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INTRODUCTION

My talk is concerned with some simple module of the symmetric group over a
field of characteritic 2. The simple module concerned is called the spin module and
we shall discuss its cohomological properties, especially, want to discuss a problem
raised by Uno at the 2001 conference of this meeting [8].

Let $\Sigma_{n}$ be the symmetric group of degree $n$ and $k$ be an algebraically closed field
of characterltic 2. Simple modules of $\Sigma_{\mathfrak{n}}$ is parametrized by the set of 2-regular
partitions of $n$ . For $n=2(m+1)$ , the simple module $D^{(m+2,m)}$ corresponding to the
partition $(m+2, m)$ is called the spin module of $\Sigma_{2(m+1)}$ . $D^{(m+2,m)}\downarrow\Sigma_{2m+1}$ remains
to be simple and isomorphic to $D^{(m+1,m)}$ , the simple $k\Sigma_{2m+1}$ -module corresponding
to the partition $(m+1, m)$ of $2m+1$ . $D^{(m+1,m)}$ is also called the spin module of
$\Sigma_{2m+1}$

conjecture on the spin module $D^{(m+1,m)}$ proposed in [8] concerns with the
cohomological variety of it and he remarked that the comlexity of $D^{(m+1,m)}$ is $[m/2]$

if the conjecture was true. We do not know whether the conjecture is true or not,
but we could caluculate its complexity. We shall give a proof of the following.

Theorem The complexity of the spin module $D^{(m+1,m)}$ of $\Sigma_{2m+1}$ is equal to $[m/2]$ .

We first summarize some results from the cohomology theory of finite groups in
section 1 and then give a definition of the spin module of the symmetric group in
section 2. Our proof of the theorem heavily depends on the observations of Nagai
and Uno [8], [6] on which we shall discuss in section 3. A proof of the proposition
will be given in the last of section 3. In my lecture, we could not discuss Uno’s
conjecture in detail. In section 4, we include here my idea to answer the conjecture.

1. FROM COHOMOLOGY THEORY OF FINITE GROUPS

Let $kG$ be the group algebra of a finite group $G$ over an algebraically closed field
$k$ of characteristic $p>0$ . The cohomology algebra $H^{*}(G, k)$ of $G$ over $k$ is a finitely
generated, graded commutative algebra over $k$ .

Let $V_{G}(k)$ be the variety, the maximal ideal spectrum corresponding to $H^{*}(G, k)$ .
For a finitely generated $kG$-module $M$ , the cohomology algebra $Ext_{kG}^{*}(M, M)$ is
an $H^{*}(G, k)$ -module by cup products and is finitely generated. Let $I_{G}(M)$ be the
annihilator ideal of $Ext_{kG}^{*}(M, M)$ in $H^{*}(G, k)$ . The variety of $M$ , denoted by $V_{G}(M)$ ,
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is a subvariety of $V_{G}(k)$ defined by the ideal $I_{G}(M)$ . The complexity of $M$ , denoted
by $c(M)=c_{G}(M)$ , is defined to be the Krull dimension of $H^{*}(G, k)/I_{G}(M)$ .

For a subgroup $H$ of $G$ , we have the restriction map $res_{G,H}$ : $H^{*}(G, k)arrow H^{*}(H, k)$

and the corestriction map (or the transfer map) $cor_{H,G}$ : $H^{*}(H, k)arrow H^{*}(G, k)$ .
The restriction map is a ring homomorphism so that it induces a map $res_{G,H}^{*}$ :
$V_{H}(k)arrow V_{G}(k),$ $\mathfrak{l}|arrow res_{G,H}^{-1}(\mathfrak{l})$ .

Quillen’s dimension theorem and stratification theorem say the following.

Theorem 1.1 (Quillen). The following assertions hold.
(1) $V_{G}(M)= \bigcup_{E\subset G,etem.abetian}$ res$G,E*(V_{E}(M))$

(2) $c_{G}(M)= \max_{E\subset G,etem.abe/tan}c_{E}(M)$

For these results and a general theory of cohomology of finite group, see the book
of Benson [2].

2. THE SPIN MODULE OF THE SYMMETRIC GROUP

In the rest of the note, let $p=2$ .
Let $\Sigma_{n}$ be the symmetric group of degree $n$ . Simple modules of $\Sigma_{\mathfrak{n}}$ over $k$ is

parametrized by the set of 2-regular partitions of $n$ .
Assume that $n=2(m+1)$ is even. Then the simple module $D^{(m+2,m)}$ of $\Sigma_{2(m+q)}$

corresponding to the partition $(m+2, m)$ is called the spin module of $\Sigma_{2(m+1)}$ . It is
known that $\dim_{k}D^{(m+2,m)}=2^{m}$ .

$D^{(m+2,m)}\downarrow\Sigma_{2m+1}$ remains to be simple and corresponding to the partition $(m+$

$1,$ $m$) of $2m+1$ .
$D^{(m+2,m)}\downarrow_{\Sigma_{2m+1}}=D^{(m+1,m)}$

The restriction of $D^{(m+1,m)}$ to $\Sigma_{2m}$ is no longer simple, and is a (unique) non-split
self extension of the spin module $D^{(m+1,m-1)}$ of $\Sigma_{2m}$ .

$D^{(m+1,m)}\downarrow_{\Sigma_{2m}}=DD\{\begin{array}{l}m+1,m-l)m+l,m-1)\end{array}$

We denote this $k\Sigma_{2m}$-module by $M^{(m+1,m-1)}$ . Cohomological properties $D^{(m+1,m)}$

are covered by thosc of $M^{(m+1,m-1)}$ because $[\Sigma_{2m+1} : \Sigma_{2m}]$ is odd.
For representations of symmetric groups, see the book of James [5]. Several

properties of the spin module are shown by Gow and Kleshchev [4]. See also the
study of Sheth [7].

3. OBSERVATIONS BY NAGAI AND UNO

In this section, we summarize results by Nagai and Uno [8] and give a proof of
the theorem mentioned in the introduction.
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3.1. Restriction to Young Subgroups.
The module $M^{(m+1,m-1)}$ behaves well when restricted to Young subsgroups of $\Sigma_{n}$ .

The following two results are obtained by Theorem 2 [8] and proved by Nagai and
Uno. See also Uno’s discussions there.

Proposition 3.1 (Nagai-Uno). The following assertions hold.
$D^{(i+1,i-1)}\otimes D^{(m-i+2,m-i)}$

(1) $D^{(m+2,m)}\downarrow\Sigma_{2\langle i-1)+2}\cross\Sigma_{2(m-:)+2}$ is a self extension;
$D^{(i+1,i-1)}\otimes D^{(m-i+2,m-i)}$

of the $k[\Sigma_{2(i-1)+2}\cross\Sigma_{2(m-i)+2}]$ -module $D^{(i+1,i-1)}\otimes D^{(m-i+2,m-i)}$ .
(2) $D^{(m+2,m)}\downarrow_{\Sigma_{2i+1}\cross\Sigma_{2(m-:)+1}}\cong D^{(i+1,i)}\otimes D^{(m-i+1,m-i)}$

(3) $M^{(m+1,m-1)}\downarrow_{Z_{2i}x\Sigma_{2(m-:)}}\cong M^{(i+1,i-1)}\otimes M^{(m-i+1,m-i-1)}$

Lemma 3.2. Let $\sigma=(12)(34)\cdots(2m-12m)\in\Sigma_{2m}$ . Then $M^{(m+1,m-1)}\downarrow\langle\sigma$ ) is
projective.

3.2. Elementary Abelian Subgroups of $\Sigma_{n}$ .
Let

$n=2^{s_{1}}+2^{s_{2}}+\cdots+2^{s_{k}}$ , $0\leqq s_{1}<s_{2}<\cdots<2^{k}$

be the 2-adic expansion of $n$ . Then
$\Sigma_{21}\cross\Sigma_{22}\cross\cdots\cross\Sigma_{2k}\subset\Sigma_{n}$

is of odd index. So, in order to determine the variety $V_{\Sigma_{2m}}(M^{(m+1,m-1)})$ and the
complexity $c_{\Sigma_{2m}}(M^{(m+1,m-1)})$ , we may assume that $n=2^{\delta}$ for some $s$ by Proposition
1 and Quillen’s Theorem.

Let $E(s)$ be a (maximal) regular elementary abelian subgroup of $\Sigma_{2^{s}}$ . Elementary
abelian subgroups of $\Sigma_{n}$ are well understood. The following fact is known. See [1].

Lemma 3.3. Each elementary abelian 2-group of $\Sigma_{2}$. is conjugate to a subgroup
$E(s)$ or $\Sigma_{2^{-1}}.\cross\Sigma_{2^{-1}}.$ .

3.3. The Dickson Invariants in Polynomial Ring.
We easily see that

$N_{\Sigma_{2}}.(E(s))=GL(E(s))\ltimes E(s)$

where $GL(E(s))\cong GL(s, 2)$ is a general linear group on the vector space $E(s)$ over
$GF(2)$ .

The cohomology ring $H^{\cdot}(E(s), k)$ is a polynomial ring of $s$ variables over $k$ on
which $GL(E(s))$ acts in obvious way. And the invariant subring $H^{*}(E(s), k)^{GL(E(\epsilon))}$

is generated by so called Dickson invariants denoted by

$c_{t}=c_{t}(E(s))$ , $0\leqq t\leqq s-1$ , deg $c_{t}=2^{s}-2^{t}=2^{t}(2^{s-t}-1)$

$c_{t}$ satisfies that

for $F\subset E(s),$ $res_{E(s),F}(c_{t})\neq 0\Leftrightarrow|E(s):F|\leqq 2^{t}$

For precise definition and properties of Dickson invariants, see [3].
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3.4. Uno’s Conjecture.
Denote by $M(s)$ the $k\Sigma_{2^{e}}$ -module $M^{(2^{*-1}+1,2^{*-1}-1)}$ . The assertion 1 in the following

lemma follows from Lemma 3.2 and a proof of the assertion 2 is given in [8].

Lemma 3.4. The following assertions hold.
(1) $c_{E(s)}(M(s))\leqq s-1$ .
(2) $c_{E(1)}(M(1))=0$ , $c_{E(2)}(M(2))=1$ and $c_{E(3)}(M(3))=2$ .

Uno conjectured the following.

Conjecture 3.5 (Uno [8]). $\sqrt{I_{E(s)}(M(s))}i_{8}$ a principal ideal generated by the Dick-
son invanants $c_{s-1}^{-}(E(s))$ .

And he remarked that the following fact is true.
Theorem 3.6. If the conjecture is tru$e$, then $c_{\Sigma_{2m}}(M^{(m+1,m-1)})=[m/2]$ .

3.5. Proof of Theorem.
We do not know whether the conjecture is true or not. But the conclusion of

Theorem 3.6 can be proved without answering to the conjecture.

Theorem 3.7. The following assertions hold.
(1) $c_{\Sigma_{2}}.(M(s))=2^{\iota-2}$

(2) $c_{\Sigma_{2m}}(M^{(m+1,m-1)})=[m/2]$

Proof. We have an inequality $2^{s-2}\geqq s-1$ for $s\geqq 2$ . By Lemma 3.4, $c_{E(s)}(M(s))\leqq$

$s-1$ . By Propositin 3.1,(3) and induction,
$c_{\Sigma_{2^{-1}}.x\Sigma_{2^{-1}}}.(M(s))=c_{\Sigma_{2^{-1}}.x\Sigma_{2^{-1}}}.(M(s-1)\otimes M(s-1))=2^{\theta-3}+2^{\iota-3}=2^{s-2}$

Lemma 3.3 and Quillen’s theorem imply the assertion 1. The assertion 2 follows
from 1. $\square$

4. TOWARD THE $UNOS$ CONJECTURE

Although we could determined the complexity of the $k\Sigma_{2m}$-module $M^{(m+1,m-1)}$ ,
our result does not give any information concerning the variety $V_{\Sigma_{2m}}(M^{(m+1,m-1)})$

and the annihlator ideal $I_{\Sigma_{2m}}(M^{(m+1,m-1)})$ . In this section, we shall explain our idea
toward the Uno’s conjecture. For a cohomology element $\zeta$ in $H^{*}(\Sigma_{n}, k)$ , let $V_{\Sigma_{n}}(\zeta)$

be the subvariety in $V_{\Sigma_{n}}(k)$ determined by the ideal $\zeta H^{*}(\Sigma_{n}, k)$ .
Problem 4.1. Let $s$ be an positive integer and $M(s)=M^{(2^{-1}+1,2^{\iota-1}-1)}$ be the $k\Sigma_{2}\cdot-$

module defined in subsection 3.4.
(1) Determine the annihilator ideal $I_{\Sigma_{2}}.(M(s))$ .
(2) Find cohomology elements $\zeta_{1},$

$\cdots,$
$\zeta_{2^{-2}}$ in $H^{*}(\Sigma_{2}., k)$ which cover the variety

$V_{\Sigma_{2}}.(M(s))$ , that is, which satisfy
$V_{\Sigma_{2}}.(\zeta_{1})\cap\cdots\cap V_{\Sigma_{2}}.(\zeta_{2^{-2}})\cap V_{\Sigma_{2}}.(M(s))=\{0\}$

In the rest of the section, let $G=\Sigma_{2}$. and $m=2^{\ell-1}$ . For the cohomology of the
symmetric group, we refer to the book of Adem and Milgram [1].
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4.1. A Cohomlogy Element in $H^{*}(\Sigma_{2^{s}}, k)$ Related to $c_{s-1}(E(s))$ .
Let $E(s)$ be a regular elementary abelian subgroup of $G$ . Let
$\sigma_{i}=(2i-12i),$ $1\leqq i\leqq m$ , $\sigma=\sigma_{1}\cdots\sigma_{m}=(12)(34)\cdots(2m-12m)\in\Sigma_{2^{*}}$

$A=\langle\sigma_{1}, \cdots\sigma_{m}\rangle$ is a subgroup of $G$ isomorphic to $\mathbb{Z}_{2^{m}}$ .
Set $H=C_{G}(\sigma)$ . $H$ is a stabilazer of the following set of 2-points sets

$\{\{1,2\}, \{3,4\}, \cdots, \{2m-1,2m\}\}$

Let
$\tau_{i}=(2i-12i+1)(2i2i+2),$ $1\leqq i\leqq m-1$ , $S=\langle\tau_{1}, \cdots , \tau_{m-1}\rangle\subset G$

Then $S$ is a subgroup of $H$ isomorphic to the symmetric group of degree $m=2^{\epsilon-1}$

and $H=S\ltimes A$ , a semidirect product of $S$ by $A$ .
For an integer $i$ with $0\leqq i\leqq m-1$ , set

$S_{i}xS_{m-i}=\langle\tau_{1}, \cdots\tau_{i-1}\rangle\cross\langle\tau_{i+1}, \cdots\tau_{m-1}\rangle\subset S$

$A_{i}xA_{m-i}=\langle\sigma_{1}, \cdots\sigma_{i}\rangle\cross\langle\sigma_{i+1}, \cdots\sigma_{m}\rangle\subset A$

$L_{i}=(S_{1}\cross S_{m-i})\ltimes(1\cross A_{m-i})=S_{i}\cross(S_{m-i}\ltimes A_{m-i})\subset H$

$H$

$1$

Consider the following subgroups of $H$ , $K$ $=$ $(S_{1}\cross S_{m-1})\ltimes A$

$\nabla$

$L$ $=$ $(S_{1}\cross S_{m-1})\ltimes(1xA_{m-1})$

, $[H :K]=m,$ $[K :L]=2(H=L_{0}, L=L_{1})$ .
Let $\alpha\in H^{1}(K, \mathbb{Z}_{2})\subset H^{1}(K, k)$ be the cohomology elements corresponding to the

extension of $k_{K}$ by $k_{K}$ ;
$\alpha$ : $0arrow k_{K}arrow k_{L}\uparrow^{K}arrow k_{K}arrow 0$

Set $\beta=nrm_{K,H}(\alpha)\in H^{m}(H, k)$ , where $nrm_{K,H}$ is the norm map of Evens. And
set $\rho=cor_{H,G}(\beta)\in H^{m}(G, k)$ . Using Mackey formula and properties of Dickson
invariants, we can prove the following lemma.

Lemma 4.2.
$res_{G,E(s)}(\rho)=c_{s-1}(E(s))$

Uno’s conjecture asserts that the fact that $\rho\in$ Ker res$G,B(s)+I_{G}(M(s))$ is true.
We propose the folowing problem.

Problem 4.3. Is $\rho\in\sqrt{I_{G}(M(s))}$ ?

We have no idea to solve the problem, but we think the following fact may help
to have a solution.

Lemma 4.4. An m-fold self-extension of $k_{H}$ corresponding to $\beta\in H^{m}(H, k)$ has
the following form ;

$\beta$ : $0arrow k_{H}arrow k_{L_{m}}\uparrow^{H}arrow\cdotsarrow k_{L}:\uparrow^{H}arrow\cdotsarrow k_{L_{1}}\uparrow^{H}arrow k_{H}arrow 0$
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4.2. A Cohomlogy Element in $H$“
$(\Sigma_{2^{*}}, k)$ Related to $c_{0}(E(s))$ .

Let $n=2^{s}=2m$ and set $\Omega=\{1,2, \cdots n\}$ . For an integer $t$ with $0\leqq t\leqq n$ ,
set $\Gamma_{t}=\{I\subset\Omega ; |I|=t\}$ . $G=\Sigma_{n}$ acts on $\Gamma_{t}$ as a permutation group and the
stabilizer of $I\in\Gamma_{t}$ is a Young subgroup isomorphic to $\Sigma_{t}\cross\Sigma_{n-t}$ .

Let $X_{t}$ be the permutation module of $G=\Sigma_{n}.on$ the set $\Gamma_{t}$ . $X_{0}\cong X_{n}\cong k_{G}$ . We
use the same symbols $I\in\Gamma_{t}$ to denote k-basis of $X_{t}$ .

Define a k-map $f_{t}$ : $X_{t}arrow X_{t+1},0\leqq t\leqq n-1$ by
$f_{t}$ : $X_{t}arrow X_{t+1}$ , $f_{t}(I)= \sum_{j\in\Omega\backslash I}I\cup\{j\}$ , for $I\in\Gamma_{t}$

It is easy to see that $f_{t}$ is a $k\Sigma_{n}$-homomorphism and $f_{t+1}of_{t}=0$ . And a computation
shows that Ker $f_{t+1}={\rm Im} f_{t}$ for $0\leqq t\leqq n-1$ . Thus we have the following lemma.

Lemma 4.5. We have an $(n-1)$ -fold self-extension of $k_{G}$ of the form;
$0arrow k_{G}arrow X_{1}arrow\cdotsarrow X_{t}arrow\cdotsarrow X_{n-1}arrow k_{G}arrow 0$

Let $\zeta\in H^{n-1}(G, k)$ be the cohomology element corresponding to the above ex-
tension. Then we have the following.

Lemma 4.6.
$res_{G,E(s)}(\zeta)=c_{0}(E(s))$

Let $L_{\zeta}=Ker\tilde{\zeta}$ be the Carlson module of $\zeta$ so that we have a short exact sequence
of $kG$-modules;

$0arrow L_{\zeta}arrow\Omega^{\mathfrak{n}-1}(k_{G})arrow\tilde{\zeta}k_{G}arrow 0$

Problem 4.7. Is $c_{G}(L_{\zeta}\otimes M(s))=c_{G}(M(s))-1$ ?

If the above problem is answered affirmatively, then the exact sequence in the
lemma will help to find cohomology elements which covers the variety $V_{G}(M(s))$

and will give us some information to attack Uno’s conjecture.
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