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We consider the two-point boundary value problem for the quasilinear ordinary differ-
ential equation

(1) $(\varphi_{p}(u’))’+a(x)f(u)=0$ , $x_{0}<x<x_{1}$ ,

(2) $u(x_{0})=u(x_{1})=0$ ,

where $\varphi_{p}(s)=|s|^{p-2}s,$ $p>1,$ $a\in C^{1}[x_{0}, x_{1}],$ $a(x)>0$ for $x\in[x_{0}, x_{1}]$ , and $f\in C^{1}(R)$ .
Recently there has been considerable investigation concerning two-point boundary

value problems for quasilinear ordinary differential equations. For example, we refer
the reader to [1], [4], [7], [8], [11], [15], [16], [18], [19], [20], [23], [24], [26], and [27]. In
order to find the exact number of solutions of problem (1)$-(2)$ , the linearized equation

(3) $(\varphi_{p}’(u’)w’)’+a(x)f’(u)w=0$

is studied frequently, where $u$ is a solution of (1) and $\varphi_{p}’(s)=(p-1)|s|^{p-2}$ for $s\neq 0$ . See,
for example, [9], [10], [11], [12], [13], [14], [21], and [25].

The main result of this paper is the following identity. For the case $p=2$, this identity
has been obtained in [25], by using the idea due to Korman and Ouyang [12]. (See also
[11, Lemma 4.1].)

Proposition 1. Let $u$ and $w$ be solutions of (1) and (3), respectively. Suppose that
$g\in C^{2}[x_{0},x_{1}]$ . Then

(4)
$[g\varphi_{p}(u’)w’+(p-1)^{-1}gaf(u)w-g’\varphi_{p}(u’)w_{l\prime}]’$

$=-g\varphi_{p}(u’)w+(p-1)^{-1}(pg’a+ga’)f(u)w$

for $u’(x)\neq 0$ . In particular, if $a\in C^{2}[x_{0},x_{1}]$ and $g(x)=[a(x)]^{-1/p}$ , then

(5) $[g\varphi_{p}(u’)w’+(p-1)^{-1}gaf(u)w-g’\varphi_{p}(u’)w]’=-g’’\varphi_{p}(u’)w$

for $u’(x)\neq 0$ .

A straightforward calculation yields (4).
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By using (4) we can obtain uniqueness results for problem (1)$-(2)$ . First we study the
uniqueness of positive solutions of (1)$-(2)$ for the case where

(6) $f\in C^{1}[0, \infty$), $f(s)>0$ and $f’(s)>(p-1) \frac{f(s)}{s}$ for $s>0$ .
For example, the function $f(s)=s^{q-1},$ $q> \max\{p, 2\}$ satisfies (6).

For existence of solutions of (1)$-(2)$ under condition (6), we refer to [1], [4], [7], [8],
[15], [16], [23], and [26]. In particular, by results in [8], [23] or [26], we see that if

$\lim_{\iotaarrow 0}\frac{f(s)}{s^{p-1}}=0$ and $\lim_{tarrow\infty}\frac{f(s)}{8^{p-1}}=\infty$,

then (1)$-(2)$ has at least one positive solution. More precise conditions for the existence
of a positive solution of (1)$-(2)$ have been obtained in [7] and [20].

We note that if (6) holds, then $s^{1-p}f(s)$ is increasing on $(0, \infty)$ . On the other hand, it is
known by Naito [19] and Wong [27] that if $s^{1-p}f(s)$ is decreasing on $(0, \infty)$ , then problem
(1)$-(2)$ has at most one positive solution for each $a\in C^{1}[x_{0}, x_{1}]$ satisfying $a(x)>0$ on
$[x_{0},x_{1}]$ .

We can obtain the following result.

Theorem 1. Let $1<p\leq 2.$ SuPpose that (6) holds and

(7) $pa(x)+(x-x_{0})a’(x)\geq 0$ , $x_{0}\leq x\leq x_{1}$ ,
(8) $-pa(x)+(x_{1}-x)a’(x)\leq 0$, $x_{0}\leq x\leq x_{1}$ .
Then problem (1) $-(2)$ has at most one positive solution.

Theorem 1 with $p=2$ has been established by Kwong [13] and [14]. Uniqueness results
of positive solutions for the case $p=2$ also can be found in [2], [3], [10], and [21]. In
the case where $p>1$ and $a(x)\equiv 1$ , S\’anchez and Ubilla [24] showed that (1)$-(2)$ has at
most one positive solution. Nabana [18] gave the uniqueness result of positive solutions
of (1)$-(2)$ when $p\geq 2$ and $a(x)\not\equiv 1$ . However it seems that very little is known about
the uniqueness of positive solutions of (1)$-(2)$ for the case where $1<p<2$ and $a(x)\not\equiv 1$ .

Next we are concerned with sign-changing solutions of problem (1)$-(2)$ in the case
where

(9) $f\in C^{1}(R)$ , $sf(s)>0$ and $f’(s)>(p-1) \frac{f(s)}{s}$ for $s\neq 0$ .
Since $f\in C^{1}(R)$ and $a\in C^{1}[x_{0},x_{1}]$ , we note that the solution of (1) with the initial
condition

$u(\xi)=\alpha$ , $u’(\xi)=\beta$

exists on $[x_{0},x_{1}]$ and it is unique for arbitrary $\xi\in[x_{0},x_{1}]$ and $\alpha,$ $\beta\in R$. (See Reichel
and Walter [22].) Therefore we see that zeros of every nontrivial solution of (1)$-(2)$ are
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simple, so that the problem (1)$-(2)$ with $u’(x_{0})=0$ has only the trivial solution. For
simplicity we assume $u’(x_{0})>0$ . The case $u’(x_{0})<0$ is can be treated similarly.

We also note that the number of zeros of a nontrivial solution $u$ of (1) in $[x_{0}, x_{1}]$ is finite.
Indeed, if $u$ has infinitely many zeros in $[x_{0}, x_{1}]$ , then we can conclude that $u(x)\equiv 0$ on
$[x_{0},x_{1}]$ , by the uniqueness of initial value problems.

Hence we consider the problem

(10) $\{\begin{array}{ll}(\varphi_{p}(u^{j}))’+a(x)f(u)=0, x_{0}<x<x_{1},u(x_{0})=u(x_{1})=0, u (x_{0})>0,u has exactly k-1 zeros in (x_{0}, x_{1}),\end{array}$

where $k$ is a positive integer.
Recently Lee and Sim [16] proved that if

$\lim_{earrow 0}\frac{f(s)}{\varphi_{p}(s)}=0$ and $\lim_{|\iota|arrow\infty}\frac{f(s)}{\varphi_{p}(s)}=\infty$ ,

then problem (10) has at least one solution for each $k\in$ N. See also [20]. In the case
where $a(x)\equiv 1$ , by using the result of S\’anchez and Ubilla [24], we can conclude that if
(9) holds and $f(-s)=-f(s)$ for $s>0$ , then problem (10) has at most one solution. For
uniqueness of solutions of problem (10) with $p=2$ , we refer the reader to [2], [21], [25]
and [28]. However very little is known about the uniqueness of solutions of (10) when
$a(x)\not\equiv 1$ and $p\neq 2$ .

We can establish the next theorem.

Theorem 2. Let $1<p\leq 2$ and $k\in N$ . Assume that (9) and the following (11) hold: ,

(11) $a\in C^{2}[x_{0},x_{1}]$ and $([a(x)]^{-1/p})’’\leq 0$, $x_{0}\leq x\leq x_{1}$ .
Then problem(10) has at most one solution.

In Theorems 1 and 2, we can not remove conditions (7), (8) and (11), respectively. In-
deed we have the following Theorem 3. In particular it is emphasized that the uniqueness
of solutions of (10) is not caused by the smoothness of the function $a(x)$ .
Theorem 3. Let $P>1$ . Assume that $f(s)=|s|^{q-2}s,$ $q>p$ . For each $k\in N$ , there
exists $a\in C^{\infty}[x_{0},x_{1}]$ such that $a(x)>0$ for $x_{0}\leq x\leq x_{1}$ and that (10) has at least three
solutions.

In the case $p=2$, Moore and Nehari [17] proved that there exists a piecewise continuous
function $a(x)$ such that (1)$-(2)$ has three positive solutions. By using their idea and the
shooting method, we can show Theorem 3. Gaudenzi, Habets and Zanolin [5] and [6] also
proved the existence of at least three positive solutions of (1)$-(2)$ with $p=2$ for some
$a(x)$ having both positive part and negative part.
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