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1 Introduction
All spaces in this note are metric spaces and maps are continuous functions. Let

$f$ : $Xarrow X$ be a map of a compactum $X$ . We say that $f$ is positively $e\varphi ansive$ ([12]) if
there is an admissible metric $d$ for $X$ and a positive number $c>0$ such that if $x,$ $y\in X$

and $x\neq y$ , then there is a natural number $n\geq 0$ such that $d(f^{n}(x), f^{n}(y))>c$. Note
that this property is independent of the choioe of metrics for $X$ . We say that $f$ is a
Rudle ezpanding map ([14]) if $f$ is positively expansive and an open onto map. Note
that by invariance of domain in $n$ -manifolds, if $f$ : $Marrow M$ is a positively expansive
map, then $f$ is a Ruelle expanding map. We say that $fe\varphi ands$ small distances if there
is an admissible metric $d$ for $X$ and $\epsilon>0$ and $\lambda>1$ such that if $0<d(x, y)\leq\epsilon$ , then
$d(f(x), f(y))>\lambda d(x,y)$ . In this case, we say that $f$ : (X, $d$) $arrow(X,d)$ expands small
distances. A map $f$ : $Xarrow X$ increases small distances if there is an admissble metric $d$

for $X$ and $\epsilon>0$ such that if $0<d(x, y)\leq\epsilon$ , then $d(f(x), f(y))>d(x, y)$ . The above two
notions are dependent of the choice of metrics for $X$ .

In [12], by use of the Rink’s metrization theorem ([5]), Reddy proved that the following
notions are equivalent:

1. $f:Xarrow X$ is positively expansive.

2. $f$ expands small distances.

3. $f$ increases small distances.

Hence for any onto open map $f$ : $Xarrow X$ , the following notions are equivalent:

1. $f$ is a Ruelle expanding map.

2. $f$ expands small distances.

3. $f$ increases small distances.

In this note, we are interested in “metrics” related to expandability of maps and we
investigate more precise expandability of maps as follows. We say that $fe\varphi ands$ stnctly
small distances with an $e\varphi anding$ ratio $\lambda>1$ if there is an admissible metric $d$ for $X$ and a
positive number $\epsilon>0$ such that if $x,y\in X$ and $d(x,y)\leq\epsilon$ , then $d(f(x), f(y))=\lambda d(x,y)$ .
In this case, we say that $f$ : (X, $d$) $arrow(X, d)$ expands strictly small distances with an
expanding ratio $\lambda>1$ . Let $\mathbb{R}$ denote the real line, and let $N$ be the set of all natural
numbers and $\mathbb{Z}$ the set of all integers.
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Example 1.1. Let $L$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ be a linear map such that $L(\mathbb{Z}^{\mathfrak{n}})\subset \mathbb{Z}^{n}$ and I $\lambda_{i}|>1$ ,
$|\lambda_{i}|\neq|\lambda_{j}|(i\neq j)$ for eigenvdues $\lambda_{i}(i=1,2, \ldots,n)$ of L. If $f$ : $T^{\mathfrak{n}}arrow T^{n}$ is the
map of the n-dimensiond torus $T^{n}$ induced by $L$ , then for the Euclidean metric $\rho$ for
$T^{n},$ $f$ : $(T^{n}, \rho)arrow(T^{n}, \rho)$ eqands small distances, but it does not expand strictly small
distances with a common expanding ratio.

In this note, by use of the Alexandroff-Urysohn’s metrization theorem we obtain the
following theorem which is a more precise result in case of Ruelle expanding maps: If
$f$ : $Xarrow X$ is a Ruelle expanding map of a compactum $X$ and any positive number $s>1$ ,
then there exists an admissible metric $d$ for $X$ and positive numbers $\epsilon>0,$ $\lambda(1<\lambda<s)$

such that if $x,y\in X$ and $d(x,y)\leq\epsilon$ , then $d(f(x), f(y))=\lambda d(x,y)$ . For a case of graphs,
we obtain that if $f$ : $Xarrow X$ is a positively expansive map of a graph $X(=1$-dimensional
compact polyhedron), then the same conclusion holds. In these cases, the metrioe $d$ satisfy
the following equality:

$\dim_{H}(X, d)=\underline{D}_{d}(X)=D_{d}(X)=\frac{h(f)}{\log\lambda}$ ,

where $\dim_{H}(X, d),$ $\underline{D}_{d}(X)$ and $D_{d}(X)$ denote the Hausdorff dimension, the lower box-
counting dimension and the upper box-counting dimension of the compact metric space
(X, $d$) and $h(f)$ is the topological entropy of $f$ . This implies that such a metric $d$ is a
“fractal” metric for $X$ . In fact, we can consider that the compact metric space (X, $d$) has
some sort of local self-similarity with respect to the inverse $f^{-1}$ of $f$ and the similarity
ratio $1/\lambda$ . Also, we obtain that if $f$ : $Xarrow X$ is an expanding homeomorphism of a
noncompact metric space $X$ , then there exist an admissible metric $d$ for $X$ and a positive
number $\lambda>1$ such that if $x,y\in X$ , then $d(f(x), f(y))=\lambda d(x, y)$ .

2 Metrics of Ruelle expanding maps
In this section, we need the following terminology and concepts. Let $\mathcal{U}$ and $\mathcal{V}$ be open

covers of a space $X$ . We assume that each element of any open cover of a space is not an
empty set. If $\mathcal{V}$ refines $\mathcal{U}$ , then we denote $V\leq \mathcal{U}$ (e.g. see [9] and [10]). Suppose that
$x\in X$ and $\mathcal{U}$ is an open cover of $X$ . Then we denote

$St(x,\mathcal{U})=\cup\{U\in \mathcal{U}|x\in U\}$ .

We put
$\mathcal{U}^{\Delta}=\{St(x,\mathcal{U})|x\in X\}$ .

An open cover $\mathcal{V}$ of $X$ is a delta-refinement of an open cover $\mathcal{U}$ of $X$ if $V^{A}\leq \mathcal{U}$ . Let
$\{u\}_{i\overline{\sim}1}^{\infty}$ be a sequence of open covers of $X$ . Then $\{\mathcal{U}_{i}\}_{i=1}^{\infty}$ is called a nomal ddta-sequence
(e.g. see [9] and [10]) if $\mathcal{U}_{1+1}$ is a delta-refinement of $\mathcal{U}_{i}(i=1,2, \ldots, )$ . Also, $tu\}_{1=1}^{\infty}$ is
called a development of $X$ if $\{St(x,u)|i=1,2, \ldots, \}$ is a neighborhood base for each point
$x$ of $X$ . The following theorem is well known as the Alexandroff-Urysohn’s metrization
theorem (e.g. see [2], [9] and [10]).
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Theorem 2.1. (the Alexandroff-Urysohn’s metrization theorem [2]) A $T_{1}$ -space $X$ is
metrizable if and only if there exists a sequence $\{\mathcal{U}_{i}\}_{1=1}^{\infty}$ of open covers of $X$ such that
$tu\}_{i=1}^{\infty}$ is a normal delta-sequence and a development of $X$ .

In this section, by use of the construction of the Alexandroff-Urysohn’s metrics we
obtain the theorem which is a more precise result in case of Ruelle expanding maps. For
the proof of Theorem 2.5, we need the following propositions.

Proposition 2.2. Let $X$ be a compactum and let $f$ : $Xarrow X$ be a local embedding. Then
there exists $k\in N$ such that $f$ is at most k-to-l map.

Let (X, $d$) be a metric space and $x\in X$ . Also, let $U_{\epsilon}(x)$ be the $\epsilon$ neighborhood of $x$

in $X$ , i.e., $U_{\epsilon}(x)=\{y\in X|d(y,x)<\epsilon\}$ .
Proposition 2.3. Let $f:Xarrow X$ be a map of a compactum (X, $d$). Suppose that $\mathcal{W}$ is
an open cover of $X$ such that for each $x\in X$ , there $\dot{\varpi s}tsW\in \mathcal{W}$ such that $f^{-1}(x)\subset W$ .
Then there is a positive number $r>0$ such that if $A$ is a subset of $X$ with diam$(A)\leq r$,
then there exists $W\in \mathcal{W}$ with $f^{-1}(A)\subset W$ .
Proposition 2.4. (Reddy [10, p.330, Construction Lemma]) Let (X, $d$) be a compact
metric space and $f$ : $Xarrow X$ a positively expansive map with an $e\varphi ansive$ constant
$c>0$ . Then for each positive number $r<c$, there nists a natuml number $N(r)\in N$ such
that

$r \leq d(x,y)\leq c(x,y\in X)\Rightarrow\max\{d(f^{i}(x), f^{i}(y))|0\leq i\leq N(r)-1\}>c$ .

Theorem 2.5. Let $f$ : $Xarrow X$ be a Ruelle espanding map of a compactum X. For any
$s>1$ , there $\dot{\varpi}st$ an admissible metric $\tilde{d}$ for $X$ and a posiive number $\lambda(s>\lambda>1)$ such
that $f:(X,\tilde{d})arrow(X,\tilde{d})e\varphi ands$ stri ctly small distances wth the $e\varphi anding$ mtio $\lambda$ , that
is, for some $\epsilon>0$,

$\tilde{d}(x,y)\leq\epsilon(x,y\in X)\Rightarrow\tilde{d}(f(x), f(y))=\lambda\tilde{d}(x,y)$.
Generally, we have the following problem.

Problem 2.6. Does Positively $e\varphi ansive$ maps $e\varphi and$ strictly small distances?

In a case of graphs, we obtain the following partial answer to Problem 2.6.

Theorem 2.7. Let $f$ : $Xarrow X$ be a positivdy $e\varphi ansive$ map of a compact connected
graph $X=G$ ($=J$-dimensional compact polyhedron). Then for any $s>1$ , there exist an
admissible metric $\overline{d}$ for $X$ and positive numbers $\epsilon>0,$ $s>\lambda>1$ such that

$\tilde{d}(x,y)\leq\epsilon(x,y\in X)\Rightarrow\tilde{d}(f(x), f(y))=\lambda\overline{d}(x,y)$ .
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3 Expanding homeomorphisms of noncompact met-
ric spaces

In this section, we deal with the case of noncompact metric spaces. We obtain the
following theorem (cf. Example 1.1).

Theorem 3.1. Let (X, $d$) be a (noncompact) metric space. If $f$ : (X, $d$) $arrow(X, d)$ is an
$e\varphi anding$ homeomorphism, that is, there is $\lambda>1$ such that $d(f(x), f(y))\geq\lambda d(x, y)$ for
$x,$ $y\in X$, then for any $s>1$ there is an admissible metric $\tilde{d}$ for $X$ and a positive number
$r(s>r>1)$ such that $f$ : (X, $\tilde{d}$) $arrow(X,\tilde{d})e\varphi ands$ strtctly distances with the $e\varphi anding$

ratio $r$ , that is, for any $x,$ $y\in X$ ,

$\overline{d}(f(x), f(y))=r\tilde{d}(x,y)$ .
Remark 3.2. (Alexandroff-Urysohn’s metrization theorem [7, Theorem 2.16]) It follow\S
that $D$ and $d’$ in the proofofTheorem 3.1 $satis\Phi$ the following condition: For any $x,y\in X$ ,

$\frac{1}{4}D(x,y)\leq d(x,y)\leq D(x,y)$ .

Remark 3.3. There is the following relations between the given metric $d$ of Theorem 3.1
and the metric $d’$ in the proof of Theorem 3.1:

(a) There are $A>0$ and $\alpha>0$ such that if $d(x, y)\geq 1/2$ then

$d(x,y)\leq Ad(x,y)^{\alpha}$ .
(b) There are $B>0$ and $\beta>0$ such that if $d(x;y)<1/2$ then

$d(x, y)\geq Bd(x,y)^{\beta}$ .

4 Topological entropy of Ruelle expanding maps and
upper box-counting dimension

In this section, we study the dynamical property which is related to Ruelle expanding
map, positively expansive map, topological entropy and box-counting dimension. For a
map $f$ : $Xarrow X$ of a compactum $X$ , we define the topological entropy $h(f)$ of $f$ as
follows (see [1] and [6]): Let $n$ be a natural number and $\epsilon>0$ . A subset $F$ of $X$ is an
$(n, \epsilon)$-spanning set for $f$ if for each $x\in X$ , there is $y\in F$ such that

$\max\{d(f^{i}(x), f^{i}(y))|0\leq i\leq n-1\}\leq\epsilon$ .
Let $r_{n}(f,\epsilon)$ be the smallest cardinality of all $(n, \epsilon)$-spanning sets for $f$ . A subset $E$ of.X
is an $(n, \epsilon)$-separated set for $f$ if for each $x,y\in E$ with $x\neq y$ , there is $0\leq j\leq n-1$ such
that

$d(f^{j}(x),f^{j}(y))>\epsilon$ .
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Let $s_{n}(f, \epsilon)$ be the maximal cardinality of all $(n, \epsilon)$-separated sets for $f$ . Put

$r(f, \epsilon)=\lim_{narrow}\sup_{\infty}(1/n)$ log $r_{n}(f, \epsilon)$

and
$s(f, \epsilon)=\lim$ $sup(1/n)$ log $8_{n}(f, \epsilon)$ .

$narrow\infty$

Also, put
$h(f)= \lim_{arrow 0}r(f,\epsilon)$ .

It is well known that $h(f)= \lim_{earrow 0}s(f, \epsilon)$ and $h(f)$ is equal to the topological entropy of
$f$ which was defined by Adler, Konheim and McAndrew (see [1]).

Let (X, $d$) be a compact metric space and $b(\epsilon)$ the minimum cardinality of a covering
of $X$ by $\epsilon$-balls. Put

$D_{d}(X)= \lim_{\epsilonarrow}\sup_{0}\frac{\log b(\epsilon)}{|\log\epsilon|}\in \mathbb{R}\cup\{\infty\}$ .

Similarly, put
$D_{A}(X)= \lim_{arrow}\inf_{0}\frac{\log b(\epsilon)}{|\log\epsilon|}\in \mathbb{R}\cup\{\infty\}$ .

$D_{d}(X)$ is called the upper box-counting dimension of (X, $d$), and $\underline{D}_{d}(X)$ is called the
lower box-counting dimension of (X, $d$).

Let $p\geq 0$ be any real number. Given $\epsilon>0$ , let

$m_{p}^{e}(X,d)= \inf\Sigma_{i=1}^{\infty}[diam(A_{i})]^{p}$

where $X= \bigcup_{i=1}^{\infty}A_{i}$ is any decomposition of $X$ in a countable number of subset of diameter
less than $\epsilon$ . Let

$m_{p}(X,d)= \sup_{e>0}m_{p}^{\epsilon}(X,d)$ .

Finally, we denote by the Hausdorff dimension $\dim_{H}(X,d)$ of (X, $d$) the supremum of all
real numbers $p$ such that $m_{p}(X,d)>0$ . It is well known that dim $X\leq\dim_{H}(X,d)\leq$

$arrow D(X)\leq D_{d}(X)$ .
Proposition 4.1. (cf. [7], Theorem 3.2.9) Let $f$ : $Xarrow X$ be a map of a compactum $X$

with a metrzc $d$ . Suppose that there exist positive numbers $\epsilon>0$ and $1<\lambda_{2}\leq\lambda_{1}$ such
that if $x,y\in X$ and $0<d(x,y)\leq\epsilon$ , then $\lambda_{2}d(x, y)\leq d(f(x), f(y))\leq\lambda_{1}d(x,y)$ . Then the
following inequalities hold

$D_{d}(X)$ log $\lambda_{2}\leq h(f)\leq D_{d}(X)\log\lambda_{1}$ .

Dai-Zhou-Geng [4] and Misiurewicz [8] proved that the following interesting result.

Theorem 4.2. (Dai-Zhou-Geng [4] and Misiurewicz [8]) If $f$ : $Xarrow X$ is a Lipshitz
continuous map of a compactum (X, $d$) utth Lipshitz constant $\lambda$ , then the following equality
holds

$\frac{h(f)}{\log\lambda}\leq\dim_{H}(X,d)$ .
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Now, we obtain the following result.

Theorem 4.3. Let $f$ : $Xarrow X$ be a map of a compactum $X$ with a metnc $d$ . Suppose
that there exist positive numbers $\epsilon>0$ and $\lambda>1$ such that if $x,y\in X$ and $d(x,y)\leq\epsilon$ ,
then $d(f(x), f(y))=\lambda d(x, y)$ . Then the following equality holds

$h(f)=D_{d}(X)\log\lambda$ .

In particular, the followings hold.

1. If $f$ : $Xarrow X$ is a Rudle espanding map of a compactum $X$ and $s>1$ , then there
vis$t$ an admissible metnc $d$ for $X$ and a positive number $1<\lambda\leq s$ such that

$f:(X, d)arrow(X, d)$ empands strtctly small distances with the $\mathfrak{U}^{anding}$ mtio $\lambda$ , and
hence

dim$H(X,d)= \underline{D}(X)=D_{d}(X)=\frac{h(f)}{\log\lambda}$ .

2. If $f$ : $Garrow G$ is a positively $e\varphi ansive$ map of a gragh $G$ and $s>1$ , then there
$ex\dot{u}t$ an admissible metric $d$ for $G$ and a positive number $1<\lambda\leq ssuch$ that
$f$ : $(G,d)arrow(G, d)e\varphi ands$ strictly small $d\dot{u}$tances with the $e\varphi anding$ ratio $\lambda$ , and
hence

$\dim_{H}(G, d)=arrow D(G)=D_{d}(G)=\frac{h(f)}{\log\lambda}$ .

Remark 4.4. In [9], Pontrjagin and Schnirelmann proved that for any compactum $X$ ,

dim $X= \min${$-D_{d}(X)|d$ is a metric for $X$},

where dim $X$ denotes the topological dimension of $X$ . Suppose that dim $X\geq 1$ and a map
$f$ : (X, $d$) $arrow(X,d)$ expands strictly small distances with an exptding ratio $\lambda>1$ . Then
$0<\log\lambda\leq h(f)/\dim X$ , which implies that the set of expanding ratios of $f$ are bounded.
Note that there exist a sequence $\{d_{i}\}_{i=1}^{\infty}$ of metrics for $X$ such that $f$ : (X, $d_{i}$ ) $arrow(X, \phi)$

expands strictly small distances with an expanding ratio $\lambda_{:}SatiS\mathfrak{h}$’ing $\lambda_{i}>\lambda_{i+1}$ and
$\lim_{1arrow\infty}\lambda_{i}=1$ . Then $\lim_{1arrow\infty}D_{d_{i}}(X)=\infty$ , which implies that $d_{i}$ is a“fractal” metric on
X. In fact, we can consider that the space (X, $d_{i}$ ) has some sort of local self-similarity

with respect to the inverse $f^{-1}$ of $f$ and the similarity ratio $1/\lambda_{i}$ . In [5], we investigated
the relation between metrics $d$, box-counting dimensions $\underline{D}_{d}(X)$ and $D_{d}(X)$ of a separable
metric space (X, $d$).

The topological entropy of endmorphisms of the n-dimensional torus $\mathcal{I}^{m}$ is well known
and hence we have the following.

Corollary 4.5. Let $L:\mathbb{R}^{\mathfrak{n}}arrow \mathbb{R}^{\mathfrak{n}}$ be a linear map such that $L(Z^{\mathfrak{n}})\subset \mathbb{Z}^{n}$ and $|\lambda_{1}|>1$ for
each eigenvdue $\lambda_{i}(i=1,2, \ldots,n)$ of L. Then the followings hold.

1. For any $s>1$ , there exists an admissible metric $d$ for $\mathbb{R}^{n}$ and a positive number $\lambda$

with $s>\lambda>1$ such that if $x,y\in \mathbb{R}^{\mathfrak{n}}$ , then $d(L(x), L(y))=\lambda d(x,y)$ .
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2. Let $T^{n}$ be the n-dimensional torus and let $f$ : $T^{n}arrow T^{n}$ be the map induced by the
linear map L. Then for any $s>1$ , there exzsts an admissible metric $d$ for $T^{n}$ and
positive numbers $\epsilon>0$ and $1<\lambda<s$ such that if $x,$ $y\in T^{n}$ and $d(x, y)\leq\epsilon$ , then
$d(f(x), f(y))=\lambda d(x, y)$ . Also,

$\Sigma_{i=1}^{n}\log|\lambda_{i}|=\Sigma_{|\lambda_{i}|>1}\log$ I $\lambda_{i}|=h(f)=D_{d}(X)$ log $\lambda$

and hence
$\dim_{H}(X, d)=\underline{D}(X)=D_{d}(X)=\frac{\Sigma_{1=1}^{n}\log|\lambda_{i}|}{\log\lambda}$ .
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