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A graph $G$ is a pair $(V(G), E(G))$ , where $V(G)$ is a finite set and $E(G)$ is a family of
2-elements subsets of $V(G)$ . We assume that graphs are connected. We follow [3] with respect
to the standard notation in graph theory. For a graph $G$, an abstract simplicial complex $B(G)$

which is called the box complex of $G$ is introduced by J. Matougek and G. M. Ziegler in [5]. We
define the box complex of a graph following [5].

Let $G$ be a graph and $U$ a subset of $V(G)$ . A vertex $v\in V(G)$ which is adjacent to each
$u\in U$ is called a common neighbor of $U$ in $G$ . The set of all common neighbors of $U$ in $G$ is
denoted by $CN_{G}(U)$ . For convenience, we define $CN_{G}(\phi)=V(G)$ . For $U_{1},$ $U_{2}\subseteq V(G)$ such
that $U_{1}\cap U_{2}=\phi$ , we define $G[U_{1}, U_{2}]$ as the bipartite subgraph of $G$ with

$V(G[U_{1}, U_{2}])=U_{1}\cup U_{2}$ and $E(G[U_{1}, U_{2}])=\{u_{1}u_{2}|u_{1}\in U_{1}, u_{2}\in U_{2}, u_{1}u_{2}\in E(G)\}$ .
The graph $G[U_{1}, U_{2}]$ is said to be complete if $u_{1}u_{2}\in E(G)$ for all $u_{1}\in U_{1}$ and $u_{2}\in U_{2}$ . For
convenience, $G[\phi, U_{2}]$ and $G[U_{1}, \phi]$ are also said to be complete.

Let $U_{1},$ $U_{2}$ be subsets of $V(G)$ . The subset $U_{1}WU_{2}$ of $V(G)x\{1,2\}$ is defined as
$\ovalbox{\tt\small REJECT}$ 田 $U_{2}$ $:=(U_{1}\cross\{1\})\cup(U_{2}x\{2\})$ .

For vertices $u_{1},u_{2}\in V(G),$ $\{u_{1}\}\mathfrak{g}\phi,$ $\phi$ 俺 $\{u_{2}\}$ , and $\{u_{1}\}W\{u_{2}\}$ are simply denoted by $u_{1}W\phi$,
$\phi$ 俺 $u_{2}$ and $u_{1}Wu_{2}$ respectively.

The box complex of a graph $G$ is an abstract simplicial complex with the vertex set $V(G)x$
$\{1,2\}\dot{a}nd$ the family of simplices

$B(G)=\{U_{1}$ 田 $U_{2}|U_{1},$ $U_{2}\subseteq V(G),$ $U_{1}\cap U_{2}=\phi$ ,
$G[U_{1}, U_{2}]$ is complete, $CN_{G}(U_{1})\neq\phi\neq CN_{G}(U_{2})$ }.

An abstract simplex $U_{1}wU_{2}$ and its geometric simplex are denoted by the same symbol $U_{1}wU_{2}$ .
The simplicial isomorphism $\nu:V(B(G))arrow V(B(G))$ is defined by

$u$ 俺 $\phirightarrow\phi$ 田 $u$ ud $\phi$ 田 $u\mapsto u$ 俺 $\phi$

for each $u\in V(G)$ . This induces a homeomorphism on $||B(G)\Vert$ satisfying $\nu 0\nu=id_{||B(O)||}$ .
Moreover, we notice that this homeomorphism has no fixed point. In general, a homeomor-
phism $\nu$ on a topological space $X$ satisfying $\nu 0\nu=id_{X}$ is called the $Z_{2}$-action on $X$ and the
pair (X, v) is called the $\mathbb{Z}_{2}$-space. For two $\mathbb{Z}_{2}$-spaces (X, $\nu_{X}$ ) and $(Y, \nu_{Y})$ , a continuous map
$f$ : $Xarrow Ysatis\Phi ingfo\nu_{X}=\nu_{Y}of$ is called a $\mathbb{Z}_{2}$-map from $X$ to Y. We define the $Z_{2}$-index
of a $\mathbb{Z}_{2}$-space (X, v) as

$ind_{\mathbb{Z}_{l}}(X, \nu)$ $:= \min${ $n|$ there is a $\mathbb{Z}_{2}$-map $f$ : $Xarrow S^{n}$ },

where $S^{n}=\{x\in R^{n+1}|||x\Vert=1\}$ with the $\mathbb{Z}_{2}$-action on $S^{n}$ given by $x\mapsto\rangle$ $-x$ . If there exists
a $Z_{2}$-map $homX$ to $Y$ , then we have $ind_{\mathbb{Z}_{2}}(X)\leq ind_{\mathbb{Z}_{2}}(Y)$ .

In [5], J. Matou\S ek and G. M. Ziegler pointed out the following:

(1) For any graph $G$,
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$ind_{Z_{2}}(\Vert B(G)\Vert)\leq\chi(G)-2$ ,

where $\chi(G)$ is the chromatic number of $G$ .
(2) If a graph $G$ has no 4-cycle, there is a $\mathbb{Z}_{2}$-retraction of $\Vert sdB(G)\Vert$ onto a l-dimensional
subcomplex $\Vert L\Vert$ of $\Vert sdB(G)\Vert$ defined in [5], p.81, (H1). Then, we have $ind_{\mathbb{Z}_{2}}(\Vert B(G)\Vert)\leq 1$ .
This indicates that the difference between $ind_{Z_{2}}(\Vert B(G)\Vert)$ and $\chi(G)-2$ can be arbitrarily large.

Let $\overline{G}$ be the following l-dimensional subcomplex of $B(G)$ :
$\overline{G}$

$:=$ { $u$ 田 $\phi,$ $v$ 俺 $\phi,$ $\phi$ 俺 $u,$ $\phi Wv,$ $u$ 俺 $v,$ $v$ 俺 $u|uv\in E(G)$}.

Then, $\Vert\overline{G}||$ is the $\mathbb{Z}_{2}$-space with the restriction of the $\mathbb{Z}_{2}$-action on $||B(G)\Vert$ . This $\mathbb{Z}_{2}$-action also
has no fixed point. The preceding 1-dimensional subcomplex $L$ of sd $B(G)$ equals to sd $\partial$.

We are interested in the relation between the combinatorics of $G$ and the topology of
$\Vert B(G)\Vert$ . In what follows, we consider the topology of the box complex of a graph without
4-cycles. Such a box complex has the following two properties:

Lemma 1 ([2], Lemma 4.1). A graph $G$ contains no 4-cycle if and only if for any simplices
$U_{1}wU_{2}\in B(G)$ , we have $|U_{1}|\leq 1$ or $|U_{2}|\leq 1$ . For such a graph $G$ , each maximal simplex
$U_{1}wU_{2}\in B(G)$ satisfies $|U_{1}|=1$ or $|U_{2}|=1$ .
Lemma 2 ([2], Lemma 4.2). Let $G$ be a graph without 4-cycles. For any two distinct
maximal simplices of $B(G)$ with nonempty intersection, the intersection is a simplex of $\overline{G}$.

Let $X$ be a $Z_{2}$-space and $A$ a $\mathbb{Z}_{2}$-subspace of $X$ . A strong deformation retraction $\{f_{t}\}_{t\in[0,1]}$

of $X$ onto $A$ such that each $f_{l}$ : $Xarrow X$ is a $Z_{2}$-map is called a strong $\mathbb{Z}_{2}$-deformation retmction
of $X$ onto $A$ . Then, we notice that the retraction $f_{1}$ of $X$ onto $A$ and the inclusion of $A$ into
$X$ are $\mathbb{Z}_{2}$-maps, so we have $ind_{Z_{l}}(X)=ind_{\mathbb{Z}_{2}}(A)$ .
Theorem 3 ([2], Theorem 4.3). A graph $G$ contains no 4-cycle if and only if $||\overline{G}\Vert$ is a strong
$\mathbb{Z}_{2}$-deformation retract of $\Vert B(G)\Vert$ .
Sketch of proof. If a graph $G$ contains a 4-cycle $C_{4}$ , then $||B(C_{4})\Vert(\subseteq||B(G)||)i_{8}$ the dis-
joint union of two $a\cdot simplices$ and $\Vert T_{4}\Vert$ is the disjoint union of two circles, each of which is
contractible in $||B(G)\Vert$ .

$||B(C_{4})||$

(The polyhedron $\Vert T_{4}\Vert$ is $iUu\epsilon trated$ with –.)

Figure 1. The box complex $\Vert B(C_{4})\Vert$

Suppose that there is a retraction $r$ : $\Vert B(G)||arrow||\overline{G\perp}|$. We consider the nullhomotopic loop $l$

in $||B(G)||$ which goes around one of two circles of $||C_{4}||$ . Then, we see that $r\circ l$ is the circle in
$\Vert\overline{G}||$ which must be nullhomotopic. This is impossible since $||\overline{G}\Vert$ is the l-dimensional complex.

Conversely, we assume that a graph $G$ has no 4-cycle. Then, by Lemma 1, we can divide
all maximal simplices of $B(G)$ into the two sets of simplices

$B_{1}=$ { $v$ 俺 $U|v$ 俺 $U$ is maximal} and $B_{2}=$ {$Uwv|UWv$ is maximal}.
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The $\mathbb{Z}_{2}$-action $\nu$ on $\Vert B(G)\Vert$ induces a one-to-one correspondence between $B_{1}$ and $B_{2}$ . For
each simplex $v$ 俺 $U\in B_{1}$ , we define a strong deformation retraction $\{f_{t}^{v}\}_{t\in[0,1]}$ of $v$ 俺 $U$ onto
$K_{v}^{-}$ $:=\Vert\overline{G}\Vert\cap(v$ 俺 $U)$ starting with a collapsing $hom$ the free face $\phi$ 俺 $U$ of $vuU$ (see Figure
2):

$v$ 俺 $U$ The join of $v$ 俺 $\phi$ and $\partial(\emptyset wU)$ $K_{v}^{-}$

Figure 2. The strong deformation retraction $\{f_{t}^{v}\}_{t\in[0,1]}$ of $vUU$ onto $K_{v}^{-}$ .
For each simplex $U$俺 $v\in B_{2}$ , a strong deformation retraction of UWv onto $K_{v}^{+}:=||\sigma||\cap(Uwv)$

is defined as $\{\nu\circ f_{l}^{v}\circ v\}_{t\in[0,1]}$ . Let $X_{v}=$ ($v$ 俺 $U$ ) $\cup(U$ 俺 $v)$ , for any $v\in V(G)$ . Then, a strong
$\mathbb{Z}_{2}$-deformation retraction $F_{v}$ of $X_{v}$ onto $K_{v}^{-}\cup K_{v}^{+}$ is deflned as

$F_{v}(x, t)=\{\begin{array}{ll}f_{l}^{v}(x) if x\in v \text{俺} U,\nu\circ f_{t}^{v}o\nu(x) if x\in U \text{俺} v,\end{array}$

where $t\in[0,1]$ . Since the homotopies $F_{u}$ and $F_{v}$ are stationary on $X_{u}\cap X_{v}$ for $u,$ $v\in V(G)$

by Lemma 2, we see that the homotopies { $F_{v}$ I $v\in V(G)$ } induce a strong $\mathbb{Z}_{2}$-deformation
retraction of $||B(G)||$ onto $||\delta||$ . $\square$

For (2) above, this theorem shows that $||L||$ is indeed a strong $\mathbb{Z}_{2}$-deformation retract
of $||B(G)||$ if $G$ contains no 4-cycle. The theorem also shows that the converse of this also
holds and that we have $ind_{l_{2}}(\Vert B(G)\Vert)=ind_{\mathbb{Z}_{2}}(\Vert L||)=ind_{\mathbb{Z}_{2}}(\Vert\overline{G}||)$ . On the other hand, $\Vert\partial\Vert$

is the l-dimensional complex with the $\mathbb{Z}_{2}$-action which has no fixed point, so that we have
1 $ind_{Z_{l}}(\Vert\overline{G}\Vert)\leq 1$ . The homotopy type of $\Vert\overline{G}\Vert$ and the $\mathbb{Z}_{2}$-index of $\Vert\overline{G}||$ are determined by the
following theorem:

Theorem 4 ([1], Theorem 4.4). Let $G$ be a connected graph with $k$ induced cycles of $G$ .
(1) If $G$ has no cycle of odd length, we have $\Vert\partial||\simeq _{k}S^{1}\coprod _{k}S^{1}$ and $ind_{Z_{2}}(||\overline{G}||)=0$ .
(2) If $G$ has at least one cycle of odd length, we have $||\overline{G}\Vert\simeq _{2k-1}S^{1}$ and $ind_{Z_{2}}(||\partial||)=1$ . $\square$

As a conclusion, if a graph $G$ contains no -cycle, the homotopy type of $||B(G)||$ and the
$\mathbb{Z}_{2}$-index of $||B(G)||$ is determined by Theorem 3 and 4.

Corollary 5 ([2], Corollary 4.5). Let $G$ be a graph without 4-cycles and $k$ the number of
induced cycles of $G$ .

1Let $||K||$ be an n-dimensional simplicial complex with a $Z_{2}$-action which has no flxed point, then we have $1nd_{Z_{9}}(||K||)\leq$

$n$ (see [4], p.96).
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(1) If $G$ has no cycle of odd length, we have $\Vert B(G)\Vert\simeq _{k}S^{1}\coprod _{k}S^{1}$ and $ind_{Z_{2}}(\Vert B(G)\Vert)=0$ .
$1(2)$

If $G$ has at least one cycle of odd length, we have $||B(G)||\simeq _{2k-1}S^{1}$ and
$ind_{\mathbb{Z}_{2}}(\Vert B(G)||)=\square$
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