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Abstract
This article analyzes the optimal deductible level for a durable consumption good in a

continuous-time economy with a risky asset, a riskless asset and a perishable consumption
good. $\cdot$ We first show a myopic strategy as a second best solution $igno\iota ing$ the fact that the
insurance coverage must be positive.

Keywords: Insurance, deductible, durable consumption goods, optimal consumption and
investment

1 Introduction

Arrow (1971) and Mossin (1968) were the first to examine the optimal insurance. Mossin (1968)
showed that afull insurance is not optimal when premium includes apositive loading. Arrow
(1971) showed that it is optimal to purchase adeductible insurance. The benefit of reducing
coverage comes from the reduction of the positive insurance cost. These classic literatures
were concerned with the case of asingle insurable asset in astatic model. Therefore the agent
impllcitly transforms the corresponding loss into the reduction of consumption or savings, and
cannot hedge against the shock of loss by reduclng his consumption over time. Then Moffet
(1977) derived some propositions about the optimal deductible and consumption in asingle
period model. And then, Dionne and Eechkhoudt (1984) showed the interactions between
consumption and saving decision in atwo period model.

Since Merton(1969), aconsiderable number of studies have been conducted on the in-
tertemporal consumption and investment strategy in acontinuous time economy. The problem
consists of maximizing total expected utility of cooumption over trading interval and terminal
wealth. In Merton (1969), the optimal portfolio is equal to the tangency portfolio glven under
the static model named CAPM (Capital Asset Pricing Model). Merton $(1971,1973)$ provided
ageneral framework for understanding the portfolio demands of long-term investors when in-
vestment opportunity varies over time. Merton (1973) showed that the optimal portfolio for
long-term investors are affected by the $pos8ibility$ of uncertain changes in future investment
opportuniti\’e and then differs from the tangency portfolio. The results have had amajor
influence $\ln$ microeconomics as surveyed in Campbell and Viceira (2003).

To our knowledge, Briys(1986) first approached the optimal insurance with consumption
and investment policy using the methods of Merton (1969). Asufficient condition for sepa-
rability of the lnsurance and investment decisions was shown. Gollier (1994) extended Briys
(1986) and showed that the demand for iourance vanishes in the long run if the loading factor
exceeds acritical value. Moore and Young (2006) extended Gollier (1994) allowing the risk
horizon to be random, and showed several ex\‘amples using the Markov Chain approximation.
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Gollier (2003) examined the demand for insurance and showed that aliquidity constrained
agent would demand cover for both low and high risk events as opposed to an agent without
liqudity constraint who would have demand cover for high risk events.

We introduce durable consumption goods to investigate the effect of substituting the dam-
aged durables with perishable consumption goods. Various literature has $been$ published that
study optimal consumption and investment including durable consumption goods. These in-
clude Hindy and Huang (1993), Detemple and Giannikos (1996), Cuoco and Liu (2000), Cocco
(2004), Cauley, Pavlov and Schwarts (2005) and Grossman and Laroque (1990).

We follow Damgaard, Fuglsbjerg and Munk (2003) that extend Grossman and Laroque
(1990) to include aperishable cooumption good and an indivisible durable cooumption good
in the model. The main scope of their models were transaction costs and indivisibility of
durable goods. However we assume that the durable goods are divisible and can be traded
with no traoaction cost. We have therefore added new features to the model to take into
account that durable goods can be damaged and the damaged goods can be insured.

Needless to say the iourance coverage must be positive. Without the positive coverage
constraint, the optimal solution for insurance $coverag\dot{e}$ can be negative. This cootraint is in
analogue to the leverage cootraint studied by Grossman and Vila (1992). They examined the
problem of the investor who has alimited ability to borrow for the purpose of investing in a
risky asset. And they proved that in the presence of leverage constraint, the optimal solution
for arisky asset when the cootraint is binding was to invest afixed proportion of his wealth.
The strategy took the same form in the absence of cootraint however the proportion level to
invest in the risky asset was different because of the possibility that leverage constraint would
become binding in the future. He and Pages (1992) and Zariphopotou (1994) also examined
the cootrain\’e optimal cooumption and investment problem.

Our work is related to Gollier (1987) who dare to relax positive coverage cootraint in
simple settings. The solution has three domaio: (1) short sale of an insurance polIcy, (2) no
iourance, and (3) purchase an insurance policy.

Following on from the introduction, section II shows the strategy ignoring positive coverage
cootraint. Section III then examines the effect of the constraint. Section IV $conclud\infty$ this
article.

2 A model

2.1 Set up
We consider an infinite-horizon, continuous-time stochastic economy with a perishable con-
sumption good, a durable consumption good and two financial assets. One of the financial
assets is a risk-free security paying a constant continuously compounded interest rate $r$ . The
other is a risky security whose price process follows a geometric Brownian motion

$\frac{dS(t)}{S(t)}=\mu dt+\sigma sdw_{1}(t)$ , $t\geq 0$ (1)

where $(w_{1}(t), w_{2}(t))$ is uncorrelated two dimensional Wiener process and where $\mu$ and $\sigma_{S}$ are
constants.

We now make several assumptions about the market:
(a) Financial securities and durable goods can be bought in unlimited quantities and are
infinitely divisible.
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(b) Financial securities can be sold short but a durable good can not be sold short.
(c) There ar$e$ no transaction costs.

The unit price of a durable good $P(t)$ also follows a geometric Brownian motion

$\frac{dP(t)}{P(t)}=\mu_{P}dt+\sigma_{P1}dw_{1}(t)+\sigma_{P2}dw_{2}(t)$ , $t\geq 0$ (2)

where $\mu p,$ $\sigma_{P1}$ and $\sigma_{P2}$ are constants and where

$\sigma_{P}^{2}=\sigma_{P1}^{2}+\sigma_{P2}^{2}$ .

We should note that the unit price of the durable good is partly correlated with the price of
the financial risky asset.

We assume that the stock of the durable consumption good depreciates at a certain depre-
ciation rate $\delta$ over time. We also assume that durable consumption goods can be damaged by
an insured event represented by Poisson process $N(t)$ which is independent of $(w_{1}(t), w_{2}(t))$ .
We denote by $\lambda$ the intemsity of the events and by $\ell$ the constant loss rate of the durable good
when the insured event occurs. Letting $K(t)$ be the number of units of the durable good held
at time $t$ , then $K(t)$ follows

$\frac{dK(t)}{K(t)}=(-\delta+\lambda\ell)dt-\ell dN(t)$ , $t\geq 0$ (3)

where $\delta,$ $\ell,$ $\lambda$ are constants. We require $K(t)>0$ from the assumption that the agent can not
take a short position for durable goods.

The agent can purchase an insurance contract to cover the risk of loss. We denote the
indemnity paid by the insurer at time by $q(t)$ . The payment must be positive then the
constraint is

$q(t)\geq 0$ . (4)

Assuming that insurance premium is payable continuously and include a positive loading which
is represent$ed$ by a factor $\phi$ , the premium to be paid and denoted by $p(t)$ is given by

$p(t)=\lambda\phi q(t)$

where $\phi\geq 1$ . Assume that the premium loading is sufficient small to satisfy the solvency
condition.

We denote by $\theta_{0}(t)$ and $\theta(t)$ the amount held in the risk-free and risky security at time $t$ .
We define the wealth of the agent as the sum of his investments in the risk-free and risky assets
and the value of his current stock of durable goods $K(t)$ times the current price of durable
goods $P(t)$ . Therefore his wealth $X(t)$ is given as

$X(t)=\theta_{0}(t)+\theta(t)+K(t)P(t)$ , $t\geq 0$ . (5)

Under the assumption that the agent follows a perishable consumption strategy $C(t)$ and
self-financing strategy $(\theta_{0}(t), \theta(t),$ $K(t))$ , the wealth process $X(t)$ evolves as

$dX(t)$ $=$ $(r(X(t)-K(t)P(t))+\theta(t)(\mu-r)+(\mu_{P}-\delta+\lambda\ell)K(t)P(t)-C(t)-p(t))dt$

$+(’\dotplus K(t)P(t)\sigma_{P2}dw_{2}(t)$

$+(q(t-)-\ell P(t)K(t-))dN(t)$ , $t\geq 0$ . (6)
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At the time $\eta$ when an insured event occurs, there is a jump in his wealth due to the damage of
his durable goods. We require that the consumption and trading strategies satisfy the solvency
condition of the agent and that his total wealth is always positive although an insured event
has occurred:

$X(\eta)=X(\eta-)-\ell P(\eta)K(\eta-)+q(t)>0$, $t\geq 0$ . (7)

A policy $S_{t}=(\theta(t), K(t),$ $C(t),$ $q(t))$ is admissible if the policy satisfies (4), (7) and $K(t),$ $C(t)>$
$0$ . We denote by $\mathcal{A}(x, k,p)$ the set of admissible policies where $x=X(0),$ $k=K(0),$ $p=P(O)$ .
We assume $\mathcal{A}(x, k,p)$ is a non-empty set.

We assume that the utility function exhibits constant relative risk aversion, i.e.:

$U(c, k)= \frac{1}{1-\gamma}(lk^{1-\beta})^{1-\gamma}$ , $0<\beta<1,0<\gamma<1$

where $c$ denotes the perishable consumption rate and $k$ denotes the stock of durable goods
held. The agent’s objective is to find the policy $S_{t}\in \mathcal{A}$ that maximizes his time $0$ expected
utility:

$J^{S}(x,p)=E[ \int_{0}^{\infty}e^{-\rho t}U(C(t), K(t))dt]$

where $\rho$ is time preference parameter. Therefore the value function of agents is given by

$V(x,p)= \sup_{S_{t}\in A,t>0}J^{S}(x,p)$ . (8)

From the dynamic programming principle, the value function satisfies

$V(x,p)= \sup_{S\in A,t>0}E[\int_{0}^{\eta}e^{-\rho t}U(C(t), K(t))dt+e^{-\rho\eta}V(X(\eta), P(\eta))]$ . (9)

Then the Hamilton-Jacobi-Bellman (HJB) equation corresponding to this problem can be
written as

$\rho V(x,p)$ $=$ $\sup_{S\in A}\{\frac{1}{1-\gamma}(lk^{1-\beta})^{1-\gamma}+(r(x-pk)+\theta(\mu-r)+(\mu_{P}-\delta)kp-c-\lambda\phi q)\frac{\partial V}{\partial x}(x,p)$

$+ \frac{1}{2}(\theta^{2}\sigma_{S}^{2}+k^{2}p^{2}\sigma_{P}^{2}+2\theta\sigma_{S}\sigma_{P1}kp)\frac{\partial^{2}V}{\partial x^{2}}(x,p)+\mu_{P}p\frac{\partial V}{\partial p}(x,p)$

$+ \frac{1}{2}\sigma_{P}^{2}p^{2}\frac{\partial^{2}V}{\partial p^{2}}(x,p)+(\theta\sigma_{S}\sigma_{P1}+\sigma_{P}^{2}kp)p\frac{\partial^{2}V}{\partial x\partial p}(x,p)$

$+ \lambda(V(x-Pkp+q,p)-V(x,p)+\ell kp\frac{\partial V}{\partial x}(x,p))\}$ . (10)

2.2 The Second Best Solution
In this section, we show a myopic strategy for problem (9). When the agent follows the
myopic strategy, he is not aware of the positive coverage constrain $q(t)\geq 0$ until he meets it.
More precisely, myopic insurance coverage is given by the maximum of two quantities: (a) no
insurance, and (b) optimal insurance coverage ignoring the positive coverage constraint. The
approach to get the myopic solution is simple. First, we find a solution ignoring the positive
coverage constraint. Next we seek the cutoff level which the positive coverage constraint bind
and we then set the constraint domain and unconstraint domain. Finally, we find the solution
with no insurance in the constraint domain. We will later show that the myopic strategy is not
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optimal in general. While in the unconstraint domain, the optimal solution is affected by the
fact that the positive coverage constraint may be binding in the future. However it is possible
to obtain qualitative properties of the optimal controls.

Now we introduce some auxiliary parameters and give assumptions. We then show a
solution under the assumptions. Constants are defined as follows:

$\Lambda_{0}$ $=$

$+ \frac{\frac{\rho}{\gamma 21}+-}{\gamma^{2}\sigma}-r-(1-\gamma)(1-\beta)\sigma s\sigma_{P1})^{2}-\frac{1-\gamma}{\gamma_{2(\mu},s\gamma}\{r-(1-\beta)\mu_{P}+\frac{1}{2}(1-\beta)[1+(1-\beta)(1-\gamma)]\sigma_{P}^{2}\}$

(11)

$\Lambda_{1}$ $=$ $(1- \gamma)\sigma_{P2}^{2}+\frac{1}{1-\beta}(r-\mu_{P}+\delta+(\mu-r)\frac{\sigma_{P1}}{\sigma s})$ (12)

$\Lambda_{2}$ $=$ $( \frac{\gamma}{1-\beta}+\frac{1-\gamma}{2})\sigma_{P2}^{2}$ (13)

as in Damgaard, Fuglsbjerg and Munk (2003). If $\Lambda_{0}<0$ , the nonlinear equation

$F(\alpha_{k})=0$ (14)

where

$F(\alpha_{k})=\{\begin{array}{ll}\Lambda_{0}+\Lambda_{1}\alpha_{k}+\Lambda_{2}\alpha_{k}^{2}+\frac{\lambda}{\gamma}\{(1-\ell\alpha_{k})^{-\gamma}(1+\frac{\beta\gamma\ell}{1-\beta}\alpha_{k})-(1+\frac{\gamma\ell}{1-\beta}\alpha_{k})\}, \alpha_{k}<\hat{\alpha}_{k}\Lambda_{0}’+(\Lambda_{1}+\frac{\lambda(\phi-1)\ell}{1-\beta})\alpha_{k}+\Lambda_{2}\alpha_{k}^{2}, \alpha_{k}\geq\hat{\alpha}_{k},\end{array}$

and where
$\hat{\alpha}_{k}=\frac{1-\phi^{-\frac{1}{\gamma}}}{\ell}$ , $\Lambda_{0}’=\Lambda_{0}+\frac{\lambda(\phi-1)}{\gamma}+\lambda\phi(\phi^{-1}\gamma-1)$

will have a single positive solution. It is not$ed$ that the argument $\alpha_{k}$ represents the optimal
holding policy for durable consumption goods in the following.

The assumption below will give the transversarity condition.

Assumption 1 If $\alpha_{k}<\hat{\alpha}_{k}$ then

$\Lambda_{0}<-\frac{1}{2}(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}+\frac{\lambda}{\gamma}\{1+(1-p_{\alpha_{k}})^{-\gamma}(-1+\ell\gamma\alpha_{k})\}$ .

If $\alpha_{k}\geq\hat{\alpha}_{k}$ then
$\Lambda_{0}’<-\frac{1}{2}(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}$ .

The optimal solution for problem (9) is stated as follows. The proof is presented in Ap-
pendix.

Proposition 1 Under Assumption $1_{j}$ the value function for problem (9) is given by

$\overline{V}(x,p)=\frac{1}{1-\gamma}\alpha_{v}p^{-(1-\beta)(1-\gamma)_{X}1-\gamma}$ (15)

and the controls are given in feedback form as

$\overline{\theta}(t)=\alpha_{\theta}\overline{X}(t)$ , $\overline{K}(t)=\alpha_{k}\overline{X}(t)/P(t)$ , $\overline{C}(t)=\alpha_{c}\overline{X}(t)$ , $\overline{q}(t)=\alpha_{q}\overline{X}(t)$ (16)
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where $\overline{X}(t)$ is the wealth process generated by these controls and where constants $\alpha_{v},$ $\alpha_{\theta}$ are
written by

. $\alpha_{\theta}\alpha_{v}$ $==$
$\frac{\alpha_{c}^{\beta(1}\mu-r}{\gamma\sigma_{S}^{2}}+(\beta-(\alpha_{k}+\beta-1)\gamma-1)\frac{\sigma_{P1}}{\gamma\sigma_{S}}-\gamma)-1\alpha_{k}(\beta-1)(\gamma-1)\beta$

$(18)(17)$

and where $\alpha_{k}$ is a root of the equation $F(\alpha_{k})=0$ and where constants $\alpha_{q},$ $\alpha_{c}$ are given by as
follows:
(i) If $\alpha_{k}\geq\hat{\alpha}_{k}$ then insurance policy is given by deductible form as

$\alpha_{q}=\ell\alpha_{k}-(1-\phi^{-\frac{1}{\gamma}})$ (19)

and $\alpha_{c}$ is given by
$\alpha_{c}=-\beta\Lambda_{0}’-\frac{1}{2}\beta(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}$ .

(ii) If $\alpha_{k}<\hat{\alpha}_{k}$ then no insurance is optimal $i.e$ . $\alpha_{q}=0$ and $\alpha_{c}$ is given by

$\alpha_{c}=-\beta\Lambda_{0}-\frac{1}{2}\beta(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}+\frac{\lambda\beta}{\gamma}\{1+(1-\ell\alpha_{k})^{-\gamma}(-1+\ell\gamma\alpha_{k})\}$ .
The insurance coverage is given by (19). It follows that the state space can be divided by

the ratio $z=x/(kp)$ at

$z^{*}= \frac{\ell}{1-\phi^{-\frac{1}{\gamma}}}$

into the constrained domain
$C=\{(x, k,p)|z>z^{*}\}$ (20)

and into the unconstrained domain

$U=\{(x, k,p)|z\leq z^{*}\}$ . (21)

If $(x, k,p)\in C$ , no insurance is optimal in the myopic sens$e$ . Therefore wealthier consumers
will not insure. And if $(x, k,p)\in U$ , positive coverage is needed. The consumer who would like
to hold a large amount of durable goods as against his wealth has a demand for the insurance.
The insurance policy is given by the deductible form and the deductible equals

$(1-\phi^{-\frac{1}{7}})\overline{X}(t)$

which is proportional to wealth. Hence as in the no insuranc$e$ domain, wealthier consumers
can reduce the coverage of costly external insurance and partly follow self-insurance. Of course
positive loading decreases the demand for the insurance.

Let us consider a special case where the premium loading goes to $0$ . In this case $\phiarrow 1$ and
then $z^{*}arrow\infty$ . Therefore there is only one domain $U$ where insurance is demanded. Further
the deductible goes to zero and then full insurance is optimal. Finally when the premium
loading equals $0$ , myopic strategy is optimal.

It is not$ed$ that when durable goods are insured against damage the solvency condition
(7) will be satisfied by the insurance payment and when no insuranoe is needed, the solvency
condition (7) is satisfied even if an insured event occurs because the definition of constrained
domain implies the equation

$\frac{x}{kp}>\frac{\ell}{1-\phi^{-1}\gamma}>\ell$
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holds. We also note that the domains can be rewritten by

$C=\{(x, k,p)|\alpha_{k}<\hat{\alpha}_{k}\}$ , $U=\{(x, k,p)|\alpha_{k}\geq\hat{\alpha}_{k}\}$

and that the controlled consumption of perishable goods given by (??) differs as to the domains.

A Proof of Proposition 1
First we reduce the dimensionality of the problem. Second we show that the optimal strategy
ignoring the positive coverage constraint in the constrained domain is equal to the myopic
strategy. Third we also show that the optimal strategy constrained to be no insuranoe in the
unconstraint domain is equal to the myopic strategy.

A. 1 Reducing the dimensionality of the problem

As in Damgaard, Fuglsbjerg and Munk (2003), the dimensionality of problem (9) can be
reduced as follows.

From (6), for all $\kappa>0$ , the strategy $(\Theta, K, C, Q)$ is admissible with initial wealth $x$ and
initial durable price $p$ if and only if the strategy $(\kappa\Theta, K, \kappa C, \kappa Q)$ is admissible with initial
wealth $\kappa x$ and initial durable prioe $\kappa p$ . Since $U(\kappa C, K)=\kappa^{\beta(1-\gamma)}U(C, K)$ , it follows that

$\overline{V}(\kappa x, \kappa p)=\kappa^{\beta(1-\gamma)}\overline{V}(x,p),$ $\kappa>0$ .
From the equation above, it follows that

$\overline{V}(x,p)=p^{\beta(1-\gamma)}\overline{V}(x/p, 1)$ .
Therefore, to set $y=x/p$ we can reduce the problem by

$\overline{V}(x,p)=p^{\beta(1-\gamma)}\overline{v}(y)$ .

Substitute this result to (10) and $SimP1\mathfrak{b}^{r}$ it, then we get the ordinary differential equation:

$0=$ $supJ(v(y))$ (22)
$\hat{\theta}\in R,(\hat{c},k,\hat{q})\in R_{+}^{3}$

where

$J(v(y))$ $=$
$\frac{(\hat{c}^{\beta}k^{1-\beta})^{1-\gamma}}{1-\gamma}+\frac{1}{2}\{\beta(\gamma-1)((\beta(\gamma-1)+1)\sigma_{P}^{2}-2\mu_{P})-2\rho\}v(y)$

$+\{-\hat{c}+(-\delta+$ ( $-\gamma\beta+\beta$ 一 $1$ ) $\sigma_{P}^{2}+\mu_{P}-r$ ) $k-\phi\hat{q}$

$+(\mu-r+(-\gamma\beta+\beta-1)\sigma_{S}\sigma_{P1})\hat{\theta}+((\beta(\gamma-1)+1)\sigma_{P}^{2}-\mu_{P}+r)y\}v’(y)$

$+ \frac{1}{2}\{k^{2}\sigma_{P}^{2}+\sigma_{S}^{2}\hat{\theta}^{2}+2k\sigma_{S}\sigma_{P1}\hat{\theta}-2(k\sigma_{P}^{2}+\sigma_{S}\sigma_{P1}\hat{\theta})y+\sigma_{P}^{2}y^{2}\}v’’(y)$

$+\lambda\{v(y-\ell k+\hat{q})-v(y)+\ell kv’(y)\}$ (23)

and where we have set new control variables:

� $=c/p$ , $\hat{\theta}=\theta/p$ , $\hat{q}=q/p$ .
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A.2 The solution in the constraint domain
We show that the optimal solution for the problem

$0= \sup_{\hat{\theta}\in R,(\hat{c},k)\in R_{+}^{2},\hat{q}\in R}J(v(y))$
(24)

equals to the myopic solution given in Proposition 1 when $\alpha_{k}$ lies in constraint domain (20).
We suppose that the differential equation (24) has the solution

$v(y)= \frac{1}{1-\gamma}\alpha_{v}y^{1-\gamma}$ (25)

with the maximizing control values

� $=\alpha_{c}y$ , $\hat{\theta}=\alpha_{\theta}y$, $k=\alpha_{k}y$ , $\hat{q}=\alpha_{q}y$ . (26)

Ignoring the positive constraint $\hat{c}$ and $k$ , the first order conditions for the maximizing control
values $\hat{q},\hat{c},\hat{\theta},$ $k$ are:

$v’(y-\ell k+\hat{q})-\phi v(y)=0$, (27)
$U_{c}(c, k)-v’(y)=0$ , (28)
$(\mu-r+(-\gamma\beta+\beta-1)\sigma s\sigma_{P1})v’(y)+(\sigma_{S}^{2}\theta-2\sigma_{S}\sigma_{P1}(y-k))v’’(y)=0$, (29)

$U_{k}(c, k)+(-\delta+$ ( $-\gamma\beta+\beta$ 一 $1$ ) $\sigma_{P}^{2}+\mu_{P}-r)v’(y)+(\sigma_{P}^{2}(k-y)+\theta\sigma s\sigma_{P1})$

$+\lambda(-\ell v’(y-\ell k+\hat{q})+\ell v’(y))=0$ . (30)

Inserting the control values (26) and the supposed solution (25), we get from (27) that

$\alpha_{q}=p_{\alpha_{k}-}(1-\phi^{-\frac{1}{\gamma}})$ (31)

and from (28) that
$\alpha_{v}=\beta\alpha_{c}^{\beta(1-\gamma)-1}\alpha_{k}^{(\beta-1)(\gamma-1)}$ (32)

and from (29) that
$\alpha_{\theta}=\frac{\mu-r+(\beta-(\alpha_{k}+\beta-1)\gamma-1)\sigma_{S}\sigma_{P1}}{\gamma\sigma_{S}^{2}}$ (33)

Substituting (25) and (26) into (30) and applying

$U(c, k)= \frac{c}{\beta(1-\gamma)}U_{c}(c, k)$ , $U_{k}( c, k)=\frac{1-\beta}{\beta}\frac{c}{k}U_{c}(c, k)$ (34)

and (28) yield

$\alpha_{C}=\frac{\gamma\beta\alpha_{k}}{1-\beta}.\{\underline{\lambda(\phi-1)\ell-}\frac{(-\delta+(-\gamma\beta+\beta-1)\sigma_{P}^{2}+\mu_{P}-r)}{\gamma}+(\sigma_{P}^{2}(\alpha_{k}-1)+\alpha_{\theta}\sigma s\sigma_{P1})\}$ .
(35)

Substituting (26) back into (24) and applying (34) and (28) to simplify, then inserting the
candidate control values (31), (32), (33) and (35) yields the quadratic equation

$\Lambda_{0}’+(\Lambda_{1}+\frac{\lambda(\phi-1)\ell}{1-\beta})\alpha_{k}+\Lambda_{2}\alpha_{k}^{2}=0$ (36)
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which is equivalent to (14) when $\alpha_{k}\geq\hat{\alpha}_{k}$ .
If (36) has a root that satisfies $\alpha_{k}\geq\hat{\alpha}_{k}$ then $q(t)$ can be positive from (31). Therefore the

cutoff level from the right hand side is given by $\hat{\alpha}$ . We will later show that the cutoff level
bom the left hand side is equal to $\hat{\alpha}_{k}$ to seek the optimal solution when we set $q(t)=0$ .

Supposing $\alpha_{k}\geq\hat{\alpha}_{k}$ we show $\alpha_{c}$ is positive in the following. We can show that (35) can be
rewrttien by

$\alpha_{c}=-\beta\Lambda_{0}’-\frac{1}{2}\beta(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}$

from (36). Then $\alpha_{c}>0$ from Assumption ??, Supposing $\alpha_{k}>\hat{\alpha}_{k}$ the solvency condition
$X(t)>0$ is hold becaus$e$ the loss of durabel goods are insured.

Finally we can show the transversarity condition of problem (24) is equivalent to Assump-
tion ?? after tedious manipulation. Then we conclude that the solution of HJB equation (24)
above is the myopic solution of problem (9) supposing $\alpha_{k}>\hat{\alpha}_{k}$ .

A.3 The solution in the unconstraint domain

We show that the optimal solution for the problem

$0=$ $supJ(v(y))$ (37)
$\hat{\theta}\in R,(\hat{c},k)\in R_{+}^{2}$

equals to the myopic solution given in Propositlon 1 when $\alpha_{k}$ lies in unconstraint domain (21).
The optimal solution can be derived in the same manner as in the previous section except

that the quadratic equation is replaced by the non-linear equation

$\Lambda_{0}+\Lambda_{1}\alpha_{k}+\Lambda_{2}\alpha_{k}^{2}+\frac{\lambda}{\gamma}\{(1-\ell\alpha_{k})^{-\gamma}(1+\frac{\beta\gamma\ell}{1-\beta}\alpha_{k})-(1+\frac{\gamma\ell}{1-\beta}\alpha_{k})\}=0$ (38)

which is equivalent to (14) when $\alpha_{k}<\hat{\alpha}_{k}$ and that the optimal consumption is given by

$\alpha_{c}=-\beta\Lambda_{0}-\frac{1}{2}\beta(1-\gamma)\sigma_{P2}^{2}\alpha_{k}^{2}+\frac{\lambda\beta}{\gamma}\{1+(1-\ell\alpha_{k})^{-\gamma}(-1+\ell\gamma\alpha_{k})\}$ . (39)

The solution $\alpha_{v}$ and $\alpha_{\theta}$ can be given by substituting $\alpha_{k}$ as a root of (38) and applying (39)
into (32) and (33).

We can see that the nonlinear equation (14) has at most one positive root. Then supposing
$\alpha_{k}<\hat{\alpha}_{k}$ , imply solvency condition is satisfied. Beside this $\alpha_{c}$ will be positive from (39) and
Assumption 1. The transversarity condition is verified by the Assumption 1 after tedious
manipulation we shall omit it.
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