (This rule is
also applied to other quantities.) The dot over r,; represents the time derivative. All the
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Figure 1: (a) Isomerization scheme of the six-atom Morse cluster. The cluster has two ge-
ometrically distinct isomers, OCT and CTBP. The potential energy curve along the steepest
descent path connecting the saddle point and the two potential minima is shown. (b) Energy
dependence of the residence probabilities of the Mg cluster in the two isomers. Open squares
represent the residence probability for the OCT isomer, while the open triangles represent the
residence probability for the CTBP isomer.

masses of the atoms are set to unity, m; =1 ( = 1,---,6). The parameter ¢ represents
the depth of the Morse potential and d;; is the inter-particle distance between atom i and
atom j. The parameter dy, which corresponds to the equilibrium distance of the pairwise
Morse potential, is set to dp = 6.0. This provides a potential topography similar to that
of the Lennard-Jones potential [37]. Therefore, this system can be regarded as a model
of the Arg cluster. Since the main interest of this study is in the internal dynamics of
polyatomic systems, the total angular momentum of the system is assumed to be zero
throughout the report. In what follows, our numerical results are presented in absolute
units.

The isomerization (structural transition) scheme of the Mg cluster is shown in Fig.
1(a). This cluster has two geometrically distinct isomers: One is the regular octahedron
(OCT) and the other is the capped trigonal bipyramid (CTBP) [36-38]. The potential
energy minimum of the OCT isomer is V = —12.49¢, and that of the CTBP isomer is
V = -12.13¢. These two isomers are connected through a saddle point whose potential
energy is V = ~11.83¢. In Fig. 1(a), the potential energy topography along the steepest
descent path is shown. The horizontal axis is the arc-length of the path in the space of
gyration radii, which will be introduced later. Note that the OCT isomer has a highly
symmetric spherical structure with a deep potential well, while the CTBP isomer has an
elongated (collapsed) structure with a shallow potential well.

In this study, we employ a microcanonical, constant energy simulation. When the
total energy of the cluster is higher than that of the saddle point, the isomerization
reaction between the two isomers is energetically possible. Occurrence of the structural
isomerization reaction is detected by the quenching method [36], which solves the first
order equations, dr,;/dT = —8V /0r,;, at each instant until the system arrives at one of
the minima on the potential energy surface. The parameter 7 is arbitrary. With this
method, every point along a classical trajectory is attributed to one of the two isomers
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except for the saddle points.

Fig. 1(b) shows the energy dependence of the percentages of the total residence times
in the two isomer wells obtained through a long-time simulation. These are essentially
the probabilities of finding the system in the respective configurations. In the low energy
range, the Mg cluster spends more time in the OCT isomer than in the CTBP isomer.
This is understandable from the view point of the potential energy topography since
the potential well of the OCT isomer is much deeper than that of CTBP as shown in
Fig. 1(a). However, as energy increases, the structural preference of the cluster switches
dramatically, and the system prefers to be in the CTBP isomer than in the OCT. In
this high energy range, the potential energy curve in Fig. 1(a) is obviously not sufficient
for explaining residence probabilities. In this report, we will present the mechanism of
the switching of structural preference observed in Fig. 1(b) in terms of the effect of a
dynamical and geometrical force that often counteracts with the potential force.

2.2 Coarse dynamics of gyration radii

Here, we coarsely characterize the structural transition dynamics of the Mg cluster using
the three gyration radii, our collective variables. For generality, we consider an n-atom
molecule whose constituent atoms have masses m; (i =1,---,n). After eliminating the
overall translational degrees of freedom of the molecule via the mass-weighted Jacobi
vectors,

Psi =

Mers Sy (_Z_:El_ﬂzk_u ) (=1-m-1), (@

: : — Ts(i+1)
22111 M 2 k=1 Mk
the singular-value decomposition theorem [44] can be applied to decompose the 3x (n — 1)-
dimensional matrix W, = (ps1 - - - Ps(n-1)) into the product of the three matrices

W, = RNU7, 3
where R = (e;eze;3), and
fa O 0|0 --- 0
N = 0 ap 0|0 --- 0 |=}| A|O |, (4)
0 0 a3|0 --- 0
U = (U1UQU3lU4"'Un_1)E(PlQ). (5)

The symbol T on the matrix U in Eq. (3) indicates the matrix transpose. The matrix R
is a 3 x 3 orthogonal matrix (SO(3)), whose column vectors, e;, e;, €3, are orthogonal and
normalized. The matrix N is a 3 x (n — 1) diagonal matrix, which is split up into the left
3 x 3 diagonal matrix A and the right 3 x (n —4) zero matrix O for later use. The diagonal
elements (singular values), a,,az, ag, are the gyration radii, which are the key quantities
of this study. Although there are many alternative definitions for the Jacobi vectors,
gyration radii are independent of the choice of Jacobi vectors. They are non-negative and
ordered according to a; > az > agz > 0. The matrix U is an (n — 1) x (n — 1) orthogonal
matrix (SO(n — 1)), whose column vectors, uy, - - - , Un—1, are orthogonal and normalized.
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Figure 2: (a) Typical time evolution of the three gyration radii a;, a2, and a3 (a1 = a2 > a3) of
the Mg cluster at total energy E = —11.0¢. The cluster quenches to the OCT isomer from t = 0
to ¢ = 468 and from ¢ = 884 to ¢ = 1200, while the cluster is quenched to the CTBP isomer
from t = 468 to t = 884. (b) The same trajectory as in (a) projected onto the three-dimensional
space of gyration radii. The two trapping regions correspond to the two isomers, OCT (solid
line) and CTBP (dashed line).

The matrix U is split up into the left (n — 1) x 3 matrix P and the right (n — 1) x (n — 4)
matrix Q for later convenience.

The physical meaning of the decomposition Eq. (3) is as follows. It is shown that
the matrix R coincides with the principal axis frame, which specifies the instantaneous
orientation of the system, while N and U determine the internal structure (size and sym-
metry) of the system. Gyration radii, a;, as,as, are the measure of the mass-weighted
length of the system along the respective principal axes. They essentially character-
ize the mass distribution, and are related to the principal moments of inertia, M;, Mp,
and My (M3 > Mz > M; > 0), by M; = a3 + a3, M, = a} +a?, M; = a? + d2.
The values of the gyration radii of the Mg cluster at the potential minimum of the
OCT isomer are (ay,as,a3) = (5.97,5.97,5.97), while those of the CTBP isomer are
(a1,as,a3) = (8.19,5.89,4.27). The coincidence of the three gyration radii at the OCT
structure indicates that it has isotropic mass distribution (spherical top). The CTBP
structure has an asymmetric mass distribution.

Fig. 2(a) shows a typical time evolution of the three gyration radii of the Mg cluster at
total energy E' = —11.0e. In the time period of Fig. 2(a), the system first transited from
the OCT isomer to the CTBP isomer. After a while it returned back to the OCT isomer.
The isomerization reaction is clearly marked by the change of the three gyration radii.
In each isomer, the three gyration radii take values close to those at the corresponding
potential minimum. Fig. 2(b) shows the same trajectory as in Fig. 2(a) projected onto the
three-dimensional space of gyration radii, which captures the changes of mass distribution
of the system. In Fig. 2(b), the two regions corresponding to the OCT isomer and the
CTBP isomer are distinguished. Both of the two regions are small when the total energy
is low. As the total energy increases, the two regions become larger. The essential fact
is that certain regions of the three-dimensional space of gyration radii and certain isomer
wells of the cluster have good one-to-one correspondence. Therefore, the transition of the



90

trajectory in the three-dimensional space of gyration radii from one region to the other
is indicative of a structural change of the full system. This is the most vital condition
for the three gyration radii to be good collective variables. In general, gyration radii can
characterize structural transitions of a molecule in this way as long as the system changes
its mass distribution significantly through the transitions.

The number of total internal degrees of freedom of the Mg cluster is twelve. Therefore
nine other internal degrees of freedom are “hidden” behind the dynamics in Fig. 2(b).
If these hidden degrees of freedom can be regarded as “bath” modes, one can think of
a closed dynamical system in terms of only the three gyration radii. If this is the case,
one will be able to extract essential information about the structural transition of the
full system from the low-dimensional dynamics of gyration radii. These are the main
issues of this report in the following sections, where we will finally extract an effective
barrier structure that separates the different isomer regions as in Fig. 2(b). These barrier
structures will in turn explain the true dynamical stability of the respective isomers.

3 Equations of Motion for the Collective Variables

3.1 Kinetic energy of an n-atom molecule in the hyperspherical
coordinates

The goal of this section is to derive classical equations of motion for the gyration radii, our
collective variables, using the principal-axis hyperspherical coordinates. For this purpose,
we first present the general expression for the total kinetic energy of an n-atom molecule,
such as Eq. (27) and Eq. (29), in this subsection.

Let a matrix R € SO(3) be a body (body-fixed) frame. Since the Jacobi vectors with
respect to the body frame p; (i =1, .- ,n — 1) are related to the Jacobi vectors with
respect to the space-fixed frame p,; (1 =1,---,n — 1) by ps = Rpi, the time-derivative
of p,; can be expressed as . _
Psi = Rp; + Rp;. (6)
Similarly, the total angular momentum with respect to the space-fixed frame L, and that
with respect to the body frame L are related by L, = RL. Since

n—1
L,= Zpsi X Psiy (7)
=1
L can be expressed as
n-1 n-1
L=RTY puxpu=M2+3 p;x pi. | (8)
fam] i=1

The matrix M in Eq. (8) is the moment of inertia tensor with respect to the body frame,
whose components are defined by

n-1

Mag =Y [(pi " Pi) bap — piapis) (9)

i=]
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where a and 8 (a,8 = 1,2,3) represent the axes of the body frame and J,g4 is the
Kronecker delta. The vector 2 = (24, 02, 23)7 in Eq. (8) is the angular velocity with
respect to the body frame whose components are defined through the anti-symmetric

matrix,
' 0 -9
RIR=| Q3 0 -0, |. (10)
- 0
The kinetic energy of the system in a space fixed frame is given by

n n-1
1 . 1 .
K=*2'Zmi("'si'1‘ai)=‘2'zpai'f’u‘- (11)
=1 i=1
After applying Eq. (6) to Eq. (11), it can be expressed in terms of the body-frame

quantities as
1 n—1

n-1

EQTMQ*'QT;FH X lji+';'i2=1:lji'ﬁi~ (12)

Now we reformulate the kinetic energy of Eq. (12) in terms of the principal-axis
hyperspherical coordinates. In what follows, we identify the body frame R in the above
argument with the principal-axis frame R introduced in Eq. (3). Correspondingly, the
angular velocity vector €2, the moment of inertia tensor M, and the Jacobi vectors {p;}
in Eq. (12) are all regarded as the ones with respect to the principal-axis frame.

The second term of Eq. (12) can be reformulated as follows. Based on Eq. (3), the
Jacobi vectors {p;} with respect to the principal-axis frame are expressed collectively in
a matrix form as

K=

(1 pn1) =NUT =W, (13)
where the 3 x (n — 1) matrix W is a body-frame counterpart of W, of Eq. (3). By using
W, the components of 3"7=! p; x g; = (€1, &2, &s)7 are given by

0 -& & . ) i
( & 0 =& ) = WWT — WWT = —2APTPA, (14)
=§ & 0

where A and P are the sub-matrices defined in Eq. (4) and in Eq. (5). After introducing
quasivelocity components

il..--u,-=-u,~-ti.,- = wi; (i,j=1,2,3, Z#J), (15)

the anti-symmetric matrix PTP can be expressed as
) 0 -w2 wsy .
PTP=| was 0 -—wy |. (16)
~ws wyy 0

By substituting Eq. (16) into Eq. (14) and comparing the leftmost part with the rightmost
part of Eq. (14), we obtain

&1 = —2aza3w23, §2 = —2aza1w31, €3 = —2a1a2wW12. (17)
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These formulas allow us to express the second term on the right hand side of Eq. (12)
finally as

n—1

o E pi X Pi = —2a9003wes — 2a3a: w3y — 2a;1a2803wi2 (18)
i=1

= 0TBw, (19)

where the following two matrices are introduced for notational compactness:

—2asa3 0 0 Wa3
B= 0 —-2a3a1 0 y W= Wil . (20)
0 0 —2a;02 w12 .

Similarly, the third term in the right hand side of Eq. (12) can also be reformulated
using the matrix W of Eq. (13) as

1% e = e (i) | (21)
=1
_ %fn (AAT) + 2T (ABTPPTRA) + STr (ABTQQTRA),  (22)

where Tr(-) represents the trace of a matrix and where A, P, and Q are the matrices
defined in Eq. (4) and in Eq. (5). After introducing the quasivelocity components,

ﬂi-uj=—ui-aj5'y;,- (i=1,2,3, j=4,-~,n——1), (23)
the (n — 4) x 3 matrix QTP in Eq. (22) can be expressed as

) Y4 Y24 Y34
QTP = : : : =lm v v |, (24)

Y(n-1) Y2(n-1) 7Y3(n-1)

where we have introduced the (n — 4)-dimensional column vectors «; (¢ = 1,2,3). By

applying Eq. (16) and Eq. (24) to Eq. (22), we obtain the final expression for the third
term of Eq. (12) as

182, . 1,0, .2 .2y . L a,
‘Z'EPVPi = -2-(a§+a§+a§)+§(M1w§3+M2w§1+M3w§2)

i=1

1 n—-1 1 n—1 1 n—-1 '
+‘2'0'§ Tk + 5“3 Z’ng + 50% Z‘ng, (25)
k=4 k=4 k=4
1. . 17 1y T 2
= 5a-a+§w Mw+§§:'y¢ ai i, (26)

i=1

where @ = (a;,a3,a3)7, and M is the moment of inertia tensor with respect to the
principal-axis frame.
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Substituting Eq. (19) and Eq. (26) into Eq. (12), we obtain the desired general
expression for the total kinetic energy of an n-atom molecule as

_ 138
K= %n’-"mn +QTBw + -;-a a+ -;—wTMw +35 ;1? a?i, (27)
which is essentially the same as the one given by Eckart [20] and by Chapuisat et al.
[21]. Introduction of the quasi-velocities, w and ~;, has been crucial in making this a
compact expression; in it, the (3n — 6) internal degrees of freedom are represented by
the three gyration radii and the (3n — 9) quasivelocity components. These quasiveloci-
ties are essentially the “angular velocities” of kinematic (or democratic) rotations, which
are continuous shape changes associated with the permutations (relabellings) among the
constituent atoms [23-28]. They should be distinguished from the angular velocity of the
principal-axis frame .

3.2 Equations of motion for gyration radii under the conditions
of vanishing total angular momentum

We next investigate the equations of motion for the three gyration radii, a,, az, and ag,

under the conditions of zero total angular momentum. Since the total angular momentum
with respect to the body frame is given by

L = MQ + Bw, (28)

after using Eq. (8) and Eq. (19), the total kinetic energy can be expressed as follows
after applying Eq. (28) to Eq. (27),

1, 1
_a.a+_

K]
~ 1
T - z T o2~
) 2w Mw + ) - ’Yg a¢7‘n (29)

K = -;—LTM‘IL +

where we have introduced a diagonal matrix,

a3—a3 2
g(_aaw% o 0 |
M=M-BMB= R = 0 (30)
- a3+a? )

3_,2)3

a1-a3

0 O T
The expression of Eq. (29) is important from the gauge-theoretical point of view [19]:
Each term of Eq. (29) is independent of the choice of body frame, while the kinetic energy
expression of Eq. (27) is specific to the principal-axis choice of body frame. By applying
the zero angular momentum condition, L = 0, to Eq. (29), we obtain the purely internal
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kinetic energy,

1 1 '
K = §a a+§wTMw+ §;7 iy, (31)
ol 9 2 (01"0'2) o , (af— as) (a3 - )
- 2(“1“2*“3)*‘2_<a‘%+“a%“>°"”+2( T+ ad ”+2<a3+ a3y

+5 a1271k+2‘122‘72k+ asZ’Ysk (32)

k=4 k=4

At this point, it is important to note that the mass metric components for a?,a2, and
a2 are all equal to unity. This means that the three-dimensional space of gyration radii
such as Fig. 2(b) is Euclidean even though the (3n — 6)-dimensional full internal space
is non-Euclidean. This will be of great advantage in the following discussions in reducing
the full dynamics of a molecule to the three-dimensional space of gyration radii.

By using the internal kinetic energy Eq. (32), the Lagrangian for the n-atom molecule
with vanishing total angular momentum is given by £ = K — V. Recall that for our study
of isolated molecules the potential energy V is a function only of the internal degrees of
freedom. The Euler-Lagrange equations for the gyration radii can be written as

. ay (a? +3a3) (a? —a2) , = a1 (a? + 3ad) (a? —a?) , iy oV
a wiy + wi +a E -—,(33
‘ (+a)’ FErI AP DL
n-1
. az (a2 + 3a?) (a2 - al) 2 az (a3 + 3a2) (a2 — a?) , ov
a; = 1+ wi +a E (34
2 (a2 + a?)° (a2 + a2)’ BT = "ot = o)
. as (as + 3 a a2 + 3a?) (a
s 3 (a3 0'2)(3 a3) 2+ as (a3 )(3 W +ag 273'6— (35)
(a3 + %) (a3 + a'l) k=4

The left hand sides of these equations are the components of acceleration in the three-
dimensional space of gyration radii. The right hand sides are physically the forces in
this space. While the fourth terms on the right hand sides of Egs. (33)-(35) represent
the force that originates from the potential energy function, the first three terms on the
right hand sides of these equations represent a dynamic (kinematic) force that originates
from the dynamical coupling of gyration radii with the kinematic-rotation modes. All
of these dynamic force terms are quadratic in the quasivelocity components, w;; and .
Therefore, these terms essentially represent the internal centrifugal force arising from the
kmema.tlc rotations. It has been shown that the internal centrifugal terms proportional
to w? i; arise in the three- and four-atom dynamics [32]. But the internal centrifugal force
terms proportional to 42, are intrinsic to systems with more than four-atom systems in
the three-dimensional physical space. As the number of atoms increases, the number of
the terms proportional to 72, increases.

While the force arising from the potential function is dependent on the system, the
internal centrifugal force terms in Egs. (33)-(35) are common to the dynamics of general
n-atom molecules. Therefore it is quite interesting to explore the essential properties
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of this kinematic force. The internal centrifugal force terms proportional to w? have
an effect of breaking the symmetry of mass distribution of the n-atom molecule. This
property can be understood by noting the sign of the corresponding terms in Egs. (33)-
(35): Since a; > a2 > a3 > 0 holds by definition, the first and the second terms in Eq.
(33) are always positive or zero. This means that these terms have a persistent effect of
enlarging the largest gyration radius a;. On the other hand, by similar arguments, the
first and the second terms in Eq. (35) are always negative or zero. These terms will
therefore persistently diminish the smallest gyration radius as. Finally, the first term
of Eq. (34) is negative or zero and the second term of Eq. (34) is positive or zero.
Therefore, the force can act both positively and negatively for-a,. Since the gyration
radii are the measure of the mass-weighted size of the system along the principal axes,
these properties of the internal centrifugal force indicate that a molecule is always forced
to elongate in the most massive direction and to collapse in the least massive direction.
The terms proportional to 7 in Egs. (33)-(35) are always positive. Therefore, these have
an effect of inflating the molecule in all three principal axis directions. It is expected that
the inflating effect becomes greater as the number of atoms increase since the number of
the terms proportional to v} increases.

The internal centrifugal force discussed above have similarities to those of the normal
centrifugal force. However the origins of the internal centrifugal force and the normal cen-
trifugal force are different. The normal centrifugal force is associated with the non-zero
total angular momentum, and is thereby absent in the system with zero total angular
momentum. On the other hand, the internal centrifugal force of this study is associated
with the kinematic rotations and can arise even in the dynamics with zero angular mo-
mentum. That is, the internal centrifugal force is essentially a dynamical force induced
by molecular vibrations themselves. In the next section, we scrutinize the competition
between this kind of dynamical force and the ordinary potential force.

4 Dynamics of Collective Variables: Competition be-
tween Dynamic Force and Potential Force

4.1 Distinction between collective variables and “bath” modes

In this section, we scrutinize the low dimensional dynamics of gyration radii on the basis
of the equations of motion presented in the previous section and numerical experiments.
Competition between the internal centrifugal force and the potential force is highlighted.

We first clarify the distinction between collective variables and “bath” modes. Fig. 3
shows the typical txme evolution of (a) the gyration radii a;, az, and ag, (b) the squares of
the quasivelocities w;, (c) 72 = ¥4 + 7% (¢ = 1,2, 3) at total energy F = —10.0e. During
the time interval of Fig. 3, the cluster had undergone isomerization from the OCT isomer
to the CTBP isomer once. In Fig. 3, we see that the three gyration radii, a;, a3, and
a3, change slowly and smoothly, in contrast to the internal quasivelocity components, w?
and 42, which oscillate rapidly and sharply. This result supports the ansatz that the
gyration radii can be considered as slow variables while other internal modes behave like
“bath” modes. The rapid oscillations of the quasivelocities induce the rapid oscillations
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Figure 3: Typical time evolution of (a) the three gyration radii a;, az, and as, (b) the squares of
the quasivelocities, w?, w25, wd, (c) v%,72,73 at total energy E = —10.0e. The system quenches
to OCT from t = 0 to t = 21.5, and to CTBP from ¢t = 21.5 to t = 50.

of the internal centrifugal force in the dynamics of gyration radii. This result justifies
our strategy of averaging the rapid oscillations of the forces in Egs. (33)-(35) to deduce
effective force fields that the gyration radii “feel” as will be shown in the next subsection.

We next present another dynamical evidence that gyration radii play a predominant
role over other hyperangular variables in the large-amplitude motions of the cluster. Open
squares in Fig. 4(a) represent average kinetic energies in the 12 internal modes of the Mg
cluster when the cluster is in the OCT isomer. Here, each term in Eq. (32) represents
the kinetic energy in each mode. Open circles represent the similar average kinetic energy
distribution when the system is in the CTBP isomer. The total internal energy of the
cluster is E = —10.0e. It is evident that the kinetic energy is partitioned equally among
the 12 internal modes in both the OCT and CTBP isomers. That is, kinetic energy is
equipartitioned among all the internal modes when the cluster is in each of the two isomer.
On the other hand, Fig. 4(b) shows the kinetic energy distribution among internal modes
averaged over reactive trajectories. As opposed to Fig. 4(a), we see that kinetic energy
is not equipartitioned, but the a; and a; modes have markedly (about 1.5 ~ 2 times)
more kinetic energy than other internal modes. Note that the kinetic energy distribution
is almost the same for the reaction from OCT to CTBP and the reverse reaction from
CTBP to OCT. This is due to time reversal symmetry of the system. The result of Fig.
4(b) indicates that the two gyration radii a; and a3z must acquire more kinetic energy
than other internal degrees of freedom for both the forward and backward reaction. This
clearly shows that the gyration radii play a predominant role over other internal variables
in the large-amplitude motion.

4.2 Characterization of the potential force and the mternal cen-
trifugal force via averaging

Based on the results in the previous subsection, we regard the three gyration radii as
predominant collective variables (reaction coordinates), and all other hyperangular modes
are regarded as “bath” modes in this study. For the understanding of the mechanism
of structural transition of the cluster, the next important step is to characterize the
competition between the internal centrifugal force and the potential force in the dynamics
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Figure 4: (a) Open squares represent the average kinetic energies distributed into the 12 internal
modes of the Mg cluster when the system is in the OCT isomer. Open circles represent the
average kinetic energies distributed among the 12 internal modes when the system is in the
CTBP conformation. (b) Average kinetic energies partitioned by the 12 internal modes over
reactive trajectories. Open squares correspond to the reaction from OCT to CTBP, and open
circles correspond to the reaction from CTBP to OCT.

of gyration radii. We here deduce an averaged field of the internal centrifugal force and
that of the potential force numerically along a one-dimensional reaction path introduced
in the space of gyration radii. The reaction path is determined by directly averaging the
trajectories in the space of gyration radii as in Fig. 2(b) in the following way: First, the
trajectories are averaged in terms of the a; and az components with a, fixed to different
values. We then obtain representative (averaged) points for respective a; values. These
representative points are connected successively to obtain a single path.

The internal centrifugal force and the potential force can now be characterized along
the averaged reaction path. Since these two forces oscillate rapidly as compared with
the time scale of variation of gyration radii as a result of the rapid oscillations of the
hyperangular variables (see Fig. 3 and Ref. [35)), it is reasonable to average out the time-
dependence of these forces in the dynamics of gyration radii. In Fig. 5, shown with arrows
are (a) the averaged field of the internal centrifugal force (the sum of the first three terms
on the right hand sides of Egs. (33)-(35)), and (b) that of the potential force (the fourth
terms on the right hand sides of Eqs. (33)-(35)) along the reaction path at total energy
E = —10.0¢. In the figures, the averaged reaction path is shown by the thin broken curve.
The averaged field of internal centrifugal force is roughly directed from the region of the
OCT isomer to that of the CTBP isomer. Furthermore, the internal centrifugal force is
stronger in the OCT region than in the CTBP region. This indicates that the internal
centrifugal force strongly “pushes” the system from the OCT region to the CTBP region.
On the other hand, the averaged potential force field along the reaction path in Fig. 5(b)
exhibits a change in direction, roughly pointing, locally, to both points corresponding to
the potential minima of the OCT and the CTBP isomer. In other words, the potential
force is directed towards the minima of the potential wells in the reduced space of gyration
radii as is naturally expected. Thus, the averaged potential force works to keep the internal

- mass distribution of the cluster close to that of each potential minimum structure, while
the averaged internal centrifugal force has a persistent tendency to bring the system mass
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Figure 5: Averaged field of the internal centrifugal force (Panel (a)) and that of the potential
force (Panel (b)) along the reaction path at E = —10.0e. The thin broken lines in the two figures
constitute the averaged reaction path at E = —10.0e. The arrows represent the directionality
and the magnitude of respective forces at each point along the reaction path. The thick solid
curve is the projection of the steepest descent path onto the space for comparison.

distribution from that of the OCT isomer to that of the CTBP isomer.

4.3 Characterization of a dynamic barrier for reaction

The results in Fig. 5(a) indicate that the internal centrifugal force can be a dynamic
driving force for the reaction from OCT to CTBP, while it can be a dynamic barrier for
the reaction from CTBP to OCT. This, in turn, indicates that an extra amount of “work”
may be needed in order for the vibrating cluster to change its gyration radii in addition to
the work necessary to overcome the potential forces. Here, we quantify these two works
by considering the line integrals of the two forces along the reaction path. This procedure
gives a possible rationalization for the energy-dependent switching of the favored mass
distribution of the Mg cluster presented in Fig. 1(b).

In Fig. 6, the upper three panels show the probability distributions along the reaction
paths for different energies, (a) E = —11.2¢, (b) E = —10.0¢, and (c) £ = —8.5¢. The
horizontal axis of each of these figures is the arc-length along each reaction path in the
space of gyration radii, which serves as the reaction coordinate. The left part (the short
arc-length part) of each figure corresponds to the region of the OCT isomer, while the
right part corresponds to the region of the CTBP isomer. Since the reaction path becomes
longer as the total energy increases, the width of these panels increases from (a) to (c). In
each panel, two peaks are observed in the probability distribution, the left one of which
corresponds to the OCT isomer while the right one corresponds to the CTBP isomer. At
low total energy (Fig. 6(a)), the left peak is higher than the right peak. This indicates
that the system prefers to be in the mass distribution of the OCT isomer than that of
CTBP. On the other hand, as the total energy increases (Fig. 6(b) and (c)), the left
peak is lowered and the right peak becomes higher. In other words, the preferable mass
distribution of the cluster switches from that of the OCT isomer to that of the CTBP
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Figure 6: The upper three panels represent the probability distribution along the reaction
coordinates introduced at total energy (a) E = —11.2¢, (b) F = —10.0¢, and (c) E = —8.5¢.
The lower three panels represent the corresponding reconstructed potential energy Voot (dotted
line), and the superposed potential Vjot+cent (80lid line) along the reaction coordinates.

isomer. In this way, the switching of the structural preference observed in Fig. 1(b) is
characterized in terms of the reaction paths. This kind of switching in the probability
distribution is analogous to first-order-like phase transitions observed in clusters [39-41]
and polymers [42, 43].

Now, the mechanism of the switching to the favored isomer can be rationalized in terms
of the “work” necessary to bring the system against the averaged force fields obtained in
Figs. 5(a) and (b). The line integral of the negative of the averaged potential force field
((foot,1) » {foot,2) » {fpot,3)) along the reaction path gives a reconstructed potential energy
curve Vo 88

3
Voot = "/ Z <fpot,i) da;. (36)
path ;=
We carried out this line integral numerically starting at one of the end points of the
reaction path, where the a; is the smallest. Since the absolute value of the potential
energy is arbitrary, we set Vo to zero at the starting point of the line integral. The
potential V., is essentially the reduced potential energy curve that the gyration radii feel
along the reaction coordinate. In the lower three panels of Fig. 6, Vyot is shown for the
three representative total energy values, E = —11.2¢,—10.0¢, and —8.5¢, with dotted
curves. The essential topography of V., does not change significantly depending on the
total energy. That is, Vj always has two wells. The left well corresponds to the OCT
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isomer while the right one corresponds to the CTBP isomer. The well for the OCT isomer
is always much deeper than that for the CTBP isomer. The potential V}; resembles the
original potential energy curve along the steepest descent path shown in Fig. 1(a). The
curve of Vpet is obviously not sufficient for explaining the energy-dependent change of the
probability distribution along the reaction paths shown in the upper panels of Fig. 6.
We next superpose the effect of the internal centrifugal force over that of the potential
curve Viot. Similarly to Eq. (36), a superposed line integral of the averaged potential
force and the averaged internal centrifugal force ({feent,1) , {feent,2) » (feent,3)) is introduced
as .

3 v
Vooromt = = [ 3 (U + {fomt ) da. (37)
_ path ;_;

The solid curves in the lower three panels of Fig. 6 are the superposed energy Viot+cent-
Similarly to the curve of Vj, this energy curve Vit cent sShows two wells corresponding to
the two isomers. However, the topography of Vgi+cent changes dramatically depending on
the total energy of the system. At low total energy, E = —11.2¢, the left well of Vjot+cent,
which corresponds to the OCT isomer, is deeper than the right well that corresponds to
the CTBP isomer. As the total energy increases, the left well gets shallower while the right
well gets deeper. This is because the effect of the internal centrifugal force becomes more
significant as the total energy of the dynamics increases, while the potential curve Vj
does not change significantly. Note that the internal centrifugal force has the directionality
to “push” the system from the OCT region to the CTBP region as confirmed in Fig.
5(a). In this way, the OCT isomer becomes less stable dynamically while the CTBP
isomer becomes more preferred as total energy increases. This dramatic change of the
- superposed energy curve Vpgiicent €xplains the change of the probability distribution in
the upper panels of Fig. 6 fairly well. To summarize, the predominance of the OCT
isomer at low energy is mainly supported by the predominance of the potential force,
while the predominance of the CTBP isomer at high energy is mainly supported by the
predominance of the internal centrifugal force.

5 Summary and Outlook

By taking up the structural transition dynamics of a six-atom cluster as an illustrative
example, we have presented a general methodology to elucidate the mechanism for large-
amplitude collective motions of molecules with many degrees of freedom in terms of the
reduced dynamics of the three molecular gyration radii. Based on the framework of
geometric mechanics, we have first separated the three rotational degrees of freedom and
the (3n — 6) internal degrees of freedom of an n-atom system. Then we have applied the
principal-axis hyperspherical coordinates to further decompose the total (3n — 6) internal
degrees of freedom into the three gyration radii and the (3n — 9) hyperangular modes.
The three gyration radii are regarded as slow and collective variables, while the remaining
hyperangular variables are regarded as “bath” modes. This classification of variables into
collective and “bath” variables has been supported by the numerical observations on time
scale separation and kinetic energy partitioning. The time scale separation has justified
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our strategy to average out the hyperangular variables from the equations of motion for
the three gyration radii, our collective variables.

We have scrutinized the averaged equations of motion for the gyration radii to reveal
the mechanism of competition between a kinematic force and the potential force in the
large-amplitude motions of the cluster. The kinematic force is identified as an internal
centrifugal force that arises from the dynamical coupling of gyration radii with the hyper-
angular modes via the intrinsic non-Euclidean metric of the internal space. This internal
centrifugal force has the remarkable effect of elongating and inflating the mass distribu-
‘tion of the system. These effects often counteract the effect of the potential force, which
generally serves to keep the mass distribution of the system symmetric and compact. Via
the competition between these two forces, the most preferable conformation of the system
is determined.

While the potential function is specific to the system of interest, the kinetic energy
expressions such as Eq. (29) and Eq. (32) are common to general n-atom molecules.
Therefore the internal centrifugal force terms in Eqs. (33)-(35) also arise ubiquitously
in the dynamics of general n-atom molecules. From this reason, the elongation and the
inflation effects of the internal centrifugal force should be of general importance in a wide
class of molecular reactions, where the system significantly changes its mass distribution.
For example, because of the directionality of this force, its roles should be important in
dissociation and recombination reactions.

It is an interesting next step to elucidate the phase space structure that mediates the
low-dimensional dynamics of gyration radii. Recently, the dynamical systems approach
has provided a mathematical basis for the study of non-statistical reaction processes of
molecules [45-49]. Since the high-dimensional nature of phase space has often prevented
from applying the dynamical systems approach to molecular reactions, our strategy to
focus on the low-dimensional dynamics of gyration radii should be very useful. The phase
space structure of the reduced dynamics of molecular gyration radii will be scrutinized in
our future publications. We also plan to extend the present methodology to the systems in
several different environments: Large-amplitude motions of molecules with non-zero total
angular momentum are an interesting issue for the next step, in which the kinematic
forces such as the (normal) centrifugal force and the Coriolis force also come into play in
addition to the internal centrifugal force of this study. It is also an interesting issue to
extend the present approach to the systems in thermal environments such as biomolecules.
Since the internal centrifugal force has a general tendency to become strong in high energy
(or temperature) range and has an effect of inflating and elongating the system, this force
is naturally expected as a driving force for the unfolding of proteins.

Finally, an important consequence of the present study is that molecular Wbratlons
themselves can induce a dynamical force such as the internal centrifugal force, which can
be a critical driving force for large-amplitude motions.of the system. It would be inter-
esting to note that this kind of dynamic forces are quite analogous to the dynamic forces
that stabilize the inverted pendulum whose suspension point is violently vibrated [50] as
well as the particles in electromagnetic traps [51]. Obviously, the importance of this kind
of dynamical effect has not been fully appreciated in the current reaction-rate theories. In
the current standard reaction-rate theories, molecular reactions are usually regarded as
an event in which a system surmounts a barrier of (Born-Oppenheimer) potential energy
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along a certain reaction coordinate. However, the result of the present study and another
recent one [52] suggest that dynamic forces, such as the internal centrifugal force, modify
the original potential energy barrier significantly and induces another dynamical barrier
for reactions. Thus, in order to improve the current reaction-rate theories, it would be
very important to take into consideration not only the static potential energy barriers
but also such dynamic barriers. This kind of dynamic barriers should definitely shed new
light on the conventional picture of molecular reactions.
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