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A morphism of Green functors
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1 Introduction

This article is a survey of [0d07]. Bouc introduced the Dress construction for a Green
functor ([Bo03a] Theorem 5.1): If A is a Green functor for G over a commutative ring
O, and T is a crossed G-monoid, then the Mackey functor Ar obtained by the Dress
construction has a natural structure of a Green functor, and its evaluation Ar(G) is an
O-algebra. Bouc’s construction involves as special cases the construction of the crossed
Burnside ring obtained from the Burnside ring Green functor, the Hochschild cohomology
ring of G obtained from the group cohomology Green functor, and the Grothendieck ring
of the Drinfel’d double of G obtained from the Grothendieck ring Green functor for a group
algebra. We also point out that Bouc’s construction is discussed in [Wi04]. In this paper,
we obtain an induction theorem for the Drinfel’d double for G by using a formula for
the primitive idempotents of the crossed Burnside ring [OY01], Bouc’s construction, and
some properties of Witherspoon's Green functor R(Dg(*)). The theorem implies Artin’s
induction theorem for a group algebra over C. This is a new proof of Artin induction
theorem.

The material described here was presented in RIMS Workshop “Cohomology Theory
of Finite Groups and Related Topics”. I would like to thank the organizers Hiroki Sasaki
and Nobuaki Yagita for hospitality and for bringing the occasion to meet some researchers.

2 Crossed G-sets

(2.1) Notation. Let G be a finite group. If H is a subgroup of G, and g € G, the
conjugate subgroup gHg~! of G is denoted by 9H. The normalizer of H in G is denoted
by Ng(H). The centralizer of H (resp. g € G) in G is denoted by Cg(H) (resp. Cg(g))-
A set of representatives in G of G/H is denoted by [G/H]. If X is a G-set, the stabilizer
in G of element z of X is denoted by G,. If X and Y are G-sets, the intersection G, NG,
of stabilizers in G of element (z,y) of X x Y is denoted by G,,. The set of orbits of H
on X is denoted by H\X, and [H\X] denotes a set of representatives in X -of H\X.

(2.2) Crossed Burnside rings. Let G be a finite group. In [Bo03a], Bouc defined a
crossed G-monoid as follows. A crossed G-monoid (I, ) is a pair consisting of a finite
monoid I' with a left action of G by monoid automorphisms (denoted by (g,7) — gv
or (g,7v) — 99, for g € G and v € T'), and a map of G-monoids ¢ from I" to the G-set
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G° with G-action defined by conjugation (i.e. a map ¢ which is both a map of monoids
and a map of G-sets). In this paper, since we use only the trivial crossed G-monoid
(T, @) = (G¢1idg:), we denote by I" or G° a crossed G-monoid. A crossed G-set (X, c)
over a crossed G-monoid T, is a pair consisting of a finite G-set X, together with a map
a of G-sets from X to I'. A morphism of crossed G-sets from (X, c) to (Y, 3) is a G-map
f from X to Y such that 8o f = a. Crossed G-sets over I' and crossed G-maps make a
category G-xset/T". The tensor product of crossed G-sets (X, a) and (Y, §) is defined by
(X x Y,0.8), where X x Y is the direct product of X and Y, with diagonal G-action,
and a.(8 is the map from X x Y to G° defined by a.8(z,y) = a(z)B(y). We denote by
XQ(G,T) the Grothendieck ring of the category G-xset/I" with respect to disjoint union
and tensor product. We call it the crossed Burnside ring. The crossed Burnside ring G-
xset/1¢ over the crossed 1°-monoid is the ordinary Burnside ring B(G). Since any crossed
G-set is a disjoint union of transitive crossed G-sets (see 2.12 of [0Y01}), G-xset/T" has
the following free Z-basis as an abelian group: ‘ :

{(G/D),| D € [G\ $(G)], s € [G\ Cr(D)]}-

If T is a normal subgroup of G or an abelian group, then a formula for the primitive
idempotents of KXQ(G,T") over a splitting field K of characteristic 0 has been given by
Oda and Yoshida (see Lemma (5.5) of [OY01]).

(2.3) Theorem. [OYO01] Let K be a field of characteristic 0 which is a splitting field for
all subgroups of G.
(1) For H < G and an irreducible K-character 8 of Cr(H), we put

eh0 = AT S o, 1PWD )™ (G/ D),

D<H seCr(H)

where 8 is the sum of all distinct Ng(H)-conjugates of 6. Then
{eno| H € [G\ S(G)], 6 € [N(H) \ Irrk (Cr (H))]}

is a set of orthogonal idempotents of the crossed Burnside ring KXQ(G,T') over K such .
that
(G/G)hs = lkxa@r) = ) _ eHgp.
H#

Moreover, the idempotents eg g are all primitive and conversely any primitive idempotent
of KXQ(G,T) has this form.

A formula for the primitive idempotents of OXQ(G, G¢) over a p-local ring O has
been given by Bouc [Bo03b].
3 Bouc’s constructions of Green functors

(3.1) Burnside Green functors. We recall the crossed Burnside ring Green functor
XQ(*,G) in terms of subgroups of G (see 4.1 of [OY04]). Let S(H) be the family of all
subgroups of H < G and Cg(D) the centralizer of D < H. Then the assignment

H(< G) — XQ(H,G*) = ((H/D), | D € [H\ S(H)] s € [H\ Ca(D)))z
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gives a Green functor for G over Z equipped with

indf : XQ(L,G°) — XQ(H,G°) : (L/D),— (H/D),,
resf : XQ(H,G°) — XQL,G°) : (H/D)y— > (L/LND)s,

g€(L\H/D|
congy : XQH,G°) — XQ(°H,G°) : (H/D), — (9H/9D)s,,

where D < L < H < G and g € G. In order to note the Green functor structure of
XQ(*,G°), we shall discuss briefly an equivalence between the category G-set|(g/mxce)
of finite G-sets over the G-set G/H x G° (see 2.4 of [Bo97]) and the category H-set|ge of
finite H-sets over the H-set G° with the H-action defined by conjugation. Let Q be the
Burnside Green functor for G over Z in terms of G-sets. By Proposition 2.4.2 of [Bo97],
Qce(G/H) = Q((G/H) x G°) is isomorphic to the Grothendieck group of G-set| g mxce),
with relations given by decomposition into disjoint union. It is easy to see that the G-sets

[K,s]:G/K — G/H x G°: gK — (gH,9s)

over G/H x G, for K € H\S(H; and s € [H\Cg(K%}} form a basis of Q(G/H x G°)
over Z. We denote by (G/K,[K,s]) an element of the basis of QSG’ /H x G°). Theorem
5.1 of [Bo03a] shows that Qe is a Green functor. If (G/K,[K,s|) and (G/L,[L,t]) are
elements of the basis of Q(G/H x G°), then we have the following commutative diagram

|| G/xnep Serfneextrkenuexncee) | gy gy — XM (G p « Go) x (G/H x G)
z€K\H/L

‘u,[xn”L.a"’t] P.B. f

G/H x G° %65 x1doe id G/H x G/H x G,

where the map f from G/H x G° x G/H x G° to G/H x G/H x G¢ maps (zK,v,yL,¥2)
to (zK,yL,7172) (see section 5 of [Bo03a)]). The left square is a pullback square. Theorem
5.1 of [Bo03a] shows that the product of (G/K, [K, s]) and (G/L,[L,t]) on Q(G/H x G¢)

is given by

G/H x G/H x G°

(G/K,|K,s)) - (G/L,[L,t) = 3 (G/KN®L,[KN°L,s-°t]). (3.1.1)
ze[K\H/L)

We have a functor F' mapping G-set|(g/axce) to H-set|g- defined for a transitive G-set
[K,s]: G/K — G/H x G° over G/H x G° by

F:(G/K,[K,s])) — (K,s): [K,s| ' ({H} x G°) — G°

as in Lemma 2.4.1 of [Bo97]. We also denote by (K|, s] the H-map H/K — G° defined by
gK +— 9s. It is clear that the H-sets

K, 9] : H/K‘—-b G°:gK —9s

over the H-set G¢, for K € [H\S(H)] and s € [H\Cg(K)], form a basis of Q|§(G°) over
Z, where Q| is a Green functor for H given by the restricion to H of G. We denote
by (H/K,|K,s]) this element of the basis of Q|§(G®). It is easy to see that F' gives an
equivalence of categories from G-set|(g/mxge) to H-set|g- for any subgroup H of G. The
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inverse equivalence is given by the induction functor from H-set|gc to G-set] (g /uxce).
The images of (3.1.1) under F are

(H/K, [K,S])(H/L, [Lvt]) = Z (H/szL’ [anL’s'zt])'

z€[K\H/L]

in H-set|g.. The Grothendieck group of H-set|g- is isomorphic to XQ(H,G¢). We can
define a product _ |
(H/K),-(H/L)y= »_ (H/KN®L),=
z€[K\H/L]
for any two elements (H/K), and (H/L), of the basis of XQ(H, G®). It is clear that the
element (H/H),, for the identity element 1 of G is the identity element of XQ(H, G°).
This gives a unitary ring structure to XQ(H, G°) for a subgroup H of G.

(3.2) Witherspoon’s Green functor. Witherspoon introduced a Green functor Rc(Dg(*))
for G over Z (see [Wi96] Section 5). For each subgroup H of G, there is a subalgebra

Dg(H)= ) C¢h

9€G,heH

of the Drinfel'd (quantum) double D(G) of CG [Dr86], where ¢, is an element of the
basis {¢g}sec of the dual space (CG)* = Homc(CG, C). Note that Dg(G) = D(G) and
R(D(Q)) is the representation ring of D(G) or equivalently the Grothendieck ring of Hopf
bimodules for the Hopf algebra CG ([R095], {Bo03a], [OY04]). Let R¢(Dg(H)) be the
Grothendieck (representation) ring of Dg(H) for subgroup H of G. Then the assignment

H +— Rc(Dg(H))
where H < G gives a Green functor for G over Z with operations given by

Dres;  : Rc(Dg(H)) — Rc(Do(L)) : U +—U lpgu),
Dindf : Rc(Dg(L)) — Re(Dg(H)) : V. +— Dg(H) ®pgy V,
Deonjy, : Rc(Dg(H)) — Re(Dg(?H)) : U +~—9U = gD¢(H) Qpyay U,

where U |pg(r) is & Dg(L)-module by restriction of the action from Dg(H) to Dg(L),
L < H £ G and g € G. We use the equivalence of the category of H-vector bundles on
G*° with the category of Dg(H)-modules (see [Wi96] Section 2).

(3.3) A morphism of Green functors. Let Q be the Burnside ring Green functor for
G over Z (see [B0o97] 2.4.2):

o If X is a finite G-set, then Q(X) is the Grothendieck ring of the category of finite
G-sets over X, where the relations are given by decomposition into disjoint union
and product of G-sets.

e If X — X' is a G-map, then Q,(f) : Q(X) — Q(X’) is defined by Q.(f)((Y,9)) =
(Y, f¢) for any G-set (Y,¢) =Y % X over X. '
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e If X’ — X is a G-map, then Q*(f) : Q(X) — Q(X') is defined by Q*(f)((Y,¢)) =
(Y',¢'), where (Y',¢') is the pull-back of (Y,¢) along f, obtained by filling the
cartesian square

Y’ Y

¢ P

X' X.
7

Suppose that Rc is the C-representation (character ring) Green functor for G over
Z, defined on subgroups of G. Then setting Rc(G/H) = Rc(H) leads by linearity to a
definition of G-equivariant C-vector bundles R¢(X) on a G-set X (see [Wi96] Section 2)
by using Remark 2.3 of [Bo03a):

o If X is a finite G-set, then R¢(X) is the Grothendieck ring of the category of G-
equivariant C-vector bundles on the G-set X, for relations given by decomposition
into direct sum of vector bundles, the ring structure being induced by the tensor
product of vector bundles: one can set

G
Re(X) = (69 Rc(Gw))

where the exponent denotes fixed points under the natural action of G on ®,ex Rc(Gx)
by permutation of the components, and G, is the stabilizer of z in G.

o If f: X — X'is a G-map, then R¢,(f) : Rc(X) — Rc(X') is defined by
Re.(f)upy= D tgi(us),

z€[Gy\f~1 (¥)]
where tg: is the induction map from R¢(G;) to Rec(G,), u € Re(X), and y € X',
o If f: X' — X is a G-map, then Rc*(f) : Rc(X) — Rc(X') is defined by
Rc*(f)(v)e =12, (Vi)

where ’I'Gf( ,, s the restriction map from Rc(G.) to Re(Gy)), v € Re(X), and
ze X'

e The product of the elements a € R¢(X) and b € Re(Y) is defined by
(a’ X b) Ty = = rG( (az) G(m ”)( y)

If X is a finite G-set, denote the natural morphism

0:92— Rc
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of Green functors defined by the maps 8(X) : Q(X) — Rc(X) by

Y,0) = (¢:Y = X) — {Cle™" (@)]}sex,
where C[p~!(z)] is the permutation module associated to the G,-set ¢ ~*(z).

The following theorem is essential in the proof of Theorem 4.1 of this paper.

(3.4) Theorem (Bouc [Bo03a] 5.1). Let A be a Green functor for G over a commutative
ring O, I" a crossed G-monoid, and €4 an element of A(e) such that for any G-set X and
for any a € A(X)

Au(px)(a x €4) = a = A.(gx)(ea X a)
denoting by p, (resp. q.) the bijective projection from X x o (resp. from e x X ) to X (see
1.2.1 of [Bo03a/). Then the functor Ar is a Green functor for G over O, with unit €4,

where €4, is the element A.( 1I )(EA) of A(T) = Ar(e). Moreover the correspondence
4 :
A — Ar i3 an endo-functor of the category of Green functors for G over O.

(3.5) Lemma. Let §2 be the Burnside ring Green functor and G° the crossed G-monoid.
Then there is an isomorphism of Green functors

XQ(*, G°) & Qge.

We will denote by C[X] the C-permutation module associated to a set X. The endo-
functor of the category of Green functors of Theorem (3.4) applied to the morphism 6
from Q to R¢ leads to the following lemma.

(3.6) Lemma. Letf : Q@ — Rc be the natural morphism from the Burnside Green functor
to the Grothendieck ring Green functor. Then the morphism 6ge : Qlge — Rcge given by
the Bouc’s construction is a morphism of Green functors.

(3.7) Lemma. There is a morphism
eac : XQ(*,GC) - Rc(Dg(*))

of Green functors.

Let (H/L), be an element of the basis of XQ2(H, G°). Then the previous lemma shows
that 6g-((H/L),) is an H-vector bundle on G¢. We denote by [H/L], this H-vector bundle.
Lemma (3.5) shows the following lemma.

(3.8) Lemma. The H-vector bundle [H/L], is the CCx(*g)-module C[[*L,%g]~*(*g)] in
the *g-component, for x € [H/Cy(g)], and 0 in all other components.

We recall the maps Incl;y, : Re(J) — Re(Dg(J)), where J is a subgroup of G and
h € Cg(J), introduced in Section 2 of [Wi96]: Given a CJ-module V, Inclj4(V) is the
Dg(J)-module which is V' in the h-component and 0 elsewhere.
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(3.9) Lemma. Let g be the ring homomorphism 6(g,gyxg-from the crossed Burnside
ring XUG, G°) to the Grothendieck ring Rc(Dg(G)) given by the previous lemma. Then
the D(G)-module corresponding to the G-vector bundle 6c-((G/L),) is the induced module

D(G) ®pg(r) Incl4(C[L/L]).

(3.10) Sub-Green functors. There is a sub-Green functor XQ(*, G); which assigns to
each subgroup H of G the subring XQ(H, G¢), of XQ(H, G°) generated by the elements
(H/L)1,. There is also a sub-Green functor Rc(Dg(*)1) which assigns to each subgroup H
of G the subring Rc(Dg(H)1) of Rc(Dg(H)) generated by Incly 1, (V)'s, where Incly
is a functor embedding the category of CH-modules as a full subcategory of the category
of Dg(H)-modules (see, (Wi96] Section 1) and V is a CH-module. It is easy to see that
XQ(H, G*), is isomorphic to the Burnside ring Q(H) and Rc(Dg(H)1) is isomorphic to
the ordinary character ring Rc(H). The homomorphism 0 | xa(a,¢-), is the natural ring
homomorphism from Q(H) to Rc(H).

(3.11) Characters. Witherspoon pointed out the character of a CD(G)-module in
[Wi96], that appeared in [Lu87]. For g € G and an irreducible character p of Cg(g),
a character x,, of a CD(G)-module U = {Up}rege is given by the formula

heCe(g)

X.‘]rP(U) = d egp

The characters of the crossed Burnside ring have been considered by Oda and Yoshida
([OY01], Section 5). For a subgroup H of G and an irreducible character 6 of Cg(H), the
linear map wy ¢ of XQ(G, G°) to C is the composite of Burnside homomorphism ¢y and
a central character Wy g : given a crossed G-set X over G°, H < G, and an irreducible
character p of the group algebra CCo(H), wu ,(X) = @n, o pu(X).

For each h € G° the h-component of the crossed G-set (X, &) is defined by
X[h] = {z € X|a(z) = h}.

(3.12) Lemma. Let g be an element of G, p an irreducible character of CCg(g), and
g the homomorphism from XQ(G,G°) to Rc(D(G)). Then xg,0Gc = wig,p, where (g)
is the cyclic subgroup generated by g.

4 Induction theorems

The proof of the following theorem is similar to the proof of Theorem 3.5.2 in [Bo00].
(4.1) Theorem. Let G be a finite group. Then

CRc(D(G) = Y DmdgCRc(DG(H))

HeC(G)

where C(G) 1is the family of cyclic subgroups of G. In other words, any complex character
of D(G) is a linear combination with rational coefficients of characters induced from cyclic
groups of G.

The previous theorem and (3. 10) show the following corollary.
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(4.2) Corollary (Artin). Let G be a finite group. Then

QRc(G) = ) IndfQRc(H).

HEeC(G)
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