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Abstract
The Malliavin-Thalmaier fornula was introduced in [5] for use in Monte-Carlo sim-

ulation. This is an integration by parts formula for high dimensional probability density
functions. But when this formula is aPplied directly for computer simulation, we show that
it is unstable. We Propose an approximation to the Malliavin-Thalmaier formula. In the
first part of this paper, we prove the central limit theorem to obtain the values of the pa-
rameters in Monte-Carlo simulations which achieves a prescribed error level. To prove it,
we need the order of the bias and the variance of the approximation error, and we prove the
central limit theorem by using these error estimation. And in the latter part, we obtain an
explicit Malliavin-Thalmaier formula for the calculation of Greeks in finance. The weights
obtained are free from the curse of dimensionality.

1 Introduction
The goal of the present article is to estimate through simulations the probability density func-
tion of multi-dimensional random variables using Malliavin Calculus and discuss some of its
aPplications, particularly in Finance.

Usually, a result aPplied to estimate a multidimensional density is the usual integration by
parts formula of Malliavin Calculus that is stated, for example, in Proposition2.1.5 of Nualart
[6].

Proposition1.1 Let $G\in D^{\infty},$ $F=(F_{1}, \ldots,F_{d})$ be a nondegenerate random vector Then for
$x\in R^{d}$ ,

$p_{F.G}( x)=E[\prod_{i=1}^{d}1_{\iota 0,\infty)}(F_{i}-x_{i})H_{(1,2\ldots.,d)}(F;G)]$ , (1.1)

where $1_{\iota 0,\infty)}(x)$ denotes the indicatorflnction andfor. $i=2,$ $\ldots,d$,

$H_{(1)}(F;G)$ $:=$ $\sum_{j=1}^{d}D^{\cdot}(G(\gamma_{F}^{-1})^{1j}DF_{j})$ ,

$H_{(1\ldots..i)}(F;G)$ $:=$ $\sum_{j=1}^{d}D^{*}(H_{(1\ldots.\prime i-1)}(F;G)(\gamma_{1^{l^{\backslash }}}^{-1})^{ij}DF_{j})$ .

$\overline{\iota_{This}}$paper is an abbreviated version of Kohatsu-Higa, Yasuda [4]. All proofs are omitted due to 出 e page
restrlction.
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Here $D^{*}$ denotes the adjoint operator ofthe Malliavin derivative operator $D$ and $\gamma_{F}$ the Malli-
avin covariance matrix of $F$.

Expression (1.1) has lead to various results conceming theoretical estimates of the density,
its support etc. However that expression is not very efficient for computer simulation, that is, it
has an iterated Skorohod integral. Recently, Malliavin and Thalmaier [5], Theorem 4.23, gave a
new integration by parts formula that seems to alleviate the computational burden for simulation
of densities in high dimension. We call this formula the Malliavin-Thalmaier formula. In this
formula, one needs to simulate only one Skorohod integral instead of the previous multiple
Skorohod integrals. But there is still a problem, that is, the variance of the estimator is infinite.
Therefore we Propose a slightly modified estimator that depends on a modification parameter $h$ ,
which will converge to the Malliavin-Thalmaier formula as $harrow 0$. This will generate a small
bias and a large variance which is not infinite.

First to obtain the sufficient number of Monte-Carlo simulation times, we prove the central
limit theorem even though the variance of the density estimators explode. To prove it, we
need some estimations of the order of the bias and the variance of the approximation error.
Finally, this central limit theorem gives the corresponding optimal parameter $h$ . Next we apply
the Malliavin-Thalmaier formula to finance, especially to the calculation of Greeks. In the one
dimensional case, a method to obtain Greeks by the integration by parts formula was introduced
by Fourni6 et $al[3]$ . Here we focus our attention to the high dimensional case. We give an
expression of Greeks, which is derived using the Malliavin-Thalmaier formula. In particular,
the weights are free from the curse of dimensionality. That is, the expression does not have a
multiple Skorohod integral.

We have not tried to introduce aPproximation$s$ for $F$ in the theoretical study of the error in
order not to burden the reader with technical issues. A typical result incorporating these issues
should be a combination with other known techniques (see e.g. Clement et al. [2]).

Also note that the expression in (1.1) corresponds to a density only in the case that $G=1$ . In
general, it represents a conditional expectation multiplied by the density. To avoid introducing
further terminology, we will keep refeming to $p_{F,G}(x)$ as the “density”.

2 Preliminaries
Let us introduce some notations. For a multi-index $\alpha=(\alpha_{1}, \ldots,\alpha_{m})\in\{1, \ldots,d\}^{m}$, we denote by
$|\alpha|=m$ the length of the multi-index.

2.1 Mdiavin Calculus
Let $(\Omega,F,P)$ be a complete probability space. Suppose that $H$ is a real separable Hilbert space
whose norm and inner product are denoted by $||\cdot||_{H}$ and $<\cdot,\cdot>_{H}$ respectively. Let $W(h)$ denote
a Wiener process on $H$.

We denote by $C_{p}^{\infty}(\mathbb{R}^{n})$ the set of all infinitely differentiable functions $f$ : $R^{n}arrow R$ such that
$f$ and all of its partial derivatives have at most polynomial growth.

Let $S$ denote the class of smooth random variables of the form

$F=f(W(h_{1}), \ldots, W(h_{n}))$, (2.1)

where $f\in C_{p}^{\infty}(\mathbb{R}^{n}),$ $h_{1},$ $\ldots,h_{n}\in H$, and $n\geq 1$ .
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If $F$ has the form (2.1) we define its derivative $DF$ as the H-valued random variable given
by

$DF= \sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}(W(h_{1}), \ldots, W(h_{n}))h_{i}$ .

We will denote the domain of $D$ in $L^{p}(\Omega)$ by $D^{1.p}$ . This space is the closure of the class of
smooth random variables $S$ with respect to the norm

$||F||_{1,p}=\{E[|F|^{p}]+E[||DF||_{H}^{p}]\}^{p}\downarrow$ .
We can define the iteration of the operator $D$ in such a way that for a smooth random variable

$F$, the derivative $D^{k}F$ is a random variable with values on $IP^{k}$ . Then for every $p\geq 1$ and $k\in N$

we introduce a seminorm on $S$ deflned by

$||F||_{k,p}^{p}=E[|F|^{p}]+ \sum_{i=1}^{k}E[||\dot{N}F||_{H\mathring{J}}^{p}]$.

For any real $p\geq 1$ and any natural number $k\geq 0$, we will denote by $D^{k.p}$ the completion of the
family of smooth random variables $S$ with respect to the norm $||\cdot||_{k,p}$ . Note that $D^{j,p}\subset D^{k\ell}$ if
$j\geq k$ and $p\geq q$ .

Consider the intersection

$D^{\infty}=\bigcap_{p\geq 1}\bigcap_{k\geq 1}D^{k,p}$
.

Then $D^{\infty}$ is a complete, countably normed, metric space.
We will denote by $D^{\cdot}$ the adjoint of the operator $D$ as an unbounded operator from $L^{2}(\Omega)$

into $L^{2}(\Omega;H)$ . That is, the domain of $D^{*}$ , denoted by $Dom(D^{\cdot})$ , is the set of H-valued square
integrable random variables $u$ such that

$|E[<DF,u>H]|\leq c||F||_{2}$ ,

for all $F\in D^{1,2}$ , where $c$ is some positive constant depending on $u$ . (here $||\cdot||_{2}$ denotes the
$L^{2}(\Omega)$-norm.)

SuPpose that $F=(F_{1}, \ldots,F_{d})$ is a random vector whose components belong to the space
$D^{1,1}$ . We associate with $F$ the following random symmetric nonnegative definite matrix:

$\gamma_{F}=(<DF_{j},DF_{jH}>)_{1\leq i.j\leq d}$ .

This matrix is called the Malliavin covariance matrix of the random vector $F$ .
Deflnition 2.1 We say that the random vector $F=(F_{1}, \ldots,F_{d})\in(D^{\infty})^{d}$ is nondegenerate if the
matrix $7r$ is invertible $a.s$. and

$( \det\gamma_{F})^{-1}\in\bigcap_{p\geq 1}L^{p}(\Omega)$ .
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2.2 Malliavin-Thalmaier RepresentatIon of $MultI\cdot Dimensional$ Density Func$\cdot$

tions
Assume that $d\geq 2$ is fixed through this paper.

Deflnition 2.2 Given the $\mathbb{R}^{d}$-valued random vector $F$ and the $\mathbb{R}$-valued random variable $G$,
a multi-index $a$ and a Power $p\geq 1$ we say that there is an integration by Pans fomula in
Malliavin sense $\iota f$ there exists a random variable $H_{\alpha}(F;G)\in L^{p}(\Omega)$ such that

$IP_{\alpha.p}(F,G)$ : $E[ \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f(F)G]=E[f(F)H_{a}(F;G)]$ for all $f\in C_{0}^{|a|}(R^{d})$ .

We represent the delta function by $\delta_{0}(x)=\Delta Q_{d}(x)$ for $x\in \mathbb{R}^{d}$ , where $\Delta$ means Laplacian. If
$f\in C_{0}^{2}(R^{d})$ , then the solution of the Poisson equation $\Delta u=f$ is given by the convolution $Q_{d}*f$

where the fundamental solution (also called Poisson kemel) $Q_{d}$ has the following explicit form;

$Q_{2}(x);=a_{2}^{-1}\ln|x|$ for $d=2$ and $Q_{d}( x):=-a_{d}^{-1}\frac{1}{|x|^{d-2}}$ for $d\geq 3$ ,

where $a_{d}$ is the area of the unit sphere in $\mathbb{R}^{d}$ . The derivative of the Poisson kernel is $\underline{\delta}g_{(x)}\delta x_{i}=$

$A_{d_{|z}}^{x}7^{l}$ , where $i=1,$ $\ldots,d,$ $A_{2}$ $:=a_{2}^{-1}$ and for $d\geq 3,$ $A_{d}$ $:=a_{d}^{-1}(d-2)$ .
Related to the Malliavin-Thalmaier formula, Bally and Caramellino [1], have obtained the

following result.
$P\iota opcrition2.3$ (Bally, Caramellino [1]) SuPpose that for some $p>1,$ $\sup_{|a|\leq R}E[|\frac{\delta}{\partial x_{i}}Q_{d}(F-$

$a)|^{1_{T}}p-+|Q_{d}(F-a)|^{*}\rho-]<\infty$ for all $R>0,$ $a\in \mathbb{R}^{d}$ . If $IP_{i,p}(F;G)$. $i=1\ldots.,d$, holds then the law
of $F$ is absolutely continuous with respect to the Lebesgue measure on $\mathbb{R}^{d}$ and the density $p_{F,G}$

is represented as, for $x\in \mathbb{R}^{d}$,

$p_{F,G}( x)=E[\sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}Q_{d}(F-x)H_{(i)}(F;G)]$ . (2.2)

Corollary 2.4 If $F=(F_{1}, \ldots,F_{d})$ is a nondegenerate random vector and $G\in D^{\infty}$ , then (2.2)
holdsfor the probability densityfimction of the random vector $F$ at $x\in \mathbb{R}^{d}$ .

3 Error Estimation
In this section, we introduce an approximation of the Malliavin-Thalmaier formula to avoid the
singularity of $\frac{\delta}{\delta x_{l}}Q_{d}(x)$. And we give the rate of convergence of the modified estimator of the
density at $x\in \mathbb{R}^{d}$ .
Deflnitions and Notations
1. For $h>0$ and $x\in \mathbb{R}^{d}$, define $|\cdot|_{h}$ by $|x|_{h}$ $:=\sqrt{\sum_{i=1}^{d}x_{i}^{2}+h}$ . Without loss of generality, we
assume $0<h<1$ .
2. For $i=1\ldots.,d$, define the following aPproximation to $\frac{\partial}{\delta x_{i}}Q_{d}$, for $x\in \mathbb{R}^{d},$

$\frac{\delta}{\delta x_{l}}\Phi_{d}(x);=A_{d\mp}|x_{i}X$

3. Then we define the approximation to the density function of $F$ as; for $x\in \mathbb{R}^{d}$ ,

$p_{F,G}^{h}( x):=E[\sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}\Phi_{d}(F-x)H_{10}(F;G)]$ . (3.1)
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Now we estimate errors between the Malliavin-Thalmaier formula (2.2) and the approxima-
tion (3.1). Here we consider the bias and the variance.

First we give the bias.

$\mathbb{R}^{d}Th$

eorem 3.1 Let $F$ be a nondegenerate random vector and $G\in D^{\infty}$ , thenfor $x=(x_{1}, \ldots,x_{d})\in$

$p_{F,G}( x)-p_{F,G}^{h}(x)=C_{1}^{x}h\ln\frac{1}{h}+C_{2}^{x}h+o(h)$,

where $C_{1}^{x}$ and cr are constants which depend on $x$. but are independent of$h$. 7he constants can
be written explicitly.

Next we compute the rate at which the variance of the estimator using a diverges.

Theorem 3.2 Let $F$ be a nondegenerate random vector and $G\in D^{\infty}$ .
(i). For $d=2$ and $x\in \mathbb{R}^{d}$,

$E[( \sum_{/=1}^{2}\frac{\partial}{\partial x_{i}}Q_{2}^{h}(F-x)H_{(l)}(F;G)-p_{F,G}(x))^{2}]=C_{3}^{x}\ln\frac{1}{h}+O(1)$ ,

where $C_{3}^{x}$ is a constant which depends on $x$, but is independent of $h$. $Ihe$ constants can be
written explicitly.
(ii). For $d\geq 3$ and $x\in \mathbb{R}^{d}$,

$E[( \sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}Q_{d}^{h}(F-x)H_{(l)}(F;G)-p_{F,G}(x))^{2}]=C_{4}^{x}\frac{1}{h\not\in-\iota}+O(\frac{1}{ht-1})$,

where $C_{4}^{x}$ is a constant which depends on $x$, but is independent of $h$. The constants can be
written explicitly.

Remark 3.3 In particular, for $h=0$ one obtains that the variance of the Malliavin-I halmaier
estimator is infnite.

4 Central Limit Theorem
Obviously when performing simulations, one is also interested in obtaining confidence intervals
and therefore the Central Limit Theorem is useful in such a situation. Here we give the central
limit theorem to the aPproximation (3.1). In what $follows\Rightarrow denotes$ weak convergence and the
index $j=1,$ $\ldots,N$ denote $N$ independent copies of the respective random variables.

Theorem 4.1 Let $Z$ be a random variable with standad normal distribution. And $F^{0)}\in(D^{\infty})^{d}$

and $G^{(j)}\in D^{\infty}$ are respectively a random vector and a random variable which have independent
identical distribution.
(\ddagger ). When $d=2$. set $n= \frac{c}{h\ln 1}$ and $N= \frac{c^{2}}{h^{2}\ln_{\hslash}^{1}}$ for some positive constant $C$ ffied throughout.
Then

$n( \frac{1}{N}\sum_{j=1}^{N}\sum_{/=1}^{2}\frac{\partial}{\partial x_{i}}\Phi_{2}(F^{(j)}-x)H_{(/)}(F;G)^{(\int)}-p_{F,G}(\bm{x}))$ $\Rightarrow$ $\sqrt{C_{3}^{x}}Z-C_{1}^{x}C$,
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where $H_{(\iota)}(F;G)^{(J)},$ $i=1,$ $\ldots,d,$ $j=1,$ $\ldots,N$, denotes the weight obtained in the j-th independent
simulation (the same that generates $F^{(j)}$ and $G^{(j)}$) and $cr,$ $c_{3}$ are some constants.
(ii). When $d\geq 3$, set $n= \frac{c}{h\ln_{\hslash}^{1}}$ and $N= \frac{c^{2}}{h8*\iota_{(\ln_{\hslash}^{1})^{2}}}$ for some positive constant Cfixed throughout.
Then

$n( \frac{1}{N}\sum_{j=1}^{N}\sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}Q_{d}^{h}(F^{(J)}-x)H_{(i)}(F;G)^{(j)}-p_{F,G}(\bm{x}))$ $\Rightarrow$ $\sqrt{C_{4}^{x}}Z-C_{1}^{x}C$ ,

where $\mathcal{O}_{1},$ $C_{4}^{x}$ are some constants.

Remark 4.2
(i). $ln$ the assertion ofTheorem 4.1, we canfreely choose the constant C. Therefore we have

that $\iota fC$ is small ($wrt$ Cl), then the bias becomes small.

(ii). This theorem also gives an idea on how to choose $h$ once $n$ or $N$ isfixed.
To prove Theorem 4.1, we need Theorem 3.1, Theorem 3.2 and the following estimations.

Lemma 4.3 Under the same assumptions ofTheorem 4.1, thefollowings hold.
(i).

$E[( \sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}Q_{d}^{h}(F^{(1)}-x)H_{(\iota)}(F;G)^{\langle t)}-p_{F.G}^{h}(x))^{2}]=\{\begin{array}{ll}C_{3}^{x}\ln\frac{1}{h}+O(1) if d=2C_{4}^{x}\frac{1}{h^{d-1}}+o(\frac{1}{hf-1}) if d\geq 3,\end{array}$

where $C_{3}^{x},$ $C_{4}^{x}$ are the same constants ofProposition 3.2.
(ii). For any $d\geq 2$ and $0<p< \frac{1}{2}$,

$N \cross|E[\exp(\frac{\sqrt{-1}un}{N}\xi_{1}^{n,N,h})-\{1-\frac{1}{2}\frac{u^{2}n^{2}}{N^{2}}(?_{1}^{N,h})^{2}\}]|\leq o(h^{p})$ ,

where

$\xi_{1}^{n,N,h}$ $:= \sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}Q_{d}^{h}(F^{(j)}-x)H_{(i)}(F^{(J)};G)^{(j)}-p_{F,G}^{h}(x)$.

5 Simulation 1 : Density of $2- d\ddagger m$. $Black\cdot Scholes$ Model
Here we give a simulation result in the case of 2-dimensional log-normal density. In Figures 2
and 3, we show the result of the simulation of (2.2) and (3.1) at time 1. That is,

$dX_{l}^{1}=X_{t}^{1}\{0.01dt+0.1dW_{l}^{1}+0.2dW_{l}^{2}\}$ and $dX_{l}^{2}=X_{t}^{2}\{0.02dt+0.3dW_{\iota}^{1}+0.2dW_{l}^{2}\}$ .
We have used the Euler-Maruyama approximation with 10 time steps and $N=10^{4}$ Monte Carlo
simulations at each point. The range of global views is $[0,2\mathfrak{W}]\cross[0,2\mathfrak{M}]$ for the initial values
of $X_{l}^{1}$ and $X_{l}^{2}$ , and the range of local views is $[72.5, 82.5]\cross[82.5,92.5]$ . From Figure 1, the
usual method does not work well for both cases. As it can be seen from Figure 2, there are
some points where the estimate is unstable. This is clearly due to the infinite variance of the
Malliavin-Thalmaier estimator. Finally from Figure 3, we find that we can erase their singular
points in Figure 2.
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(a) Global view (b) Local view

Figure 1: The usual formula (1.1)

Lognorrnal $\alpha wI y$ ($u\alpha ur\mathfrak{n}\cdot$ vnaier Umlh; $h4.01,N*10r.\mathfrak{n}\cdot t0$)

$M\cdot Tfom|u\cdot-$

伽\mbox{\boldmath $\tau$}i\sim

–6繭噛「\tilde : 繭幽願噌」–脚伽剛髄賦伽駅」」\mbox{\boldmath $\tau$}.」胸鞠 働

白剛噂 鰯 s\tilde 劇

(a) Global view (b) Local view

Figure 2: The Malliavin-Thalmaier formula (2.2)
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Lognormal $d\epsilon n8||ytwProx|m*tbnjb-0.0t,N--10,0\infty,n-10$)

$\epsilon ppr0xim\cdot\dot{r}0\cap-$

dens ty

(a) Global view (b) Local view

Figure 3: The approximation of the Malliavin-Thalmaier formula (3.1) $(h=0.O1)$

6 $Appl\ddagger cat\ddagger on$ to Finance
In this section, we compute Greeks using the Malliavin-Thalmaier Formula. We consider a
random vector $F^{\mu}=(F_{1}^{\mu},\ldots,F_{d}^{\mu}),$ $\mu\in \mathbb{R}^{m},$ $m\in N$ which depends on a parameter $\mu$ . Suppose
that $F^{\mu}\in(D^{\infty})^{d}$ is a nondegenerate random vector. And let $f(x_{1}, \ldots,x_{d})$ be a payoff function in
a class 2

$\ovalbox{\tt\small REJECT};=\{$$f$ : $\mathbb{R}^{d}arrow \mathbb{R}$ ; continuous
$a.e_{S}wrt$

Lebesgue measure, and
$\}$ .there exist constants $c,a$ such $that|f(x)|\leq\frac{c}{(1+|x}|)\varpi(a>1)$

A greek is defined for $f\in\ovalbox{\tt\small REJECT}$ , as the following quantity for some $j\in\{1, \ldots, ,m\}$ ;

$\frac{\partial}{\partial\mu_{j}}E[f(F_{1}^{\mu},$
$\ldots,$

$F_{d}^{\mu})]$ .
We denote the integration with respect to $p_{F^{\mu},G}^{h}(x)$ by $E^{h}[\cdot]$ . That is,

$E^{h}[f(F^{\mu})]:= \int\cdot\int \mathbb{R}^{d}f(x)p_{F\prime/,\iota}^{h}(x)dx$ .
$\overline{2}$Note that in the case ofaput option, if we define the payoff function $(K-x)_{*}=(K-x)1_{[0,K]}(x)$ then
$(K-x)_{+}\in fl$.

In a digital put option case, the payoff function is $1_{[0,K]}(x)$ . Therefore it is in A.
Next in a digital call option case, the payoff function $1_{\mathfrak{l}K.\infty)}(x)$ does not go to $0$ as $xarrow\infty$ . But since stocks do

not take negative value, then we can transforn as it follows,

$1_{\mathfrak{l}K,\infty)}(x)=1-1_{\mathfrak{l}0.K)}(x)$.
And now we want to calculate Greeks, that is, derivation of the term 1 is $0$ . It is enough to calculate the tern
$1_{\mathfrak{l}0.K)}(x)$, which has a compact suppoIt.

Finally if we want to compute a Greeks for call option case $(x-K)_{+}$ , then one uses directly the bIdliavin-
Thalmaier formula after taking the derivative. Although it is known that then a localization is needed.
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And for $i,$ $j=1,$ $\ldots,$
$d$, set

$g_{i.j}^{h}(y)$ $:= \frac{\partial}{\partial y_{j}}\int\cdot\int \mathbb{R}^{d}f(x)\frac{\partial}{\partial x_{i}}Q_{d}^{h}(y-x)dx,$ $y\in \mathbb{R}^{d}$ .

Theorem 6.1 Let $k\in\{1, \ldots,m\}$ befixed. Let $f\in\ovalbox{\tt\small REJECT}$. Let $F^{\mu}$ be a nondegenerate random vector,
which is differentiable with respect to $\mu_{k}$ . Suppose thatfor $j=1,$ $\ldots,d,$ $\frac{\delta F_{J}^{\mu}}{\delta\mu_{k}}\in D^{\infty}$ .

$\frac{\partial}{\partial\mu_{k}}\sum_{i=1}^{d}E[\int\cdot$ . $\int_{\mathbb{R}^{d}}f(x)\frac{\partial}{\partial x_{i}}Q_{d}^{h}(y-x)dxH_{(i)}(F^{\mu};1)]=\sum_{j,j=1}^{d}E[g_{i,j}^{h}(F^{\mu})H_{(\iota)}(F^{\mu};\frac{\partial F_{j}^{\mu}}{\partial\mu_{k}})]$ .

(6.1)

Moreover ifwe assume thatfor all $i=1,$ $\ldots,d$, there exists some $g_{i.j}$ such that $g_{i.j}^{h}arrow g_{i,j}a.e$. as
$harrow 0$, then

$\frac{\partial}{\partial\mu_{k}}E^{h}[f(F^{\mu})]$ $=$ $\sum_{i,j=1}^{d}E[g_{i,j}^{h}(F^{\mu})H_{(i)}(F^{\mu};\frac{\partial F_{j}^{\mu}}{\partial\mu_{k}})]$

$arrow\sum_{i,j=1}^{d}E[g_{i,j}(F^{\mu})H_{(i)}(F^{\mu};\frac{\partial F_{j}^{\mu}}{\partial\mu_{k}})]=\frac{\partial}{\partial\mu_{k}}E[f(F^{\mu})]$ as $harrow 0$.

(6.2)

Remark 6.2
(i). The expression in Theorem 6.1 is obviously not unique; $e.g$.

$(6.1)= \sum_{i,j=1}^{d}E[g_{i,l}^{h}(F^{\mu})H_{(j)}(F^{\mu};\frac{\partial F_{j}^{\mu}}{\partial\mu_{k}})]$ .

(ii). If $g_{i.j}^{h},$ $i,j=1,$ $\ldots,d$ has an explicit representation, then one can calculate Greeks easily.
If we do not have an explicit expression for the multiple integral then one can use any
approximation for multiple Lebesgue integrals. An example of the case that $g_{i,i}$ has an
explicit expression. In the digital put case, let $d=2$ and $f(x_{1},x_{2})=1(0\leq x_{1}\leq K_{1})1(0\leq$

$x_{2}\leq K_{2})\in\ovalbox{\tt\small REJECT}$ where $K_{1}$ and $K_{2}$ are positive constants. Then

$g_{1,1}(y)=A_{2}\{$

$g_{2,1}(y)=$ $\frac{A_{2}}{2}$

arctt $\frac{y_{2}}{y_{1}}-\arctan\frac{y_{2}-K_{2}}{y_{1}}-\arctan\frac{y_{2}}{y_{1}-K_{1}}+\arctan\frac{y_{2}-K_{2}}{y_{1}-K_{1}}\}$ ,

$\ln\frac{(y_{1}^{2}+P_{2})((y_{1}-K_{1})^{2}+(y_{2}-K_{2})^{2})}{((y_{1}-K_{1})^{2}+l_{2})(y_{1}^{2}+(y_{2}-K_{2})^{2})}$ .
(6.3)

These expression$s$ are obtained afler taking limits of$g_{i,j}^{h}(y)$ as $harrow 0$for $i=1,2$.
(iii). If we use the usual expression of the density, for example Pmposition2.1.5 in Nualart

$f6]$, then we need a multi dimensional Skorohod integral to write Greeks exPlicitly,$\cdot$ under
some assumptions,

$\frac{\partial}{\partial\mu_{k}}E[f(F^{\mu})]$

$=E[ \int_{-\infty}^{\Psi_{d}}\cdots\int_{-\infty}^{P_{1}^{\sqrt l}}f(x)dx\{\sum_{j=1}^{d}H_{(j)}(F^{\mu};\frac{\partial F_{j}^{\mu}}{\partial\mu_{k}}H_{(1,\ldots,d)}(F^{\mu};1))+\frac{\partial}{\partial\mu_{k}}H_{(1,\ldots.d)}(F^{\mu};1)\}]$ .
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(iv). We remark that in Theorem 6.1, $H_{(i)}$ requires only one Skorohod integral. Even ifhigher
derivatives with respect to $\mu$ are considered thisfact remains unchanged.

7 Simulation 2 : Delta of 2 assets digital put $opt\ddagger on$

Now we consider an example. We calculate Delta in a digital put option and the asset is char-
acterized by 2-dimensional Black-Scholes model. First we define the model as follows;

$dS_{l}^{(1)}$ $=\mu_{1}S_{l}^{(1)}dt+\sigma_{1}S_{t}^{(1)}dW_{l}^{1)}$ ,
$dS_{t}^{(2)}$ $=\mu_{2}S_{\iota-}^{(2)}dt+\rho\sigma_{2}S_{t}^{(2)}dW_{l}^{(1)}+\sqrt{1-\rho^{2}}\sigma_{2}S^{(2)}dW_{t}^{2)}$ ,

where their initial values for the stock price process are $s_{0}^{(1)}$ and $s_{0}^{(2)}$ , respectively. $\mu_{1},\mu_{2}$ are
constants, $\sigma_{1},\sigma_{2}$ are positive constants and $\rho\in[-1,1]$ is a constant. $W_{l}^{1)}$ and $W_{l}^{2)}$ are Brownian
motion and independent of each other.

We study the Delta of the following option

$E^{Q}[e^{-rT}1(S_{T}^{(1)}\leq K_{1})1(S_{T}^{(2)}\leq K_{2})]$ ,

where $r$ expresses a constant interest rate. Without loss of generality, we assume that $r=0$.
$K_{1}$ and $K_{2}$ are strike prices of stocks and $E^{Q}$ is an expectation with respect to the risk neutral
measure.

Then the Delta of above option with respect to the first stock $S_{l}^{(1)}$ is;

$\frac{\partial}{\partial s_{0}^{(1)}}E^{Q}[e^{-rT}1(S_{T}^{(1)}\leq K_{1})1(S_{T}^{(2)}\leq K_{2})]$

$=E^{Q}[g_{1,1}(S_{T}^{(1)},S_{T}^{(2)})H_{(1)}(S_{T}^{(1)},S_{T}^{(2)}; \frac{\partial S_{T}^{(1)}}{\partial s_{0}^{(1)}})]+E^{Q}[g_{2.1}(S_{T}^{(1)},S_{T}^{(2)})H_{(2)}(S_{T}^{\langle 1)},S_{r}^{(2)};\frac{\partial S_{T}^{(1)}}{\partial s_{0}^{(1)}})]$ .

(7.1)

We simulate above Delta by using the following parameters; $s_{0}^{(1)}=s_{0}^{(2)}=1\mathfrak{W},$ $\mu_{1}=\mu_{2}=$

$0,$ $\sigma_{1}=0.25,$ $\sigma_{2}=0.2,$ $\rho=0.2,$ $K_{1}=K_{2}=1\alpha$)
$,$ $T=1$ . For the simulation of $S_{t}^{(1)}$

and $S_{l}^{(2)}$ , we use the Euler-Maruyama approximation with 8 time steps. The Delta by equation
(7.1) is Figure 4. And we compare their results to the two-sided finite difference method with
the bumping size 1 (Figure 5). Here the “average” means arithmetic average of the last 20
values respectively. Delta by the Malliavin-Thalmaier formula (Figure 4) is mostly between
“average+0.5%’’ and “average-0.5%’’. But delta by finite difference method (Figure 5) still
moves between ”average+l%’’ and “average-l%’’.
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