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An identity for a quasilinear ordinary differential equation and
its applications
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We consider the two-point boundary value problem for the quasilinear ordinary differ-
ential equation

1) (pp(W)) +a(z)f(u) =0, =z <z <z,
(2) | u(zo) = u(z1) =0,

where ©p(s) = |s|P~23, p > 1, a € C}[zg,21), a(z) > 0 for = € [z, 1], and f € C'(R).
Recently there has been considerable investigation concerning two-point boundary
value problems for quasilinear ordinary differential equations. For example, we refer
the reader to [1], [4], (7], (8], [11], [15], [16], [18], [19], [20], (28], [24], [26], and [27]. In
order to find the exact number of solutions of problem (1)—(2), the linearized equation

(3) (#p (W) +a(2)f'(w)w =0

is studied frequently, where v is a solution of (1) and ¢),(s) = (p—1)|s|?~2 for s # 0. See,
for example, [9], [10], [11], [12], [13], [14], [21], and [25].

The main result of this paper is the following identity. For the case p = 2, this identity
has been obtained in [25], by using the idea due to Korman and Ouyang [12]. (See also
(11, Lemma 4.1].)

Proposition 1. Let u and w be solutions of (1) and (3), respectively. Suppose that
g € C?[zg,z1]. Then

(4) [gcp,,(u’)w’ +(@-1)"'gaf(u)w— g’ <p,,(u’)'w]’
= —¢"gp(w)w + (p— 1) (pg'a + ga') f(w)w
for w'(z) # 0. In particular, if a € C%[zo,2,] and g(z) = [a(z)]~V/?, then
(5) 90w’ + (= 17 gaf (W - gy W] = ~g"py(u' )
for v’ (x) # 0.

A straightforward calculation yields (4).
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By using (4) we can obtain uniqueness results for problem (1)-(2). First we study the
uniqueness of positive solutions of (1)—(2) for the case where

(6) feC'0,00), f(s)>0 and f'(s)> (p— l)igg—) for s > 0.

For example, the function f(s) = s?7!, ¢ > max{p, 2} satisfies (6).
For existence of solutions of (1)-(2) under condition (6), we refer to (11, [4}, [7], [8],
[15], [16], [23], and [26]. In particular, by results in [8], [23] or [26], we see that if

limﬂs—) =0 and lim f_(s;)_ = 00,
520 gP-1 s—o0 gP—1

then (1)—(2) has at least one positive solution. More precise conditions for the existence
of a positive solution of (1)-(2) have been obtained in [7] and [20].

We note that if (6) holds, then s'~? f(s) is increasing on (0, c0). On the other hand, it is
known by Naito [19] and Wong [27] that if s*~? f(s) is decreasing on (0, c0), then problem
(1)-(2) has at most one positive solution for each a € C[zo, z1] satisfying a(z) > 0 on
(%o, z1].

We can obtain the following result.

Theorem 1. Let 1 < p < 2. Suppose that (6) holds and
(7 pa(z) + (x — z0)a'(z) >0, o<z <14,
(8) —pa(z) + (21~ 2)a'(z) <0, =z <z <z

Then problem (1)—~(2) has at most one positive solution.

Theorem 1 with p = 2 has been established by Kwong [13] and [14]. Uniqueness results
of positive solutions for the case p = 2 also can be found in [2], [3], [10], and [21]. In
the case where p > 1 and a(z) = 1, Sénchez and Ubilla [24] showed that (1)-(2) has at
most one positive solution. Nabana [18] gave the uniqueness result of positive solutions
of (1)-(2) when p > 2 and a(z) # 1. However it seems that very little is known about
the uniqueness of positive solutions of (1)—(2) for the case where 1 < p < 2 and a(z) % 1.

Next we are concerned with sign-changing solutions of problem (1)-(2) in the case
where '

9) fEC'R), sf(s)>0 and f'(s)> (p-— 1)-‘%9-)- for s # 0.

Since f € C'(R) and a € C'[zy,z,], we note that the solution of (1) with the initial
condition

u) =0, w'(E)=48

exists on [zo, 7] and it is unique for arbitrary £ € [zo,;] and a, 8 € R. (See Reichel
and Walter [22].) Therefore we see that zeros of every nontrivial solution of (1)-(2) are
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simple, so that the problem (1)—(2) with u/(zo) = 0 has only the trivial solution. For
simplicity we assume u'(zo) > 0. The case u'(z,) < 0 is can be treated similarly.

We also note that the number of zeros of a nontrivial solution u of (1) in [y, 1] is finite.
Indeed, if u has infinitely many zeros in [z, 1], then we can conclude that u(z) =0 on
[z0, z1], by the uniqueness of initial value problems.

Hence we consider the problem

(Pp(w)) +a(z)f(v) =0, z<z<am,
(10) u(zo) = u(z1) =0, '(zo) >0,

u has exactly k — 1 zeros in (zo, z,),

where k is a positive integer.

Recently Lee and Sim [16] proved that if
lim -ﬂf)— =0 and lim Ss) = 00
=0 p(3) lsl—+0 ©p(s)

“then problem (10) has at least one solution for each k € N. See also [20]. In the case
where a(z) = 1, by using the result of Sdnchez and Ubilla [24], we can conclude that if
(9) holds and f(—s) = —f(s) for s > 0, then problem (10) has at most one solution. For
uniqueness of solutions of problem (10) with p = 2, we refer the reader to [2), [21], [25]
and [28]. However very little is known about the uniqueness of solutions of (10) when
a(z) #1 and p # 2.

We can establish the next theorem.

b

" Theorem 2. Let1 <p <2 andk € N. Assume that (9) and the following (11) hold:
(11) a € C?zo,z1] and ([a(2)]™7)" <0, @<z <

Then problem (10) has at most one solution.

In Theorems 1 and 2, we can not remove conditions (7), (8) and (11), respectively. In-
deed we have the following Theorem 3. In particular it is emphasized that the uniqueness
of solutions of (10) is not caused by the smoothness of the function a(z).

Theorem 3. Let p > 1. Assume that f(s) = |s|?"2s, ¢ > p. For each k € N, there

erists a € C®|zo, z1] such that a(z) > 0 for 2o < z < z; and that (10) has at least three
solutions.

In the case p = 2, Moore and Nehari [17] proved that there exists a piecewise continuous
function a(z) such that (1)—(2) has three positive solutions. By using their idea and the
shooting method, we can show Theorem 3. Gaudenzi, Habets and Zanolin [5] and [6] also
proved the existence of at least three positive solutions of (1)-(2) with p = 2 for some
a(z) having both positive part and negative part.
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