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1 The center of a category
The center of a category is a notion which goes back to work of P. Gabriel [3]. Given a commutative
ring $k$ and a k-linear category $C$ , the center of $C$ is the k-algebra $Z(C)$ consisting of all natural
transformations $\varphi:Id_{C}arrow Id_{C}$ . Explicitly, an element $\varphi\in Z(C)$ is a family of morphisms

$\{\varphi(X):Xarrow X\}_{X\in Ob(C)}$

such that for any morphism $\psi$ : $Xarrow Y$ in $C$ the diagram

$\psi\downarrow XX\underline{\varphi(X)}$

$\{$ $\psi$

$Yarrow Y\varphi(Y)$

is commutative. It is easy to see that $Z(C)$ is a commutative k-algebra with unit element $Id_{Id_{C}}$

(the identity transormation on the identity functor on C). Note that we ignore set thmretic issues
(we implicitly assume that $C$ is equivalent to a small category; this is sufficient for the applications
below).

Examples 1.1. Let $k$ be a commutative ring and $A$ a k-algebra.
(a) Denote by $mod(A)$ the category of finitely generated left A-modules. We have an isomorphism

$Z(A)\cong Z(mod (A))$

sending $z\in Z(A)$ to the natural transformation $\varphi_{z}$ given by left multiplication with $z$ ; that is,
$\varphi_{z}(M)(m)=zm$ for any finitely generated A-module $M$ and $m\in M$ . The inverse of this map
sends $\varphi\in Z(mod (A))$ to $\varphi(A)(1_{A})$ , where here $A$ is viewed as left A-module.
(b) Denote by $D^{b}(A)$ the bounded derived category of finitely generated left A-modules. The map
sending $z\in Z(A)$ to left multiplication by $z$ on the components of a complex of A-modules induces
an injective k-algebra homomorphism

$Z(A)arrow Z(D^{b}(A))$
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but this map need not be surjective (there are examples due to Rickard and K\"unzer).
(c) Suppose that $k$ is a field and that $A$ is a finite-dimensional k-algebra. The stable category
$mod (A)$ has the same objects as $mod (A)$ , and morphisms in $\overline{mod}(A)$ are quotients $\overline{Hom}_{A}(U, V)=$

$Hom_{A}(U, V)/Hom_{A}^{pr}(U, V)$ , where $U,$ $V$ are finitely generated A-modules and where $Hom_{A}^{pr}(U, V)$

is the space of all A-homomorphisms &om $U$ to $V$ which factor through a projective A-module.
Again, the map sending $z\in\underline{Z(A}$) to left multiplication by $z$ on each A-module induces a k-algebra
homomorphism $Z(A)arrow Z(mod(A))$ . This map is not injective, and it is not known whether it is
surjective. Neither the kernel nor the image of this map are understood in general.

2 The graded center of a graded category

The graded center of a graded category is being considered by a growing number of authors
including Buchweitz, Flenner, Benson, Iyengar, Krause; see for instance [2], [1], [7].

Deflnition 2.1. Let $k$ be a commutative ring, let $C$ be a k-linear category, and suppose that $C$ is
graded; that is, $C$ is endowed with a k-linear equivalence $\Sigma$ : $Carrow C$ . The graded center of $(C, \Sigma)$

is the graded k-module $Z^{*}(C)=Z^{*}(C, \Sigma)$ whose degree $n$ component $Z^{n}(C)$ consists of all natural
transformations

$\varphi:Idarrow\Sigma^{n}$

with the property that $\Sigma\varphi=(-1)^{n}\varphi\Sigma$ , for any integer $n$ . Explicitly, an element $\varphi\in Z^{n}(C)$ is a
familiy of morphisms

$\{\varphi(X):Xarrow\Sigma^{\mathfrak{n}}(X)\}_{X\in Ob(C)}$

such that for any morphism $\psi$ : $Xarrow Y$ in $C$ the diagram

$\psi x_{I}arrow^{\varphi(X)}\Sigma^{n}(X)$

$|\Sigma^{n}(\psi)$

$Yarrow\Sigma^{n}(Y)\varphi(Y)$

is commutative and such that for any object $X$ in $C$ the diagram

$\Sigma(X)||arrow^{\Sigma(\varphi(X))}\Sigma^{n+1}(X)\downarrow(-1)^{\mathfrak{n}}Id$

$\Sigma(X)\Sigma^{n+1}(X)\overline{\varphi(\Sigma(X))}$

is commutative.
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Remarks 2.2. Let $k$ be a commutative ring and let $(C, \Sigma)$ be a graded k-linear category.
(a) The graded k-module $Z^{*}(C)$ is in fact a graded commutative k-algebra, with product defined
as follows: for $m,$ $n$ integers and $\varphi\in Z^{m}(C),$ $\psi\in Z^{n}(C)$ we define $\varphi\psi\in Z^{m+n}(C)$ as the famihiy
of compositions of maps

$\varphi\psi(X)=(X\Sigma^{n}(X)\underline{\psi(X)}arrow^{\Sigma^{m}(\varphi(X))}\Sigma^{m+n}(X))$

One easily checks that then $\varphi\psi=(-1)^{mn}\psi\varphi$.
(b) Note that $Z^{0}(C)\subseteq Z(C)$ is an inclusion of commutative k-algebras. This inclusion need not be
an equality in general because the elements in $\varphi\in Z^{0}(C)$ satisfy the additional condition $\Sigma\varphi=\varphi\Sigma$ .
(c) The relevant examples of graded categories in the context of block theory are actually tri-
angulated categories, a concept introduced by Verdier and Puppe. The graded category $(C, \Sigma)$ is
triangulated if for any morphism $f$ : $Xarrow Y$ in $C$ there is a distinguished or exact triangle; that is,
a sequenoe of morphisms of the form

$XY\underline{f}arrow^{g}Zarrow^{h}\Sigma(X)$

satisfying a list of properties, one of which is that then the “shifted” triangle

$YZ\Sigma(X)\underline{9}\underline{h}arrow^{-\Sigma(f)}\Sigma(Y)$

is also exact, implying in particular that

$\Sigma^{n}(X)arrow^{(-1)^{\mathfrak{n}}\Sigma^{n}(f)}\Sigma^{n}(Y)arrow^{(-1)^{n}\Sigma^{n}(g)}\Sigma^{n}(Z)arrow\Sigma^{n+1}(X)(-1)^{n}\Sigma^{n}(h)$

is exact. The point of the additional commutation $\Sigma\varphi=(-1)^{n}\varphi\Sigma$ in the definition of an element
$\varphi\in Z^{n}(C)$ is that then $\varphi$ induces morphisms of exact triangles

$|(-1)^{n}\varphi(\Sigma(X))=\Sigma(\varphi(X))$

$\varphi(X)x_{I}arrow Yf(-1)^{n}\varphi(Y)\downarrowarrow^{g}Z^{h}\downarrow\varphi(Z)arrow\Sigma(X)$

$\Sigma^{n}(X)arrow\Sigma^{\mathfrak{n}}(Y)(-1)^{\mathfrak{n}}\Sigma^{\mathfrak{n}}(f)arrow\Sigma^{n}(Z)(-1)^{n}\Sigma^{n}(g)arrow\Sigma^{n+1}(X)(-1)^{n}\Sigma^{n}(h)$

3 Examples

3.1 Derived categories and Hochschild cohomology

Let $A$ be an algebra over a commutative ring $k$ such that $A$ is finiteJy generated projective as
k-module. The derived bounded category $D^{b}(A)$ of finitely generated A-modules is trianguiated,
with the shift functor [1] as self-equivalence and mapping cone sequences as exact triangles. Since
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$A$ is finitely generated projective as k-module, the Hochschild cohomology $HH^{*}(A)$ of $A$ can be
identified with the Ext-algebra of $A$ as $A\otimes_{k}A^{op}$-module. There is a canonical graded k-algebra
homomorphism

$HH^{*}(A)arrow Z^{*}(D^{b}(A))$

sending an element in $HH^{n}(A)$ represented by a morphism $\zeta$ : $Aarrow A[n]$ in $D^{b}(A)$ to the family of
chain maps $\zeta\otimes Id_{X}$ : $Xarrow X[n]$ , where $X$ is a bounded complex of left A-modules and where we
identify $A\otimes_{A}X\cong X$ and $A[n]\otimes_{A}X\cong X[n]$ , for any integer $n$ (note though that $HH^{n}(A)=\{0\}$

for $n$ negative). This graded algebra homomorphism is neither injective nor surjective, in general.

3.2 Finite p-group algebras
Let $p$ be a prime, $P$ a finite p-group and suppose that $k$ is a field of characteristic $p$ . Evaluation
at the trivial $kP$-module $k$ induces a graded algebra homomorphism

$Z(D^{b}(kP))arrow H^{*}(P;k)$

which is surjective and whose kernel $\mathcal{N}$ is a nilpotent ideal (cf. [7, 1.3]). For the surjectivity
one observes that this map has a section sending $\zeta\in H^{n}(P, k)$ to the family $\zeta\otimes Id_{M}$ , with $M$

runnig over the finitely generated left $kP$-modules (so we make use of the Hopf algebra structure
of $kP$). The nilpotency of $\mathcal{N}$ follows from the fact that $D^{b}(kP)$ is a triangulated category of finite
dimension, in the sense of Rouquier.

3.3 Stable categories of symmertic algebras
Let $k$ be a field and let $A$ be a finite-dimen8iona1 symmetric k-algebra; that is, the k-dual $A^{*}=$

Hom$k(A, k)$ of $A$ is isomorphic to $A$ as A-A-bimodule. Examples of symmetric algebras include
group algebras of finite groups and Iwahori-Hecke algebras. Then the stable category $\overline{mod}(A)$ is
triangulated, with a shift functor $\Sigma$ which sends an A-module $U$ to the cokernel $coker(Uarrow I)$

of an injective envelope $Uarrow I$ of $U$ . By a theorem of Rickard, there is a canonical functor of
triangulated categories

$D^{b}(A)-\overline{mod}(A)$

The Tate analogue $H^{\wedge}H^{s}(A)$ of Hochschild cohomology has the properties that $H^{\wedge}H^{n}(A)=HH^{n}(A)$

for $n$ positive, $H^{\wedge}H^{0}(A)$ is the quotient of $HH^{0}(A)$ by the ideal generated by the projective ideal
$Z^{pr}(A)$ of $Z(A)$ consisting of all $z\in Z(A)$ such that left (or right) multiplication by $z$ on $A$ induces
an $A\otimes_{k}A^{op}$-endomorphism of $A$ belonging to $End_{A\otimes_{k}A^{op}}^{pr}(A)$ , and for $n$ negative we have Tate

duality $H^{\wedge}H^{n}(A)\cong H^{\wedge}H^{-n-1}(A)^{*}$ while $HH^{n}(A)=\{0\}$ . As in the case of Hochschild cohomology,
there is a canonical graded k-algebra homomorphism

$H^{\wedge}H^{*}(A)arrow Z^{*}(\overline{mod}(A))$

about which very little is known.
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3.4 Brauer tree algebras
Let $A$ be a Brauer tree algebra over a field $k$ . The canonical map

$H^{\wedge}H^{*}(A)arrow Z^{*}(\overline{mod}(A))$

is surjective in even degrees and zero in odd degrees. In particular, this map induces an isomor-
phism modulo nilpotent ideals, the degree zero component $Z(A)arrow Z^{0}(\overline{mod}(A))$ is surjective and
$Z^{0}(\overline{mod}(A))$ is a uniserial algebra. This is proved by explicit calculations, using first that $A$ can
be replaced by a serial algebra and then the fact that there are only finitely many isomorphism
classes of indecomposable modules. See [4] for details.

3.5 Degree $-1$ and almost split sequences
Given a symmetric algebra $A$ over a field $k$ , it is not known whether $Z^{0}(\overline{mod}(A))$ is even finite-
dimensional. It turns out that almost split sequences determine elements in $Z^{-1}(mod(A))$ : any
almost split sequence is of the form

$0arrow\Sigma^{-2}(U)arrow Earrow Uarrow 0$

$henceerminesane1ement\zeta_{U}inE_{\frac{xt_{A}^{1}}{mod}}(U,\Sigma(U))\cong\overline{Hom}_{A}(U,$$\sum_{w(\zeta_{U})_{U\in^{\frac{\det}{mod}}(A)}.e}-1(U)),andthen_{\frac{the}{mod}}fami1yisane1ementinZ^{-1}((A))^{-2}A_{Saconsequence}getthatZ^{-l}((A))is$

infinite dimensional whenever $\overline{mod}(A)$ has infinitely many non periodic $\Sigma$-orbits; see [7,–\S 2]. If
Tate duality could be extended to $Z^{*}(\overline{mod}(A))$ in some sense this would imply that $Z^{0}(mod (A))$

would also be infinite dimensional in that case.

4 Transfer
The group theoretic notions of tranfer between the comology rings of a finite group $G$ and a
subgroup $H$ of $G$ over some commutative ring $k$ is based on the fact that restriction and induction
are both left and right adjoint functors between $mod (kG)$ and $mod (kH)$ . Similarly, any pair of
biadjoint functors between module categories $mod(A)$ and $mod (B)$ of symInetric k-algebras $A,$ $B$

yields tramsfer maps between their Hochschild cohomology rings $HH^{*}(A)$ and $HH^{*}(B)$ ; cf. [5].
The same principle extends to centers of graded categories (cf. [7]):

Definition 4.1. Let $(C, \Sigma),$ $(\mathcal{D}, \Delta)$ be graded k-linear categories, where $k$ is a commutative ring,
and let $\mathcal{F}:Carrow \mathcal{D}$ and $\mathcal{G}$ : $\mathcal{D}arrow C$ be two biadjoint functors commuting with $\Sigma$ and $\Delta$ . We define
the transfer map

$tr_{F}$ : $Z^{*}(C)arrow Z^{*}(\mathcal{D})$

by sending an element $\varphi\in Z^{n}(C)$ to the composition of natural transformations

$Id_{\mathcal{D}}arrow \mathcal{F}\mathcal{G}=\mathcal{F}Id_{C}\mathcal{G}\mathcal{F}\Sigma^{n}\mathcal{G}=\mathcal{F}\mathcal{G}\Delta^{n}\underline{F\varphi G}arrow\Delta^{n}$
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where the first and last arrows are induced by adjunction units and counits, respectively. Analo-
gously we define

trg : $Z^{*}(\mathcal{D})arrow Z^{*}(C)$

An element $\varphi\in Z^{n}(C)$ is called $\mathcal{F}$-stable if there is $\psi\in Z^{n}(D)$ such that $\mathcal{F}\varphi=\psi \mathcal{F}$ as natural
transformations $hom\mathcal{F}$ to $\mathcal{F}\Sigma^{n}=\triangle^{n}\mathcal{F}$ . An element in $Z^{*}(C)$ is $\mathcal{F}$-stable if all its components are
$\mathcal{F}$-stable. We denote by $Z_{F}^{*}(C)$ the set of $\mathcal{F}$-stable elements in $\mathbb{Z}^{*}(C)$ ; this is a graded subalgebra
of Z*(C).

The transfer maps defined above depend on a choice of adjunction isomorphisms. These maps
are graded k-linear, but not multiplicative in general. One can use them under certain circum-
stances to get isomorphisms between subalgebras of stable elements:

Theorem 4.2. With the notation of 4.1, if $tr_{F}(Id_{Id_{C}})\in H^{0}(\mathcal{D})$ and trg $(Id_{Id_{\mathcal{D}}})\in H^{0}(C)$ are
invertible then there is a canonical $isomo7phism$ of graded algebras

$Z_{F}^{*}(C)\cong Z_{Q}^{*}(D)$

The word canonical in the above theorem refers to the fact that the isomorphism does no
longer depend on the choice of adjunctions so long as the elements $tr_{F}(Id_{Id_{C}})\in H^{0}(\mathcal{D})$ and
trg $(Id_{Id_{\mathcal{D}}})\in H^{0}(C)$ are invertible.

5 Applications to block theory

Let $p$ be a prime number, $k$ and algebraically closed field of characteristic $p$ and and let $G$ be a
finite group. A block of $kG$ is an indecomposable direct factor $B$ of $kG$ as k-algebra, or, which
amounts to the same, an indecomposable direct summand of $kG$ as kG-kG-bimodule. A block $B$

of $kG$ gives rise to two types of invariants, associated with either
$\bullet$ the module category $mod (B)$ , or
$\bullet$ the hsion system $\mathcal{F}$ of $B$ on adefect group $P$ of $B$ .

The relatioohip between the two types of invariants is one of the mysteries which drives block
theory. For instance, it is not known whether two blo&s $B,$ $B’$ (of possibly different finite groups)
with equivalent module categories will have isomorphic defect groups and Mion systems. Con-
versely, some of the deepest conjectures in block theory such as Alperin’s weight conjecture predict
that the number of isomorphism classes of simple $B$-modules can be expressed in terms of the
fusion system together with acertain cohomological invariant of $\mathcal{F}$. One of the invariants of the
fusion system $\mathcal{F}$ of the block $B$ is the block cohomology $H^{*}(B)$ defined as inverse limit over $\mathcal{F}$

of the contravariant functor sending asubgroup $Q$ of the defect group $P$ to its cohomoloy ring
$H^{*}(Q;k)$ . This is afinitely generated graded commutative $k$-algebra, hence defines avariety $V(B)$ ,
called block variety (cf. [6]). The next observation, which relates block cohomology $H^{*}(B)$ and
the derived category of $B$ is again based on the fact that bounded derived categories of finite
dimensional algebras are finite dimensional.
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Proposition 5.1. There is a canonical graded algebra homomorphism

$H^{*}(B)arrow Z^{*}(D^{b}(B))$

and a nilpotent ideal $\mathcal{N}$ in $Z^{*}(D^{b}(B))$ such that $Z^{*}(D^{b}(B))/\mathcal{N}$ becomes noetherian as $H$“ $(B)-$

module; in particular, $Z$“ $(D^{b}(B))/\mathcal{N}$ is finitely generated as k-algebra.

One would very much like a more precise result: is it true that actually $H^{*}(B)$ or $Z^{*}(D^{b}(B))/N$

for some nilpotent $ideal\mathcal{N}$? If true, it would have the consequence that any two derived equivalent
blockalgebras $B,$ $B’$ would automatically have homeomorphic block varieties. The relevance of
this type of statement, if true, lies precisely in the fact that $D^{b}(B)$ is an invariant of the module
category of $H$ while the block variety $V(B)$ is an invariant of the fusion system $\mathcal{F}$ of $B$ . Using the
transfer technology from the previous section one can show the following weaker result:

Theorem 5.2. Denote by $\mathcal{G}$ : $D^{b}(B)arrow D^{b}(kP)$ the functor induced by restriction. The canon-
ical map $H^{*}(B)arrow Z^{*}(D^{b}(B))$ sends $H^{*}(B)$ to $Z_{Q}^{l}(D^{b}(B))$ , and there is a nilpotent ided $\mathcal{N}$ in
$Z_{\mathcal{G}}^{*}(D^{b}(B))$ such that

$H^{*}(B)\cong Z_{\mathcal{G}}^{*}(D^{b}(B))/\mathcal{N}$

See [7] for $pro$0&. While certainly a step in the right direction, the above result is not satisfac-
tory as yet because we do not know “how far” the subalgebra $Z_{9}^{*}(D^{b}(B))$ is ffom $Z^{*}(D^{b}(B))$ .
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