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1 Introduction
In the real market, assets are not perfectly liquid. An investor sometimes fails to execute
his trade. The risk associated with uncertain trade execution is called the execution risk.
The execution risk is an important financial risk.

This paper studies a hedging problem in a discrete time model with the execution
risk. The investor cannot always trade the assets and trade times are random. Usually
the investor cannot hedges the contingent claim perfectly. The investor should measure
the hedging error by a quadratic criterion. My problem is the mean-variance hedging
problem in a random trade time model. The mean-variance hedging problem is studied
both in a discrete time framework by Sch\"al [17], Schweizer [18] and $\check{C}ern\acute{y}[3]$ and in a
continuous time framework by Duffie and Richardson [5], Gourieroux, Laurent and Pham
[6], Pham, Rheinl\"ander and Schweizer [15], Pham [14], Schweizer [20], Arai [1]. The
random trade time model is studied by Rogers and Zane [16] and Matsumoto $[11, 12]$ in
a continuous time framework.

First we study an optlmal strategy with fixed initial condition. Secondly we find an
optimal initial condition. The following results are shown.

1. An optimal strategy exists under some proper conditions.

2. The optimal strategy is expressed as the recursive formula, which can be calculated
computationally.

3. In the fixed initial condition case, the hedging error case can be decomposed into
two parts. One part is related to the contingent ciaim and the other part is related
to the initial condition.

4. The optimal initial condition is given, using some signed measures.

5. The optimal initial cost is not suitable for the price of the contingent claim, when
there is the execution risk.

This paper is organized as follows. Section 2 gives the model and tlie problem. And
we explains the main results in this paper. We give sketches of proofs in Section 3. Finally
in Section 4, we give some numerical examples.

1This paper is an abbreviated and revised velsion of Matsumoto [13]. Because we aim for concise
presentation, we only sketch the proofs. Please see Matsumoto [13] for the details.
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2 Model and Main Results
Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_{k}, k=0,1, \ldots , T\})$ be a filtered probability space satisfying the usual
condition. Here $T\in N$ is a fixed time horizon. We assume that there is the saving
account and one illiquid risky asset in the market. The trade of the illiquid asset does
not always succeed and we define the trade indicator by

$\nu(k)=\{\begin{array}{ll}1, if the trade succeeds at k,0, if the t_{I}\cdot ade falls at k\end{array}$

for $k=0,1,$ $\ldots$ , $T-1$ and set $\nu(T)=1$ for formulation convenience. $\nu(k)$ is assumed to
be $\mathcal{F}_{k}$-measurable.

For $n=1,2,$ $\ldots,$ $T+1$ , we define the n-th trade time of assets, $\tau_{n}$ by

$\tau_{1}$ $= \inf\{k\geq 0 :\nu(k)=1\}$ ,
$\tau_{n}$ $= \inf\{k>\tau_{n-1} : \nu(k)=1\}\wedge T$

where the infimum over the empty set is defined to be $\infty$ . $\tau_{n}$ is an increasing sequence of
$\mathcal{F}_{k}$-stopping times. For $k=0,1,$ $\ldots,$ $T-1$ , we define $\tau_{k,1}$ by

$\tau_{k,1}$ $= \inf\{\tau_{\mathfrak{n}}>k : n\geq 1\}$ .

Throughout this paper the saving account is the numeraire. We denote the discounted
price process of the risky asset by $X(k)$ . We consider a contingent claim whose discounted
payoff at the expiration dat,$eT$ is $H$ . Suppose that $X(k)$ is an adapted square-integrable
process and $H$ is an $\mathcal{F}_{T}$-measurable square-integrable random variable. We denote the
investor’s information by $g_{k}$ which is defined by

$\mathcal{G}_{k}=\sigma\{X(l);l\leq k\}\vee\sigma\{\nu(l);l<k\}\subset \mathcal{F}_{k}$.

We assulne that $X(O)$ is constant and then $\mathcal{G}_{0}$ is trivial. Note that $\tau_{n}$ for $n\geq 1$ is not a
$\mathcal{G}_{k}$-stopping time but $\{\tau_{n}\geq k\}$ is $\mathcal{G}_{k}$-measurable.

We consider the investor who wants to hedge the contingent claim $H$ using the risky
asset $X$ . The investor plans the number $\pi(k)$ of units of $X$ at $k=0,$ $\ldots,$ $T-1$ . We call
$\pi$ a trading strategy. The admissible strategy set $\mathcal{A}$ is defined by

$\mathcal{A}=$ { $\pi$ : $\pi$ is $\mathcal{G}_{k}$-adapted, $\pi(k)X_{k,1}\nu(k)$ is square.integrable for all $0\leq k<T$}

where

$X_{k,1}$ $=$ $X(\tau_{k,1})-X(k)$ .

For $\pi\in \mathcal{A}$ , we denote by $\theta^{\pi}(k)$ the realized number of units of $X$ at $k=0,$ $\ldots,$ $T-1$ .
$\theta^{\pi}(k)$ satisfies

$\theta^{\pi}(0)$ $=\pi(0)\nu(0)+\theta_{0}(1-\nu(0))$ ,
$\theta^{\pi}(k)$ $=\pi(k)\nu(k)+\theta^{\pi}(k-1)(1-\nu(k))$ , $k\geq 1$ (2.1)

where $\theta_{0}\in R$ denotes the initial number of units invested in the risky asset.
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For any $\theta_{0}\in R$ and $\pi\in \mathcal{A}$ , the discounted gain process $G_{\theta_{0}}^{\pi}(k)$ is given by

$C_{\tau_{\theta_{0}}}^{\pi}(k)$

$= \sum_{0\leq j\leq k-1}\theta^{\pi}(j)(X(j+1)-X(j))$
, $k=0,1,$ $\ldots,$

$T$.

Especially when $k=T$ , the gain is decomposed into the initial condition-dependent gain
and the strategy-dependent gain as

$G_{\theta_{0}}^{\pi}(T)$ $=\theta_{0}X_{0,1}(1-\nu(0))+G_{0}^{\pi}(T)$ (22)

where

$G_{0}^{\pi}(T)$

$= \sum_{0\leq j\leq T-1}\pi(j)X_{j,1}\nu(j)$
. (23)

The hedging portfolio consists of the initial cost and the gain process. I denote the initial
cost by $c\in R$ and then the value of the hedging portfolio is given by $c+G_{\theta_{0}}^{\pi}(T)$ . Our
main problems is

$\inf_{(c,\theta_{0},\pi)\in R^{2}\cross A}E[(H-c-G_{\theta_{0}}^{\pi}(T))^{2}]$ . (2.4)

To prepare for solving the main problem, we consider the following auxiliary problem,

$\inf_{\pi\in A}E[(H-c-G_{\theta_{0}}^{\pi}(T))^{2}]=\inf_{G\in G_{0}^{A}(T)}E[(H-c-\theta_{0}X_{0,1}(1-\nu(0))-G)^{2}]$ (2.5)

where
$G_{0}^{A}(T)=\{G_{0}^{\pi}(T) : \pi\in \mathcal{A}\}$ .

To solve this problem in the discrete time framework, Schweizer [18] shows that the
nondegeneracy condition plays an important role and we use a similar assumption.

Assumption 2.1 There exists a positive constant $C_{X}\in(0,1)$ such that

$E_{\nu(k)}[X_{k,1}|\mathcal{G}_{k}]^{2}$ $\leq$ $C_{X}E_{\nu(k)}[X_{k,1}^{2}|\mathcal{G}_{k},]$ , P-a $s$ . for $k=0,$ $\ldots,$ $T-1$ . (26)

where

$E_{\nu(k)}[ \cdot|\mathcal{G}_{k}]\frac{dP_{\nu(k)}}{dP}$
$==$ $\frac{E[\cdot\nu(k)|\mathcal{G}_{k}]}{\frac{E[\nu(k)|\nu(k)}{E[\nu(k)]},i\mathcal{G}_{k}]},ifE[\nu(k)|\mathcal{G}_{k}]fE[\nu(k)]>0>0$

,

and $E_{\nu(k)}[\cdot|\mathcal{G}_{k}]=0$ if $E[\nu(k)|\mathcal{G}_{k}]=0$ .

Throughout this paper, we suppose that Assumption 2.1 holds. Roughly speaking,
Assumption 2.1 means the risky $a\llcorner\backslash \backslash set$ fluctuates sufficiently between trade times. Most of
the standard models satisfy this a,ssumption. For example, a standard multinomial model
satisfies this assumption.
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We define three auxiliary processes by $\beta(T)=\rho(T)=0,$ $Z(T)=1$ and

for $k=0,$ $\ldots$ , $T-1$ . We use the conventions that a product over an empty set is 1 and
$0/0=0$ .
Theorem 2.1 There $e$ vzsts an optimal strategy $\pi^{*}\in A$ which attains the optimal value
of the auxiliary problem (2.5). For $k=0,$ $\ldots,$ $T-1,$ $\pi^{*}$ satisfies

$\pi^{*}(k)=\rho(k)-\beta(k)(c+G_{\theta_{0}}^{\pi}(k))$ . (2.10)

$F\dagger\iota nher$ if $\nu(k)=1$ , the hedging error is given by

$H-c-G_{\theta_{0}}^{\pi}(T)=H- \sum_{k\leq\tau_{j}<T}\rho(\tau_{j})X_{r_{j},1}Z(\tau_{j}+1)-(c+G_{\theta_{0}}^{\pi}(k))Z(k)$
(2.11)

for $k=0,$ $\ldots,$
$T$ .

By Theorem 2.1, the expected square hedging error with $(c, \theta_{0})=(0,0)$ is

$C_{H}$ $=$ $E[(H- \sum_{\tau_{1}\leq\tau_{j}<T}\rho(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1))^{2}]$ (2.12)

Next we go back to the main problem (2.4) and we will find an optimal initial condition
which minimize the expected square hedging error. Though $\pi$

“ depends on $(c, \theta_{0})$ , we use
the same notation $\pi^{*}$ if tllere is no risk of confusion. We define a new measure $P_{Z}$ by

$\frac{dP_{Z}}{dP}=\frac{Z(0)}{E[Z(0)]}$ , if $E[Z(0)]>0$ .

This is a signed measure. Under $P_{Z}$ , we denote the expectation, the variance and the
covariance by $E_{Z}[\cdot],$ $Var_{Z}[\cdot]$ and $Cov_{Z}[\cdot, \cdot]$ , respectively, that are defined in the usual
manner. Let

$c_{\theta_{0}}=E_{Z}[H-\theta_{0}(X(\tau_{1})-X(O))]$ . (2.13)

Theorem 2.2 Suppose that $E[Z(0)]>0$ . Then $Var_{Z}[X(\tau_{1})]$ is non-negative. IfVarz $[X(\tau_{1})]=$

$0$ , $(c_{\theta_{0}}, \theta_{0}, \pi")$ is an optimal solution for all $\theta_{0}\in R$ and the least expected square hedging
$emr$ is given by

$C_{H}-E_{Z}[H]^{2}E[Z(0)]$ . (2.14)
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If Va$r_{Z}[X(\tau_{1})]>0$ , an optimal solution $(c^{*}, \theta_{0}^{*}, \pi^{*})$ is given by

$\theta_{()}^{*}$ $=$ $\frac{Cov_{Z}[H,X(\tau_{1})]}{Var_{Z}[X(\tau_{1})]}$ $(2.1_{\dot{t})}^{r})$

$c^{*}$ $=$
$c_{\theta_{0}^{*}}$ . (2.16)

$\pi^{*}(k)$ $=\rho(k)-\beta(k)(c^{*}+G_{\theta_{0}^{*}}^{\pi}(k))$ , $k=0,$ $\ldots$ , $T-1$ (2.17)

and the least expected square hedging error is given by

$C_{H}-(E_{Z}[H]^{2}+ \frac{Cov_{Z}[H,X(\tau_{1})]^{2}}{Var_{Z}[\lambda^{r}(\tau_{1})]})E[Z(0)]$ . (2.18)

Remark 2.1 Most of the models with uncertainty of trade execution satisfy $E[Z(0)]>0$
and Varz $[X(\tau_{1})]>0$ . In this case, the optimal initial cost can be represented as

$c^{*}=E_{Q}[H]$

where $E_{Q}[\cdot]$ is the expectation under the signed measure $Q$ defined by

$\frac{dQ}{dP_{Z}}=1-\frac{E_{Z}[X(\tau_{1})-X(0)](X(\tau_{1})-X((1))-E_{Z}[X(\tau_{1})-X(0)]^{2}}{Var_{Z}[X(\tau_{1})]}$ .

Remark 2.2 In our setting the investor plans the trading strategy without knowing the
success of trade in advance. But the optimal solution has the same form even if the investor
gets more information. For example, the investors information $\mathcal{G}_{k}$ can be extended to

$\mathcal{G}_{k}=\sigma\{X(l);l\leq k\}\vee\sigma\{\nu(l);l\leq k\}$ , $k=0,$ $\ldots,$ $T-1$ .
In this case, the investor plans the trading strategy immediately after he knows the success
of trade. Since $\nu(k)$ is $\mathcal{G}_{k}$ -adapted, the auxiliar.$y$ processes $\beta$ and $\rho$ for $k=0,$ $\ldots,$ $T-1$
are,

$\beta(k)$ $=$ $\frac{E[X_{k,1}Z(k+1)|\mathcal{G}_{k}]}{E[X_{k,1}^{2}Z(k+1)|\mathcal{G}_{k}]}$

$\rho(k)$ $=$ $\frac{E[HX_{k,1}Z(k+1)|\mathcal{G}_{k}]}{E[X_{k,1}^{2}Z(k+1)|\mathcal{G}_{k}]}$

when $\nu(k)=1$ . And we do not have to consider these variables when $\nu(k)=0$ because it
is no use planning $\pi^{*}(k)$ when the investor knows the failure of the tmde at time $k$ . Using
these variables, the optimal solution is given by Theorem 2.2.

3 Proofs (Sketch)
The increments of $X$ can be decomposed as

$X_{k,1}$ $=$ $\Lambda_{k,1}+\Lambda f_{k,1}$ , $k=0,1,$ $\ldots,$ $T-1$ (3.1)

where

$A_{k,1}$ $=$ $E_{\nu(k)}[X(\tau_{k,1})-X(k)|\mathcal{G}_{k}]$ ,
$\Lambda f_{k,1}$ $=$ $X(\tau_{k,1})-X(k)-E_{\nu(k)}[X(\tau_{k\cdot,1})-X(k)|\mathcal{G}_{k}]$ .

Directly from Assumption 2.1 we can get the following lemma.
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Lemma 3.1 We have

$(1-C_{X})E_{\nu(k)}[X_{k,1}^{2}|\mathcal{G}_{k}]\leq E_{\nu(k)}[M_{k,1}^{2}/|\mathcal{G}_{k}]\leq E_{\nu(k)}[X_{k,1}^{2}|\mathcal{G}_{k}]$ , P-a. $s$ . (3.2)

for all $k=(),$ $\ldots$ , $T-1$ .

Proposition 3.1 $G_{0}^{A}(T)$ is a closed subspace in $\mathcal{L}^{2}(P)$ .

Sketch of Proof of Proposition 3.1. It is cle\v{c}ur that $G_{0}^{A}(T)$ is a subspace in $\mathcal{L}^{2}(P)$ .
We will check that $G_{0}^{A}(T)$ is closed. We consider a Cauchy sequence $\{G_{n}\}$ in $\mathcal{L}^{2}(P)$ in
$G_{0}^{A}(T)$ . Let $G_{\infty}$ be the limit of $G_{n}$ in $\mathcal{L}^{2}(P)$ and let $\tilde{G}_{\infty}=G_{\infty}+\theta_{0}X_{0,1}(1-\nu(0))$ . It
suffices to show that

$G_{\infty}\in G_{0}^{A}(T)$ .
By (3.1), we have

$E[(G_{\theta_{0}}^{\pi}(T))^{2}]$ $\geq$ $E[\pi(T-1)^{2}E[M_{T-1,1}^{2}\nu(T-1)|\mathcal{G}_{T-1}]]$ (3.3)

Because $G_{n}$ is in $G_{0}^{A}(T)$ , there exists a sequence $\{\pi_{n}\}$ in A $satis\mathfrak{h}^{r}ingG_{0}^{\pi_{n}}(T)=G_{n}$ . Set

$a_{n}(T-1)=\pi_{n}(T-1)\sqrt{E[\Lambda^{J}I_{T-11^{1\text{ノ}}}^{2}(T-1)|\mathcal{G}_{T-1}]}$ .

Since
$G_{n}-G_{m}=G_{0^{n}}^{\pi}(T)-G_{0}^{\pi_{m}}(T)=G_{\theta_{0}}^{\pi_{t}}’(T)-G_{\theta_{0}}^{\pi_{m}}\cdot(T)=G_{\theta_{0}}^{\pi_{n}-\pi_{m}}(T)$,

we have by (3.3)

$E[|a_{n}(T-1)-a_{m}(T-1)|^{2}]\leq E[|G_{n}-G_{\pi\iota}|^{2}]$ .
From Lemma 3.1 and $\pi_{n}\in A$ , we have

$E[|a_{n}(T-1)|^{2}]\leq E[\pi_{n}(T-1)^{2}E[X_{T-1,1}^{2}\nu(T-1)|\mathcal{G}_{T-1}]]\leq E[\pi_{7l}(T-1)^{2}X_{T-1,1}^{2}]<\infty$ .

Therefore $a_{n}(T-1)$ is a Cauchy sequence of $\mathcal{G}_{T-1}$-measurable random variable in $\mathcal{L}^{2}(P)$

and then $a_{n}(T-1)$ is convergent in $\mathcal{L}^{2}(P)$ . We denote the limit of $a_{n}(T-1)$ by $a_{\infty}(T-1)$ .
Since $a_{n}(T-1)$ is an $\mathcal{G}_{T-1}$ -measurable, $a_{\infty}(T-1)$ is also a $\mathcal{G}_{T-1}$ -measurable random
variable. Let

if $E[\Lambda I_{-1,1}^{\frac{\cdot\cdot)}{T}}\nu(T-1)|\mathcal{G}_{T-1}]\neq 0$ ,
$\pi_{\infty}(T-1)$ $=$

otherwise.

Since we have from Lemma 3.1

$E[|(\pi_{r\iota}(T-1)-\pi_{\infty}(T-1))X_{T-1.1}\nu(T-1)|^{2}]$ $\leq$ $\frac{E[|a_{\gamma\prime},(T-1)-a_{\infty}(T-1)|^{2}]}{1-C_{X}}$

$\pi_{n}(T-1)X_{T-1,1}\nu(T-1)$ converges to $\pi_{\infty}(T-1)X_{T-1,1}\nu(T-1)$ in $\mathcal{L}^{2}(P)$ as $narrow\infty$ .
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Arguing in the same way, we can find an $\mathcal{G}_{k}$-adapted process $\pi_{\infty}=\{\pi_{\infty}(k);k=$

$0,$
$\ldots,$ $T-1$ } $\in \mathcal{A}$ satisfying

$7larrow\infty 1i\ln\pi_{n}(0)X_{(,1}\nu(())=\pi_{\infty}(0)X_{t,1^{1\text{ノ}}}(O)$ , in $\mathcal{L}^{2}(P)$ ,

$\theta_{0}X_{0,1}(1-\nu(0))=\tilde{G}_{\infty}-\sum_{i,=0}^{T-1}\pi_{\infty}(\prime i)\lambda_{i,1}’\nu(\prime i)$ .

Therefore we have

$G_{\infty}= \tilde{G}_{\infty}-\theta_{0}X_{0,1}(1-\nu(0))=\sum_{i=0}^{T-1}\pi_{\infty}(i)X_{i,1}\nu(i)=G_{0^{\infty}}^{\pi}(T)\in G_{0}^{A}(T)$ .

The result follows. 口

Remark 3.1 Proposition 3.1 is important because the closedness of $G_{0}^{A}(T)$ ensures the
emstence of a solution of the basic problem (2.5) by the Hilbert space projection theorem.
Proposition 3.1 is the same as Theorem 2.1 in $Schweizer/18J$ if $\nu(k)=1a.s$ . for all
$0\leq k\leq T-1$ .

We can prove that $\beta,$
$\rho$ and $Z$ satisfy the following lemmas.

Lemma 3.2 For all $k=0,$ $\ldots$ , $T-1,$ $\beta(k)$ and $\rho(k)$ are well-defined and satisfy the
following properties.

$0\leq E[X_{1}^{\frac{}{k},}Z(k+1)^{2}\nu(k)]=E[X_{k,1}^{2}Z(k+1)\nu(k)]<\infty$, (3.4)
$0\leq E[Z(k)^{2}\nu(k)|\mathcal{G}_{k}]=E[Z(k)\nu(k)|\mathcal{G}_{k}]\leq E[\nu(k)|\mathcal{G}_{k}]$ , P-a.s., (3.5)
$E[X_{k,1}Z(k)\nu(k)|\mathcal{G}_{k}]=0$ , $P-(\iota.s.$ , (3.6)
$0\leq E[Z(k)^{2}|\mathcal{G}_{k}]=E[Z(k)|\mathcal{G}_{k}]\leq 1$ , P-a. $s.$ . (3.7)

Lemma 3.3 For $k=0,$ $\ldots,$ $T-1$ , we have

$E[\rho(k)X_{k,1}Z(k+1)\nu(k)|\mathcal{G}_{k}]$ $=$ $E[\beta(k)HX_{k,1}Z(k+1)\nu(k)|\mathcal{G}_{k}]$ (3.8)

Further we have

$E[1_{t}\iota\leq\tau,.\leq r|l\}\rho(\tau_{n})X_{\tau_{n},1}Z(\tau_{r\iota}+1)\nu(k)|\mathcal{G}_{k}]$

$=$ $E[1_{\{t\leq\tau_{n}\leq m\}}\beta(\tau_{n})HX_{\tau_{n},1}Z(\tau_{n}+1)\nu(k)|\mathcal{G}_{k}]$ (3.9)

for all $k\leq l\leq m<T$ and $n=1,$ $\ldots$ , $T$ .

Lemma 3.4 Let $Y$ be a $\mathcal{G}_{k}$ -adapted process. Then we have

$E[Y(\tau_{1})Z(0)]$ $=$ $E\lfloor Y(\tau_{1})Z(0)^{2}$]. (3.10)

In particular, if $Y$ is non-negative, $E[Y(\tau_{1})Z(0)]$ is non-negative.
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Sketch of Proof of Theorem2.1. From Proposition3.1, $H-c-\theta_{0}X_{0,1}(1-\nu(0))$ can
be projected on $G_{0}^{A}(T)$ . Therefore $\pi^{*}exist^{\zeta^{\backslash }}$ . Further $\pi^{*}satisf_{\grave{1}}cs$ for all $k=0,$ $\ldots,$ $T-1$

$E[(H-c-G_{\theta_{()}}^{\pi^{r}}(T))X_{k,1}\nu(k)|\mathcal{G}_{k}]=0$ , P-a. $s.$ . (3.11)

We can prove the results for $k=T-1$ . We use the backward induction. Suppose that
(2.10) and (2.11) hold for $k+1,$

$\ldots,$ $T-1$ . From (3.11) and the inductive a.ssumption
(2.11), we have

$I_{0}- \sum_{i=k+1}^{T}\sum_{j=1}^{T}I_{ij}=0$

where
$I_{0}$ $=$ $E[(H-(c+G_{\theta}^{\pi_{0}}(\tau_{k,1}))Z(\tau_{k\cdot,1}))X_{k,1}\nu(k)|\mathcal{G}_{k}]$ ,

$I_{ij}$ $=$ $E[1_{\{\tau_{k.,1}=i\}}1_{\{i\leq\tau_{j}\leq T-1\}}(X(i)-X(k))\nu(k)\rho(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1)|\mathcal{G}_{k}]$ , $k+1\leq i$ .

Recall that $1_{\{\tau_{\Lambda\cdot,1}=i\}}$ can be decomposed into $\mathcal{G}_{i}$-lneasurable part and the other part as
$1_{\{\tau_{A:,1}=i\}}=1_{\{\tau_{k,1}\geq i\}}\nu(i)$ . From Lenuma 3.3, we have

$\sum_{i=k+1}^{T}\sum_{j=1}^{T}I_{ij}$ $=$ $E[( \sum_{k<\tau_{j}<T}\beta(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1))HX_{k,1}\nu(k)|\mathcal{G}_{k}]$

since $\{\tau_{j} : \tau_{k.1}\leq\tau_{j}\leq T-1\}=\{\tau_{j} : k<\tau_{j}<T\}$ . If $\nu(k)=1$ , we have
$G_{\theta_{()}}^{\pi}(\tau_{k,1})$ $=\pi^{*}(k)X_{k,1}+G_{\theta_{()}}^{\pi}(k)$ , (3.12)

and then we get
$I_{0}$ $=E[H..\prime Y_{k,1}\nu(k)|\mathcal{G}_{k}]-(c+G_{\theta_{0}}^{\pi}(k))E[Z(k+1)X_{k,1}\nu(k)|\mathcal{G}_{k}]$

$-\pi^{*}(k)E[X_{k\cdot,1}^{2}Z(k+1)\nu(k)|\mathcal{G}_{k}]$ .

Therefore we obtain

$I_{0}- \sum_{i=k+1}^{T}\sum_{j=1}^{T}I_{ij}$ $=$ $E[Z(k+1)HX_{k,1}\nu(k)|\mathcal{G}_{k}]-(c+G_{\theta_{0}}^{\pi^{*}}(k))E[Z(k+1)X_{k,1}\nu(k)|\mathcal{G}_{k}]$

$-\pi^{*}(k)E[X_{k,1}^{2}Z(k+1)\nu(k)|\mathcal{G}_{k}]$ .
We get (2.10). $B\}^{\gamma}$ the definition of $\tau_{k,1},$ $\tau_{k,1}\geq k+1$ and $\nu(\tau_{k,1})=1$ . From the inductive
assumption (2.11) and (3.12), if $\nu(k)=1$ , we get

$H-c-G_{\theta_{0}}^{\pi^{*}}(T)$ $=$ $H-( \sum_{\tau_{A\cdot,1}\leq\tau_{j}<T}\rho(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1)+p(k)X_{k,1}Z(\tau_{k,1}))$

$-(c+G_{\theta_{0}}^{\pi}(k))(1-\beta(k)X_{k,1})Z(\tau_{k.1})$ .

The result follows.
口

Next we will find an optimal initial condition and we prove Theorem 2.2. By Theorem
2.1, we have known how the hedging error is represented and then we can get the following
result.
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Lemma 3.5 Let

$F_{p}(c, \theta_{()})$ $=$ $E[(H-c-G_{\theta_{()}}^{\pi’}(T))^{l)}]$

for $p=1,2$ and for all $(c, \theta_{()})\in R^{2}$ . Then $F_{p}(c, \theta_{()})$ satisfies
$F_{1}(c, \theta_{0})$ $=$ $E[(H-c-G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))Z(O)]$ , (3.13)
$F_{2}(c, \theta_{0})$ $=$ $E[(c+G_{\theta_{1J}}^{\pi^{*}}(\tau_{1}))^{}Z(0)]-2E[H(c+(_{\theta_{t)}}^{\tau\pi}J(\tau_{1}))Z(0)]+C_{H}$ . (3.14)

Note that $G_{\theta_{0}}^{\pi}(\tau_{1})=\theta_{0}(X(\tau_{1})-X(0))$ doe.s not depend on $\pi^{*}$ .

Sketch of Proof. First we consider $F_{1}(c, \theta_{0})$ . Using (2.11) with $k=\tau_{1}$ , we have

$F_{1}(c, \theta_{0})$ $=$
$E[H- \sum_{\tau_{1}\leq\tau_{j}<T}p(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1)-(c+G_{\theta_{()}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]$

.

From Lemma 3.3 we have

$E[ \sum_{\tau_{1}\leq\tau_{j}<T}\rho(\tau_{j})X_{\tau_{j},1}Z(\tau_{j\prime}+1)]$
$=$

$E[H \sum_{\tau\downarrow\leq\tau_{j}<T}\beta(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1)]$
.

Therefore we get

$F_{1}(c, \theta_{0})$ $=$ $E[H(1- \sum_{\tau_{1}\leq\tau_{j}<T}\beta(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1))-(c+G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]$

$=$ $E[(H-c-G_{\theta 0}^{\pi}(\tau_{1}))Z(\tau_{1})]$

since

$E[H(1- \sum_{\tau_{1}\leq\tau_{j}<T}\beta(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1))]$ $=$
$E[H \prod_{\eta\leq r_{l}<T}(1-\beta(\tau_{l})X_{\tau})]$

.

From $Z(\tau_{1})=Z(0),$ $(3.13)$ follows.
Next we consider $F_{2}(c, \theta_{0})$ . Using (2.11) with $k=\tau_{1}$ , we have

$F_{2}(c, \theta_{0})$ $=$ $C_{H}+E[(c+G_{\theta_{()}}^{\pi^{*}}(\tau_{1}))^{2}Z(\tau_{1})^{2}]$

$-2E[(H- \sum_{\tau_{1}\leq\tau_{j}<T}\rho(\tau_{j})X_{\tau_{j},1}Z(\tau_{j}+1))(c+G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]$ .

Note that $C_{H}$ is defined by (2.12). The second term is

$E[(c+G_{\theta_{U}}^{\pi^{*}}(\tau_{1}))^{2}Z(\tau_{1})^{2}]=E[(c+G_{\theta_{0}}^{\pi}(\tau_{1}))^{2}Z(0)^{2}]=E[(c+G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))^{2}Z(0)]$

from Lemllla 3.4. Therefore it suffices to show that

$E[1_{\{\tau_{j}<T\}\rho(\tau_{j})X_{\tau_{j},1}Z(\tau.+1)(c+G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]}$ $=$ $0$
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for $j=1,$ $\ldots,$
$T$ . For $j=1$ we have

$E[1_{\{\tau_{1}<T\}}\rho(\tau_{J})X_{\tau_{1},1}Z(\tau_{1}+1)(c+G_{\theta_{()}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]$

$=$ $\sum_{i=()}^{T-1}E[1_{\{\tau_{1}\geq i\}}p(i)(c:+G_{\theta_{0}}^{\pi^{*}}(i))’$ .

$n\wedge\backslash om(3.5)$ , we have

$E[\nu(i)X_{i,1}Z(\tau_{i,1})Z(i)|\mathcal{G}_{i}]=E[\nu(i)X_{i,1}(1-\beta(i)X_{i,1})Z(\tau_{i,1})^{2}|\mathcal{G}_{i}]=E[\nu(i)X_{i,1}Z(i)|\mathcal{G}_{i}]=0$ .
The last equality follows by (3.6). Siniilarly for $j\geq 2$ , we have

$E[1_{\{r_{j}<T\}}\rho($乃 $)X_{\tau_{j}.1}Z(\tau_{j}+1)(c+G_{\theta_{0}}^{\pi^{*}}(\tau_{1}))Z(\tau_{1})]=0$ .
The result follows. $\square$

Using Lemma 3.5, we can get the following propositions.
Proposition3.2 $E[Z(0)]$ is non-negative. If $E[Z(0)]=0,$ $F_{1}(c, \theta_{0})=0$ and $F_{2}(c, \theta_{0})$ is
constant.

PropositIon3.3 Fix $\theta_{0}\in R$ . Suppose that $E[Z(tJ)]>0$ . Then $F_{2}(c, \theta_{0})$ is minimized at

$(j=$ $c_{\theta_{0}}$ .
Recall that $c_{\theta_{0}}$ is defined by (2.13). Further we have

$F_{1}(c_{\theta_{0}}, \theta_{0})=0$ .
Sketch of Proof of Theorem 2.2. From Lemma 3.4, we have

$E[(X(\tau_{1})-E_{Z}[X(\tau_{1})])^{2}Z(0)]$ $=$ $E[(X(\tau_{1})-E_{Z}[X(\tau_{1})])^{2}Z(0)^{2}]\geq 0$

(
$\prime uld$ the equality holds if and only if

$X(\tau_{1})Z(0)=E_{Z}[X(\tau_{1})]Z(0)$ , $P- a.6^{\backslash }.$ . (3.15)

Since $E[Z(0)]>0,$ $Var_{Z}[X(\tau_{1})]$ is nonnegative.
By tlre definition of $c_{\theta_{tI}}$ , we have

$\Gamma_{2}^{7}(Ci_{\theta_{0}}, \theta_{0})$ $=$ $E[Z(0)]f(\theta_{0})+C_{H}$

where
$f(\theta_{0})$ $=$ $Var_{Z}[X(\tau_{1})]\theta_{0}^{2}-2Cov_{Z}[H, X(\tau_{1})]\theta_{0}-E_{Z}[H]^{2}$ .

If $Var_{Z}[X(\tau_{1})]=0$ , we have from (3.15)

$Cov_{/}d[H, X(\tau_{1})]=0$

and then we get

$F_{2}(c_{\theta_{0}}, \theta_{0})=C_{H}-E_{Z}[H]^{2}E[Z(0)]$

which does not depend on $\theta_{0}$ . If $Var_{Z}[X(\tau_{1})]$ is positive, $f\cdot(\theta_{0})$ is a quadratic function
and then $F_{2}(c_{\theta_{0}}, \theta_{0})$ has an absolute mlnilnum value (2.18) at $\theta_{0}=\theta_{0}^{*}$ . From $Tl$)$eorem2.1$
and Proposition 3.3, the result follows. $\square$
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4 Numerical Example
In this section, we give some numerical examples in a lnulti-period model.

In the multi-period binomial model, the tree of states braches into 4 at $\backslash$

ノ
$(xch$ period as

well as the tree in Figure 1. Suppose $th_{1\lambda}t\{(\nu(k), X(k+1)/X(k))_{\backslash }\cdot A.l=0,1, \ldots, T-1\}$ is
independent and identically distributed and its probability distribution is given by

$p_{1}$ $=$ $P[ \{(\nu(k), \frac{X(k+1)}{X(k)})=(1, u)\}|\mathcal{G}_{k}]$ ,

$p_{2}$ $=$ $P[ \{(\nu(k;), \frac{X(k+1)}{X(k)})=(1, cl)\}|\mathcal{G}_{k}]$ ,

$p_{3}$ $=$ $P[\{(\nu(k),$ $\frac{X(k+1)}{X(l_{i})})=(0, \uparrow 4)\}|\mathcal{G}_{k}]$ ,

$p_{4}$ $=$ $P[\{(\nu(k),$ $\frac{X(k+1)}{X(k)})=(0, d)\}|\mathcal{G}_{k}]$ ,

$\lambda$ $=$ $p$ ] $+p_{2}$

where $p_{i}$ $(i=1, \ldots , 4)$ and $\lambda$ are positive constants.

Figure 1: Binomial lnodel with random trade times.

Since $\lambda$ means the success probability of trade, $\lambda$ represents the liquidity of the asset.
Set

$H=m_{c}^{l}\iota x^{r}\{X(T)-K.0\}$ .
The contingent claim is a European call option. Fix

$T=10$, $X(O)=100$ , $K_{---}120$ , $u=1.2$ , $d= \frac{1}{u}$ .

We change $\lambda$ from 0% to 100% and calculate the optimal solutions under the following
two conditions.
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1. $X$ and $\nu$ are positively-correlated:

$(p_{1},p_{2}, p_{1}\backslash ’,p_{4})=(t\cdot I.9\lambda, 0.1\lambda, ().7_{t)}^{\ulcorner}(1-\lambda), 0.2_{t)}^{r}(1-\lambda))$ .

2. $X$ and $\nu$ are $negative,1y- cor1^{\cdot}elat_{C^{\iota}},d$ :

$(p_{1},p_{2},p_{3},p_{4})=(0.6\lambda, 0.4\lambda, ().7_{c}^{r})(1-\lambda)’.().2_{0}^{r}(1-\lambda))$ .

Note that there is no need for calculating $\pi^{*}(0)$ for $\lambda=0$ and $\theta_{0}^{*}$ for $\lambda=1$ .

Figure 2: Optimal solution against $\lambda$ (success probability of trade)

In Figure 2, the optin al solution $(\pi"$(0) $, \theta_{0}^{*})$ and $c$
“ are plotted against $\lambda$ . The results

are summarized& follows.

$\bullet$ When $\lambda=1,$ $\pi^{*}(0)$ and $c^{*}$ correspond to the delta he($lging$ strategy and the arbitrage
price, rcspectively.

$\bullet$ $W1_{1}en\lambda=0,$ $\theta_{()}^{*}$ and $c^{*}correspor\iota d$ to $tI_{1}e$ nlean-variance hedgillg strategy and the
optimal initial cost for a olle-period multinomial lnodel. Note that $c^{*}$ is negative.

$\bullet$ In the positively-correlated caase, $\pi^{*}(())$ is greater than $\theta_{()}^{*}$ . In the negatively-correlated
case, $\pi^{*}(0)$ is less than $\theta_{0}^{*}$ .
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$\bullet$ As $\lambda$ goes to $1_{\}(:^{*}$ increases to the arbitrage price. In the positively-correlated case,
$c^{*}incrcab^{\backslash }\mathbb{C}S$ slowly. In the $neg_{t}^{t}\iota tivcly$ -correlatcd case, $c^{*}$ increases fast.

$\bullet$ $c^{*}$ can be negative when $\lambda$ is small, that is, the asset is illiquid. This example means
that $c^{*}sh_{0\backslash 1}1d$ not be called the price.
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