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1 Introduction
This article is a survey of [Od07]. Bouc introduced the Dress construction for a Green
functor ( $[Bo03a]$ Theorem 5.1): If $A$ is a Green functor for $G$ over a commutative ring
$O$ , and $\Gamma$ is a crossed G-monoid, then the Mackey functor $A_{\Gamma}$ obtained by the Dress
construction has a natural structure of a Green functor, and its evaluation $A_{\Gamma}(G)$ is an
O-algebra. Bouc’s construction involves as special cases the construction of the crossed
Burnside ring obtained from the Burnside ring Green functor, the Hochschild cohomology
ring of $G$ obtained from the group cohomology Green functor, and the Grothendieck ring
of the Drinfel’d double of $G$ obtained from the Grothendieck ring Green functor for a group
algebra. We also point out that Bouc’s construction is discussed in [Wi04]. In this paper,
we obtain an induction theorem for the Drinfel’d double for $G$ by using a formula for
the primitive idempotents of the crossed Burnside ring [OYOI], Bouc’s construction, and
some properties of Witherspoon’s Green functor $R(D_{G}(*))$ . The theorem implies Artin’s
induction theorem for a group algebra over $\mathbb{C}$ . This is a new proof of Artin induction
theorem.

The material described here was presented in RIMS Workshop “Cohomology Theory
of Finite Groups and Related Topics”. I would like to thank the organizers Hiroki Sasaki
and Nobuaki Yagita for hospitality and for bringing the occasion to meet some researchers.

2 Crossed G-sets

(2.1) Notation. Let $G$ be a finite group. If $H$ is a subgroup of $G$ , and $g\in G$ , the
conjugate subgroup $gHg^{-1}$ of $G$ is denoted by $gH$. The normalizer of $H$ in $G$ is denoted
by $N_{G}(H)$ . The centralizer of $H$ (resp. $g\in G$) in $G$ is denoted by $C_{G}(H)$ (resp. $C_{G}(g)$ ).
A set of representatives in $G$ of $G/H$ is denoted by $[G/H]$ . If $X$ is a G-set, the stabilizer
in $G$ of element $x$ of $X$ is denoted by $G_{x}$ . If $X$ and $Y$ are G-sets, the intersection $G_{x}\cap G_{y}$

of stabilizers in $G$ of element $(x, y)$ of $X\cross Y$ is denoted by $G_{x,y}$ . The set of orbits of $H$

on $X$ is denoted by $H\backslash X$, and $[H\backslash X]$ denotes a set of representatives in $X$ of $H\backslash X$.
(2.2) Crossed Burnside rings. Let $G$ be a finite group. In $[Bo03a]$ , Bouc defined a

crossed G-monoid as follows. A crossed G-monoid $(\Gamma, \varphi)$ is a pair consisting of a finite
monoid $\Gamma$ with a left action of $G$ by monoid automorphisms (denoted by $(g, \gamma)rightarrow g\gamma$

or $(g, \gamma)arrow\rangle$ $g\gamma$ , for $g\in G$ and $\gamma\in\Gamma$), and a map of G-monoids $\varphi$ from $\Gamma$ to the G-set
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$G^{c}$ with G-action defined by conjugation (i.e. a map $\varphi$ which is both a map of monoids
and a map of G-sets). In this paper, since we use only the trivial crossed G-monoid
$(\Gamma, \varphi)=(G^{c}, id_{G^{c}})$ , we denote by $\Gamma$ or $G^{c}$ a crossed G-monoid. A crossed G-set (X, $\alpha$)
over a crossed G-monoid $\Gamma$ , is a pair consisting of a finite G-set $X$, together with a map
$\alpha$ of G-sets from $X$ to $\Gamma$ . A morphism of crossed G-sets from (X, $\alpha$ ) to $(Y, \beta)$ is a G-map
$f$ from $X$ to $Y$ such that $\beta of=\alpha$ . Crossed G-sets over $\Gamma$ and crossed G-maps make a
category $G- xset/\Gamma$ . The tensor product of crossed G-sets (X, $\alpha$ ) and $(Y, \beta)$ is defined by
(X $\cross Y,$ $\alpha.\beta$), where $X\cross Y$ is the direct product of $X$ and $Y$, with diagonal G-action,
and $\alpha.\beta$ is the map from $X\cross Y$ to $G^{c}$ defined by $\alpha.\beta(x, y)=\alpha(x)\beta(y)$ . We denote by
$X\Omega(G, \Gamma)$ the Grothendieck ring of the category $G- xset/\Gamma$ with respect to disjoint union
and tensor product. We call it the crossed Bumside ring. The crossed Burnside ring G-
$xset/1^{c}$ over the crossed $1^{c}$-monoid is the ordinary Burnside ring $B(G)$ . Sinoe any crossed
G-set is a disjoint union of transitive crossed G-sets (see 2.12 of [OYOI]), $G- xset/\Gamma$ has
the following free $\mathbb{Z}$-basis as an abelian group:

$\{(G/D)_{s}|D\in[G\backslash S(G)], s\in[G\backslash C_{\Gamma}(D)]\}$ .
If $\Gamma$ is a normal subgroup of $G$ or an abelian group, then a formula for the primitive
idempotents of $KX\Omega(G, \Gamma)$ over a splitting field $K$ of characteristic $0$ has been given by
Oda and Yoshida (see Lemma (5.5) of [OYOI]).

(2.3) Theorem. [OYOI] Let $K$ be a field of charactenstic $0$ which is a spliuing field for
all subgroups of $G$ .

(1) For $H\leq G$ and an irreducible K-chamcter $\theta$ of $C_{\Gamma}(H)$ , we put

$e_{H,\theta}= \frac{\theta(1)}{|N_{G}(H)||C_{\Gamma}(H)|}\sum_{D\leq H}\sum_{s\in C_{\Gamma}(H)}|D|\mu(D, H)\theta(s^{-1})(G/D)_{\epsilon}\sim$,

where $\theta\sim is$ the sum of all distinct $N_{G}(H)$ -conjugates of $\theta$ . Then

$\{e_{H,\theta}|H\in[G\backslash S(G)], \theta\in[N_{G}(H)\backslash Irr_{K}(C_{\Gamma}(H))]\}$

is a set of orthogonal idempotents of the crossed Bumside ring $KX\Omega(G, \Gamma)$ over $K$ such
that

$(G/G)_{1_{G}}=1_{KX\Omega(G,\Gamma)}= \sum_{H,\theta}e_{H,\theta}$
.

Moreover, the idempotents $e_{H,\theta}$ are all primitive and conversely any primitive idempotent
of $KX\Omega(G, \Gamma)$ has this form.

A formula for the primitive idempotents of $OX\Omega(G, G^{c})$ over a p-local ring $O$ has
been given by Bouc $[Bo03b]$ .

3 Bouc’s constructions of Green functors

(3.1) Burnside Green functors. We recall the crossed Burnside ring Green functor
$X\Omega(*, G^{c})$ in terms of subgroups of $G$ (see 4.1 of [OY04]). Let $S(H)$ be the family of all
subgroups of $H\leq G$ and $C_{G}(D)$ the centralizer of $D\leq H$. Then the assignment

$H(\leq G)\mapsto X\Omega(H, G^{c})=\langle(H/D)_{s}|D\in[H\backslash S(H)]s\in[H\backslash C_{G}(D)]\rangle_{Z}$
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gives a Green functor for $G$ over $\mathbb{Z}$ equipped with

$ind_{L}^{H}$ : $X\Omega(L, G^{c})arrow X\Omega(H, G^{c})$ : $(L/D)_{\epsilon}\mapsto(H/D)_{\partial}$ ,
$res_{L}^{H}$ : $X\Omega(H, G^{c})arrow X\Omega(L, G^{c})$ :

$(H/D)_{s} \mapsto\sum_{g\in[L\backslash H/D]}(L/L\cap^{g}D)_{9_{\delta}}$
,

$con_{H,g}$ : $X\Omega(H, G^{c})arrow X\Omega(gH, G^{c})$ : $(H/D)_{\epsilon}\mapsto(^{g}H/gD)_{g_{S}}$ ,

where $D\leq L\leq H\leq G$ and $g\in G$ . In order to note the Green functor structure of
$X\Omega(*, G^{c})$ , we shall discuss briefly an equivalence between the category $G- set\downarrow(G/HxG^{c})$

of finite G-sets over the G-set $G/H\cross G^{C}$ (see 2.4 of [Bo97]) and the category $H- set\downarrow G^{c}$ of
finite H-sets over the H-set $G^{c}$ with the H-action defined by conjugation. Let $\Omega$ be the
Burnside Green functor for $G$ over $\mathbb{Z}$ in terms of G-sets. By Proposition 2.4.2 of [Bo97],
$\Omega_{G^{c}}(G/H)=\Omega((G/H)\cross G^{c})$ is isomorphic to the Grothendieck group of $G- set\downarrow(G/HxG^{c})$ ,
with relations given by decomposition into disjoint union. It is easy to see that the G-sets

$[K, s]$ : $G/Karrow G/H\cross G^{c}$ : $gK$ ト$arrow(gH^{g}s)$

$Oovveerr\mathbb{Z}G/H\cross G^{c},forK\in$

elements of the basis of $\Omega(G/H\cross G^{c})$ , then we have the following commutative diagram

$x\in K\backslash H/L\lfloor\lrcorner^{c/K}$

$\bigcap_{\kappa,1^{U_{g}[,\epsilon^{\varpi}t]P.B}n^{oe}L}xL^{U_{x}\pi_{Ko}^{K}x\{\pi^{L}}$$\underline{e\iota\kappa^{g}n\iota^{c}\kappa n*\iota,x)}G/KxG/L|\underline{1^{K,\epsilon]x[L,t]}}(G/HxG^{c})x_{f}(G/HxG^{c})|$

$G/HxG^{c}arrow^{\delta_{G/H}xId_{G}\circ}G/HxG/HxG^{c}arrow^{id}G/HxG/HxG^{c}$,

where the map $f$ from $G/H\cross G^{c}\cross G/H\cross G^{c}$ to $G/H\cross G/H\cross G^{c}$ maps $(xK, \gamma_{1}, yL, \gamma_{2})$

to $(xK, yL, \gamma_{1}\gamma_{2})$ (see section 5 of $[Bo03a]$ ). The left square is a pullback square. Theorem
5.1 of $[Bo03a]$ shows that the product of $(G/K, [K, s])$ and $(G/L, [L, t])$ on $\Omega(G/H\cross G^{c})$

is given by

$(G/K, [K, s]) \cdot(G/L, [L, t])=\sum_{x\in[K\backslash H/L]}(G/K\cap^{x}L, [K\cap^{x}L, s\cdot xt])$
. (3.1.1)

We have a functor $F$ mapping $G- set\downarrow(G/HxG^{c})$ to $H- set\downarrow G^{c}$ defined for a transitive G-set
$[K, s]$ : $G/Karrow G/H\cross G^{c}$ over $G/H\cross G^{c}$ by

$F$ : $(G/K, [K, s])\mapsto\langle K, s\rangle$ : $[K, s]^{-1}(\{H\}\cross G^{c})arrow G^{c}$

as in Lemma 2.4.1 of [Bo97]. We also denote by $[K, s]$ the H-map $H/Karrow G^{c}$ defined by
$gK\mapsto g_{S}$ It is clear that the H-sets

$[K, s]$ : $H/Karrow G^{c}$ : $gK\mapsto g_{S}$

over the H-set $G^{c}$ , for $K\in[H\backslash S(H)]$ and $s\in[H\backslash C_{G}(K)]$ , form a basis of $\Omega\downarrow_{H}^{G}(G^{c})$ over
$\mathbb{Z}$ , where $\Omega\downarrow_{H}^{G}$ is a Green functor for $H$ given by the restricion to $H$ of $G$ . We denote
by $(H/K, [K, s])$ this element of the basis of $\Omega\downarrow_{H}^{G}(G^{c})$ . It is easy to see that $F$ gives an
equivalenoe of categories from $G- set1_{(G/HxG^{c})}$ to $H- set\downarrow G^{c}$ for any subgroup $H$ of $G$ . The
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inverse equivalence is given by the induction functor from $H- set\downarrow G^{c}$ to $G- set\downarrow(G/H\cross G^{c})$ .
The images of (3.1.1) under $F$ are

$(H/K, [K, s]) \cdot(H/L, [L, t])=\sum_{x\in[K\backslash H/L]}(H/K\cap^{x}L, [K\cap^{x}L, s\cdot xt])$
.

in $H- set\downarrow G^{r}\cdot$ . The Grothendieck group of $H- set\downarrow G^{c}$ is isomorphic to $X\Omega(H, G^{c})$ . We can
define a product

$(H/K),$ .
$(H/L)_{t}= \sum_{x\in[K\backslash H/L]}(H/K\cap^{x}L)_{\epsilon^{x}t}$

for any two elements $(H/K)_{\epsilon}$ and ( $H/L\rangle_{t}$ of the basis of $X\Omega(H, G^{c})$ . It is clear that the
element $(H/H)_{1_{G}}$ for the identity element $1_{G}$ of $G$ is the identity element of $X\Omega(H, G^{c})$ .
This gives a unitary ring structure to $X\Omega(H, G^{c})$ for a subgroup $H$ of $G$ .
(3.2) Witherspoon’s Green functor. Witherspoon introduced a Green functor $R_{C}(D_{G}(*))$

for $G$ over $\mathbb{Z}$ (see [Wi96] Section 5). For each subgroup $H$ of $G$ , there is a subalgebra

$D_{G}(H)= \sum_{g\in G,h\in H}\mathbb{C}\phi_{9}h$

of the Drinfel’d (quantum) double $D(G)$ of $\mathbb{C}G$ [Dr86], where $\phi_{g}$ is an element of the
basis $\{\phi_{g}\}_{g\in G}$ of the dual space $(\mathbb{C}G)^{*}=Hom_{\mathbb{C}}(\mathbb{C}G, \mathbb{C})$ . Note that $D_{G}(G)=D(G)$ and
$R(D(G))$ is the representation ring of $D(G)$ or equivalently the Grothendieck ring of Hopf
bimodules for the Hopf algebra $\mathbb{C}G$ ([Ro95], $[Bo03a]$ , [OY04]). Let $R_{\mathbb{C}}(D_{G}(H))$ be the
Grothendieck (representation) ring of $D_{G}(H)$ for subgroup $H$ of $G$ . Then the assignment

$H\mapsto R_{\mathbb{C}}(D_{G}(H))$

where $H\leq G$ gives a Green functor for $G$ over $\mathbb{Z}$ with operations given by

$Dres_{L}^{H}$ : $R_{\mathbb{C}}(D_{G}(H))$ $arrow$ $R_{C}(D_{G}(L))$ : $U$ $\mapsto U\downarrow D_{G}(L)$ ,
$Dind_{L}^{H}$ : $R_{C}(D_{G}(L))$ $arrow$ $R_{C}(D_{G}(H))$ : $V$ $\mapsto D_{G}(H)\otimes_{D_{G}(L)}V$,
$Dconj_{H,g}$ : $R_{C}(D_{G}(H))$ $arrow$ $R_{C}(D_{G}(9H))$ : $Urightarrow gU=gD_{G}(H)\otimes_{D_{G}(H)}U$ ,

where $U\downarrow D_{G}(L)$ is a $D_{G}(L)$-module by restriction of the action from $D_{G}(H)$ to $D_{G}(L)$ ,
$L\leq H\leq G$ and $g\in G$ . We use the equivalence of the category of H-vector bundles on
$G^{c}$ with the category of $D_{G}(H)$ -modules (see [Wi96] Section 2).

(3.3) A morphism of Green functors. Let $\Omega$ be the Burnside ring Green functor for
$G$ over $\mathbb{Z}$ (see [Bo97] 2.4.2):

$\bullet$ If $X$ is a finite G-set, then $\Omega(X)$ is the Grothendieck ring of the category of finite
G-sets over $X$, where the relations are given by decomposition into disjoInt union
and product of G-sets.

$\bullet$ If $Xarrow X’$ is a G-map, then $\Omega_{*}(f)$ : $\Omega(X)arrow\Omega(X’)$ is defined by $\Omega_{*}(f)((Y, \phi))=$

$(Y, f\phi)$ for any G-set $(Y, \phi)=Yarrow\phi X$ over $X$.
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$\bullet$ If $X’arrow X$ is a G-map, then $\Omega^{*}(f)$ : $\Omega(X)arrow\Omega(X’)$ is defined by $\Omega^{*}(f)((Y, \phi))=$

$(Y’, \phi’)$ , where $(Y’, \phi’)$ is the pull-back of $(Y, \phi)$ along $f$, obtained by filling the
cartesian square

$Y’arrow^{a}Y$

$\phi’|$ $\downarrow.\phi$

$X’arrow Xf$

Suppose that $R_{C}$ is the C-representation (character ring) Green functor for $G$ over
$\mathbb{Z}$ , defined on subgroups of $G$ . Then setting $R_{C}(G/H)=R_{\mathbb{C}}(H)$ leads by linearity to a
definition of G-equivariant C-vector bundles $R_{\mathbb{C}}(X)$ on a G-set $X$ (see [Wi96] Section 2)
by using Remark 2.3 of $[Bo03a]$ :

$\bullet$ If $X$ is a finite G-set, then $R_{\mathbb{C}}(X)$ is the Grothendieck ring of the category of G-
equivariant $\mathbb{C}$-vector bundles on the G-set $X$, for relations given by decomposition
into direct sum of vector bundles, the ring structure being induced by the tensor
product of vector bundles: one can set

R化 (X) $=( \bigoplus_{x\in X}R_{\mathbb{C}}(G_{x}))^{G}$

where the exponent denotes fixed points under the natural action of $G$ on $\oplus_{x\in X}R_{\mathbb{C}}(G_{x})$

by permutation of the components, and $G_{x}$ is the stabilizer of $x$ in $G$ .
$\bullet$ If $f$ : $Xarrow X’$ is a G-map, then $R_{\mathbb{C}*}(f)$ : $R_{C}(X)arrow R_{\mathbb{C}}(X’)$ is defined by

$R_{C*}(f)(u)_{y}= \sum_{x\in[G_{y}\backslash f^{-1}(y)]}t_{G_{x}}^{G_{y}}(u_{x})$
,

where $t_{G_{x}}^{G_{y}}$ is the induction map from $R_{\mathbb{C}}(G_{x})$ to $R_{\mathbb{C}}(G_{y}),$ $u\in R_{\mathbb{C}}(X)$ , and $y\in X’$ .
$\bullet$ If $f$ : $X’arrow X$ is a G-map, then $R_{\mathbb{C}^{*}}(f)$ : $R_{C}(X)arrow R_{\mathbb{C}}(X’)$ is defined by

$R_{\mathbb{C}}^{*}(f)(v)_{x}=r_{G_{f(x)}^{x}}^{G}(v_{f(x)})$ ,

where $r_{G_{f(x)}^{\epsilon}}^{G}$ is the restriction map from $R_{\mathbb{C}}(G_{x})$ to $R_{\mathbb{C}}(G_{f(x)}),$ $v\in$ &(X), and
$x\in X’$ .

$\bullet$ The product of the elements $a\in R_{\mathbb{C}}(X)$ and $b\in\ (Y)$ is defined by

$(a\cross b)_{x,y}=r_{G_{(x,y)}^{x}}^{G}(a_{x})\cdot r_{c_{(x,y)}^{y}}^{G}(b_{y})$.

If $X$ is a finite G-set, denote the natural morphism

$\theta:\Omegaarrow R_{C}$
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of Green functors defined by the maps $\theta(X)$ : $\Omega(X)arrow R_{\mathbb{C}}(X)$ by

$(Y, \varphi)=(\varphi:Yarrow X)\mapsto\{\mathbb{C}[\varphi^{-1}(x)]\}_{x\in X}$,

where $\mathbb{C}[\varphi^{-1}(x)]$ is the permutation module associated to the $G_{x}$-set $\varphi^{-1}(x)$ .
The following theorem is essential in the proof of Theorem 4.1 of this paper.

(3.4) Theorem (Bouc $[Bo03a]5.1$ ). Let $A$ be a Green hnctor for $G$ over a commutative
ring $O,$ $\Gamma$ a crossed G-monoid, and $\epsilon_{A}$ an element of $A(\bullet)$ such that for any G-set $X$ and
for any $a\in A(X)$

$A_{*}(p_{X})(a\cross\epsilon_{A})=a=A_{*}(q_{X})(\epsilon_{A}\cross a)$

denoting by $p_{x}$ (resp. $q_{x}$) the bijective projection from $X\cross\bullet$ (resp. ffom $\bullet\cross X$) to $X$ (see
1.2.1 $of/Bo03aJ$). Then the functor $A_{\Gamma}$ is a Green functor for $G$ over $O$ , utth unit $\epsilon_{A_{\Gamma}}$ ,

where $\epsilon_{A_{\Gamma}}$ is the element $A_{*}(1_{G}\downarrow)(\epsilon_{A})$ of $A(\Gamma)=A_{\Gamma}(\bullet)$ . Moreover the comspondence
$A\vdasharrow A_{\Gamma}$ is an endo-functor of the category of Green functors for $G$ over $\mathcal{O}$ .

(3.5) Lemma. Let $\Omega$ be the Bumside ring Green fimctor and $G^{c}$ the crossed G-monoid.
Then there is an isomorphism of Green jfunctors

$X\Omega(*, G^{c})\cong\Omega_{G^{c}}$ .
We will denote by $\mathbb{C}[X]$ the $\mathbb{C}$-permutation module associated to a set $X$. The endo-

functor of the category of Green functors of Theorem (3.4) applied to the morphism $\theta$

from $\Omega$ to $R_{C}$ leads to the following lemma.

(3.6) Lemma. Let $\theta:\Omegaarrow R_{\mathbb{C}}$ be the natural morphism fiom the Bumside Greenfimctor
to the Grothendieck ring Green functor. Then the morphism $\theta_{G^{c}}$ : $\Omega_{G^{c}}arrow R_{CG^{c}}$ given by
the Bouc’s construction is a morphism of Green functors.

(3.7) Lemma. There is a morphism

$\theta_{G^{c}}$ : $X\Omega(*, G^{c})arrow R_{\mathbb{C}}(D_{G}(*))$

of Green functors.
Let $(H/L)_{g}$ be an element of the basis of $X\Omega(H, G^{c})$ . Then the previous lemma shows

that $\theta_{G^{c}}((H/L)_{9})$ is an H-vector bundle on $G^{c}$ . We denote by $[H/L]_{9}$ this H-vector bundle.
Lemma (3.5) shows the following lemma.

(3.8) Lemma. The H-vector bundle $[H/L]_{g}$ is the $\mathbb{C}C_{H}(xg)$ -module $\mathbb{C}[[xL,xg]^{-1}(xg)]$ in
the $xg$ -component, for $x\in[H/C_{H}(g)]$ , and $0$ in all other components.

We recall the maps $Inc1_{J,h}$ : $R_{\mathbb{C}}(J)arrow\ (D_{G}(J))$ , where $J$ is a subgroup of $G$ and
$h\in C_{G}(J)$ , introduced in Section 2 of [Wi96]: Given a $\mathbb{C}J$-module $V,$ $Inc1_{J,h}(V)$ is the
$D_{G}(J)$-module which is $V$ in the h-component and $0$ elsewhere.
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(3.9) Lemma. Let $\theta_{G^{c}}$ be the reng homomorphism $\theta_{(G/G)xG^{c}}$from the crossed Bumside
ring $X\Omega(G, G^{c})$ to the Grothendieck ring $R_{\mathbb{C}}(D_{G}(G))$ given by the previous lemma. Then
the $D(G)$ -module corresponding to the G-vector bundle $\theta_{G^{c}}((G/L)_{g})$ is the induced module

$D(G)\otimes_{D_{G}(L)}Inc1_{L,g}(\mathbb{C}[L/L])$ .

(3.10) Sub-Green functors. There is a sub-Green functor $X\Omega(*, G^{c})_{1}$ which assigns to
each subgroup $H$ of $G$ the subring $X\Omega(H, G^{c})_{1}$ of $X\Omega(H, G^{c})$ generated by the elements
$(H/L)_{1_{G}}$ . There is also a sub-Green functor $R_{C}(D_{G}(*)_{1})$ which assigns to each subgroup $H$

of $G$ the subring $R_{C}(D_{G}(H)_{1})$ of $R_{\mathbb{C}}(D_{G}(H))$ generated by $Inc1_{H,1_{G}}(V)’s$ , where $Inc1_{H,1_{G}}$

is a functor embedding the category of $\mathbb{C}H$-modules as a full subcategory of the category
of $D_{G}(H)$-modules (see, [Wi96] Section 1) and $V$ is a $\mathbb{C}H$-module. It is easy to see that
$X\Omega(H, G^{c})_{1}$ is isomorphic to the Burnside ring $\Omega(H)$ and $R_{C}(D_{G}(H)_{1})$ is isomorphic to
the ordinary character ring $R_{C}(H)$ . The homomorphism $\theta_{G^{c}}\downarrow X\Omega(H,G^{c})_{1}$ is the natural ring
homomorphism from $\Omega(H)$ to $R_{\mathbb{C}}(H)$ .

(3.11) Characters. Witherspoon pointed out the character of a $\mathbb{C}D(G)$-module in
[Wi96], that appeared in [Lu87]. For $g\in G$ and an irreducible character $\rho$ of $C_{G}(g)$ ,
a character $\chi_{g,\rho}$ of a $\mathbb{C}D(G)$-module $U=\{U_{h}\}_{h\in G^{c}}$ is given by the formula

$\chi_{g,\rho}(U)=\frac{l}{\deg\rho}\sum_{h\in C_{G}(g)}R(g, U_{h})\rho(h)$.

The characters of the crossed Burnside ring have been considered by Oda and Yoshida
([OYOI], Section 5). For a subgroup $H$ of $G$ and an irreducible character $\theta$ of $C_{G}(H)$ , the
linear map $\omega_{H,\theta}$ of $X\Omega(G, G^{c})$ to $\mathbb{C}$ is the composite of Burnside homomorphism $\varphi_{H}$ and
a central character $\tilde{\omega}_{H,\theta}$ : given a crossed G-set $X$ over $G^{c},$ $H\leq G$ , and an irreducible
character $\rho$ of the group algebra $\mathbb{C}C_{G}(H),$ $\omega_{H,\rho}(X)=\tilde{\omega}_{H,\rho}\circ\varphi_{H}(X)$ .

For each $h\in G^{c}$ the h-component of the crossed G-set (X, $\alpha$ ) is defined by

$X[h]=\{x\in X|\alpha(x)=h\}$ .
(3.12) Lemma. Let $g$ be an element of $G,$ $\rho$ an irreducible character of $\mathbb{C}C_{G}(g)$ , and

$\theta_{G^{c}}$ the homomorphism from $X\Omega(G, G^{c})$ to $R_{\mathbb{C}}(D(G))$ . Then $\chi_{g,\rho}\theta_{G^{c}}=\omega_{\langle g\rangle,\rho}$, where $\langle g\rangle$

is the cyclic subgroup generated by $g$ .

4 Induction theorems

The proof of the following theorem is similar to the proof of Theorem 3.5.2 in [BoOO],

(4.1) Theorem. Let $G$ be a finite group. Then

$\mathbb{C}R_{\mathbb{C}}(D(G))=\sum_{H\in C(G)}Dind_{H}^{G}\mathbb{C}R_{\mathbb{C}}(D_{G}(H))$
,

where $C(G)$ is the family of cyclic subgroups of G. In other words, any complex character
of $D(G)$ is a linear combination with rational coefficients of chamcters induced from cyclic
groups of $G$ .

The previous thmrem and (3.10) show the following corollary.
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(4.2) Corollary (Artin). Let $G$ be a finite group. Then

$\mathbb{Q}R_{\mathbb{C}}(G)=\sum_{H\in C(C_{J}^{Y})}Ind_{H}^{G}\mathbb{Q}R_{\mathbb{C}}(H)$
.
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