Nonprincipal Block of $SL(2, q)$

Yutaka Yoshii (吉井 豊)
Division of Mathematical Science and Physics, Chiba Univ. (千葉大学自然科学研究科)

Abstract

We shall claim that Broué's abelian defect group conjecture holds for the nonprincipal p-block of $SL(2, p^n)$.

1 Introduction

Let G be a finite group and P a p-subgroup of G. The next theorem is one of the most important theorems on the block theory of finite groups:

Brauer's First Main Theorem. There is one to one correspondence between the blocks of kG with defect group P and the blocks of $kN_G(P)$ with defect group P.

The correspondence is called Brauer correspondence. The following conjecture is our main problem:

Broué's Abelian Defect Group Conjecture. Suppose that A is a block of kG with an abelian defect group P and that B is the Brauer correspondent of A (in $N_G(P)$). Then is A derived equivalent to B?

If $G = SL(2, q)$ where $q = p^n$, it has been proved that the conjecture is true for the principal block by T.Okuyama (see [6]). Even in the nonprincipal case, the conjecture was proved to be true for $n = 2$ by M.Holloway (see [4]), but it has not been known if the conjecture is true for $n \geq 3$ yet. However, it has turned out that it can be proved to be true even for $n \geq 3$ by imitating Okuyama's proof [6].

The Main Result. If $G = SL(2, q)$ where $q = p^n$, Broué's abelian defect group conjecture is true for the nonprincipal block of kG.
We shall explain about derived equivalences. Let k be an algebraically closed field of characteristic $p > 0$, let A and B be finite dimensional k-algebras, mod-A the category consisting of all finite dimensional right A-modules, proj-A the full subcategory of mod-A consisting of all finite dimensional right projective A-modules, \mathcal{K}^b (mod-A) the homotopy category consisting of all bounded complexes of finite dimensional right A-modules, and \mathcal{K}^b (proj-A) the homotopy category consisting of all bounded complexes of finite dimensional right projective A-modules. We say that A is derived equivalent to B if \mathcal{K}^b (proj-A) is equivalent to \mathcal{K}^b (proj-B) as triangulated categories. The next theorem is a criterion for derived equivalence:

Theorem (Rickard [7]). The following are equivalent.

(a) A is derived equivalent to B.

(b) There is a complex $T^\bullet \in \mathcal{K}^b$ (proj-A) with $B \cong \text{End}_{\mathcal{K}^b$(proj-$A$)}(T^\bullet)$ such that

(i) $\text{Hom}_{\mathcal{K}^b$(proj-$A$)}(T^\bullet, T^\bullet[i]) = 0$ for any $i \neq 0$.

(ii) If $\text{add}(T^\bullet)$ is the full subcategory of \mathcal{K}^b (proj-A) consisting of all direct summands of all direct sums of T^\bullet, then it generates the triangulated category \mathcal{K}^b(proj-A).

We call T^\bullet a tilting complex for A.

2 $SL(2, q)$

Set $G = SL(2, q)$ where $q = p^n$. In this section, we shall state some facts of representations of kG. Set

$$P = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{F}_q \right\},$$

$$D = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbb{F}_q^\times \right\},$$
and

\[H = N_G(P) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a \in \mathbb{F}_{q}^\times, \; b \in \mathbb{F}_{q} \right\}, \]

where \(P \) is a Sylow \(p \)-subgroup of \(G \) and hence is isomorphic to the elementary abelian group \(C_p \times \cdots \times C_p \) (\(n \) times), \(D \) is isomorphic to \(C_{q-1} \), and \(H \) is the semidirect product \(P \rtimes D \).

Considering a nonprincipal block, we assume \(p \neq 2 \) in the rest of the article (if \(p = 2 \), \(kG \) has no nonprincipal blocks with full defect). Now we have the block decompositions \(kG = A_0 \oplus A_1 \oplus A_2 \), where \(A_0 \) is the principal block, \(A_1 \) is a nonprincipal block with full defect, and \(A_2 \) has defect zero, and \(kN_G(P) = B_0 \oplus B_1 \), where \(B_0 \) and \(B_1 \) are the Brauer correspondents of \(A_0 \) and \(A_1 \) respectively. It is well known that all nonisomorphic simple \(kG \)-modules are indexed by \(\{0, 1, 2, \cdots , q-1\} \), where \(\{0, 2, \cdots , q-3\} \) and \(\{1, 3, \cdots , q-2\} \) correspond to \(A_0 \), \(A_1 \) and \(A_2 \) respectively; and all nonisomorphic simple \(kN_G(P) \)-modules are indexed by \(\{0, 1, 2, \cdots , q-2\} \), where \(\{0, 2, \cdots , q-3\} \) and \(\{1, 3, \cdots , q-2\} \) correspond to \(B_0 \) and \(B_1 \) respectively (see [3] or [6]).

3 Outline of Proof

Set \(\Lambda = \{0, 1, 2, \cdots , q-1\} \), \(I = I_{odd} = \{1, 3, 5, \cdots , q-2\} \). For \(\lambda \in \Lambda - \{q-1\} \), set

\[\sim \lambda = \begin{cases} 0 & \text{(if } \lambda = 0) \\ q - 1 - \lambda & \text{(if } \lambda \neq 0) \end{cases} \]

and for a subset \(\Omega \subseteq \Lambda - \{q-1\} \), set \(\tilde{\Omega} = \{ \sim \lambda \mid \lambda \in \Omega \} \). Then for any simple \(kN_G(P) \)-module, \(T_\lambda \) is isomorphic to the dual module \(T_\lambda^* \) of \(T_\lambda \), and note that "\(\sim \)" is a permutation on \(\Lambda - \{q-1\} \) of order 2. Moreover, we define an equivalence relation "\(\sim \)" on \(\Lambda - \{q-1\} \) by

\[\lambda \sim \mu \overset{\text{def}}{=} \text{There exists some } j \in \{0, 1, \cdots , n-1\} \text{ such that } \lambda \equiv p^j \mu \pmod{q-1}. \]

Note that \(I \) is closed under the equivalence relation.

We define equivalence classes (with respect to "\(\sim \)") \(J_{-1}, J_0, J_1, \cdots , J_s \) as follows (cf. Okuyama [6, §2]):

Let \(J_{-1}, \tilde{J}_{-1} \) be empty sets (by convention), \(J_0 \) the class containing 1, and \(J_i \) the class containing the smallest \(\lambda_i \notin \bigcup_{u=-1}^{i-1}(J_u \cup \tilde{J}_u) \) for \(i \geq 1 \). We repeat this procedure until \(s \) satisfies \(I = \bigcup_{u=-1}^{s}(J_u \cup \tilde{J}_u) \).
Now we can construct derived equivalent k-algebras $A^0, A^1, \ldots, A^s, A^{s+1}$ as follows (cf. Okuyama [6, §3]):

First, set $A^0 = A$. Then for $1 \leq t \leq s + 1$, we define A^t as an endomorphism algebra of a tilting complex for A^{t-1} determined by J_{t-1} which is seen in [6, §1].

Then, we can show that A^{s+1} is isomorphic to B as k-algebras like Okuyama [6, §3], so we obtain the main result.

References

[10] R.Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, Groups '93 Galway/St Andrews II (C.M.Campbell
