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l.Introduction

In this paper we shall investigate the basic theory some functional integral
equation which occur in the theory of populational problems. This type integral
equation was first treated by Gurtin and MacCamy. Their model included the
parameters which were death rate and birth rate depended on the total number
of the population. Usual equations for mathematical population model can be
solves along the characterlistic line. At last those equations will be some shape of
integral equations. Also Gurtin and MacCamy made the integral equation which
had the functional depended on the integration of the populational distribution.

$\frac{\partial n}{\partial a}+\frac{\partial n}{\partial t}+\mu(a, N(t))n(a, t)=0$ , $a>0,0<t<T$

$n(0, t)= \int_{0}^{\infty}m(a, N(t))n(a, t)da$ , $0<t\leq T$, (1)

$n(a,O)=\varphi(a)$ , $a\geq 0$ .

where $n$ is the distribution of the population and $N$ is the total number of the
population, that is,

$N(t)= \int_{0}^{\infty}n(a,t)da$ . (2)
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As in the previous case the birth process $B$ satisfies the equation,

$B(t)=n(0,t)$ .

For we considering the population model, $\varphi\in L^{1}(R_{+}),$ $\mu(a, N),$ $m(a, N)$ are all
nonnegative function. Especially $\mu,$ $m$ have the integral term of $n$ , so $\mu,$ $m$ are the
functional of $n$ . In the paper of Gurtin, MacMamy they putted the hypotheses
on $\mu,$ $m$ that those functional have the continuous patial derivative with respect
to $N$ . We can remove this assumption instead of the Lipshitz continuous. Then
we can get the same theorem with Gurtin and MacCamy under the following
two assumptions, that is, under these assumption there exists only one positive
solution $n(a,t)$ for the equaton(l).
$(H1)\varphi$ is piecewise continuous,
$(H2)\mu,$ $m\in C(R^{+}xR^{+})$ and with respect to $N$ these functional are unifomly
Lipshitz continuous.
The integral equation along the characteristic line is followIng.

$N(t)= \int_{0}^{t}K(t-a;t;N)B(a)da+\int_{0}^{\infty}L(a, t;N)\varphi(a)da$ ,

$B(t)= \int_{0}^{t}m(t-a, N(t))K(t-a,t;N)B(a)da$

$+ \int_{0}^{\infty}m(t+a, N(t))L(a, t;N)\varphi(a)da$ ,

$K( \alpha,t;N)=exp(-.\int_{t-a}^{t}\mu(\alpha+\tau-t, N(\tau))d\tau)$ ,

$L( \alpha, t;N)=exp(-\int_{0}^{t}\mu(\tau+\alpha, N(\tau))d\tau)$ .

By using iterational method, that is, using Banach contraction method, we can
prove the exisetence of the unique solution on the nonnegative real half line.

2.$The$ Existence Theorems

In this paper we shall consider the following functional integral equation, which
is generalization of the integral equation appeared in Introduction.

$x(t)$ $=$ $\int_{0}^{t}k(t-s, t;x)y(s)ds+\int_{0}^{\infty}L(t, s;x)\varphi(s)ds$ , (3)

$y(t)$ $=$ $\int_{0}^{t}\beta(t-s,x(t))k(t-s, t;x)y(s)ds$

$+ \int_{0}^{\infty}\beta(t+s,x(t))L(t;s;x)\varphi(s)ds$ . (4)
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For this rather general integral equation, we put the next assumptions. Through
this paper let us call these assumptions as basic hypotheses. We consider the
funcion $k$ and $L$ are nonnegative function. In general integral equation theory

we do not need this assumption. For the theory of populational problem, this
nonnegative assumption must be set for the kernel.

$\beta\in C(R^{+}\cross R)$ , (5)

$k(t, s;x):cont.on[0,T]x[0,T]x\Sigma$ , (6)

$L(t, s;x)$ : cont. $on[0,T]xR^{+}x\Sigma$ , (7)

$|L(t, s;x)-1|arrow 0asTarrow 0$ , on$0\leq t,$ $s\leq T,x\in\Sigma$ . (8)

$\Sigma$ is defined by the following.

$\Sigma=\{f|f\in C^{+}[0,T], \Vert f-\Phi\Vert<r, on[0, T]\}$ ,

where,
$\Phi=\int_{\theta}^{\infty}\varphi(s)ds$ .

Theoreml

For the equations (3) (4) $,asume$ the basic hypotheses, and put Lipschitz con-
tinuous on the functional $k,$ $L$ for $x$ . Then there exists a positive number $T$ such
that on the interval $[0,T]$ , only one solution for (3)(4) exists.

Theorem2

For the equations (3)(4) $,asume$ the basic hypotheses. Then there exists a
positive number $T$ such that on the interval $[0,T]$ , the solutions for (3)(4) exist..

We shall sketch the prooves for these theorems. For concerned integral equa-
tions $\varphi$ is a initial functions. Hence we must look for the solutions near by the

value $\Phi$ .

From the integral equation(4), we put

$y(t)=B(x)(t)= \int_{0}^{t}\beta(t-s,x(t))k(t-s,t;x)y(s)ds+\int_{0}^{\infty}\beta(t+s, x(t))L(t, s;x)\varphi(s)ds$.

There exists a positive number $M$ , such that the inequality,

$|B(x)(t)| \leq M\int_{0}^{t}|B(x)(s)|ds+M\Phi$ ,
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is satisfied. By using Gronwall inequality we can prove the following inequality.

$|B(x)(t)|\leq Me^{Mt}$ .

We can think that the integral equation (4) as one operator for the solution $x$ .
Dfine the operator X by the following equation,

$X(x)(t)= \int_{0}^{t}k(t-s, t;x)y(s)ds+\int_{0}^{\infty}L(t, s;x)\varphi(s)ds$ .

For this operator, we can apply the contoraction or, Schauder-Tychonoff fixed
point theorem. Hence Theorem lor 2 are established.

For proving Theoreml, the operator,

$X(x)(\cdot):\Sigmaarrow\Sigma$ ; contractive

must be satisfied. For this prove we must establish the next two inequalities.

$\Vert X(x)(\cdot)-\Phi\Vert\leq r,$ $\Vert X(x)-X(x’)\Vert\leq\kappa\Vert x-x’\Vert,$ $0<\kappa<1$ .
These two inequalities will be proved by the evaluation the following three in-
equality by using the basic hypotheses. The positive number $r$ can be calculated
by same process.

$\int_{0}^{t}|k(t-s, t;x)-k(t-s, t, ; x’)||B(x)(s)|ds$ ,

$\int_{0}^{t}k(t-s, t;x’)|B(x)(s)-B(x’)(s)|ds$,

$\int_{0}^{\infty}|L(t, s;x)-L(t, s;x’)|\varphi(s)ds$ .

The Lipschitz condition is rather strong hypotheses in the fields of the existense
theorems of the functional equations. About this theorem we shall prove the
global existence theorem. Also we can take the continuation theorems of solu-
tion which follows from Theorem 1 and 2. For the proof on Therorem 2, we
use the Shauder-Tychonoff flxed point thorem. By evaluation on the following
three inequalities we can prove that operatorX $(x)(\cdot)$ maps $\Sigma$ into the set of
equicontinuous functions.

$|X(x)(t)-X(x)(t’)|$ $\leq$ $\int_{0}^{t}k(t-s, s;x)-k(t’-s,t’;x)||B(x)(s)|ds$

$+$ $\int^{t’}|k(t’-s, t’;x)B(x)(s)|ds$

$+$ $\int_{0}^{\infty}|L(t, s;x)-L(t’, s:x)|\varphi(s)ds$ .
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3. Kneser Type Theorem

If Schauder-Tychonoff type is established, there is the possibility that the inte-
gral equations have more than one solution. In this case we can consider Kneser
type theorem.

Theorem3 (Kneser)
Assume the basic hypotheses on the functional integral equation (3)(4). Call

the set of the graph of the solution set from the point $P$ which belongs to the
domain of the functional equation as $R(P)$ , and call the cross section of $R(P)$

by the hypersurface $x=\xi$ as $S_{\xi}(P)$ . Then $S_{\xi}(P)$ is contlnuum.
The proof of this theorem we esatablish that the solution set $F(P)$ with

initial point $P$ , which means the couple of the initial data for the solution
$(x, y)$ , is continuum. This process is devided into four step8.
(1)$F(P)$ is totally compact and closed.
(2)$Generally$, for the decreasing series of compact and continuum set $\{C_{\nu}\}$ ,
$C=\cup C_{\nu}$ is continuum.
(3) $\epsilon$-asymptotic solution set $F(P;\epsilon)$ is continuum.
(4) $S_{\xi}(P)$ is continuum.
At first note that $\epsilon$-approximate solution for the equation (3), (4), we can make
the following process.

$x_{j}(t)$ $=$ $\Phi,0\leq t\leq\alpha/j$ ,

$y_{j}(t)$ $=$ $\int_{0}^{t}\beta(t-s, x_{j}(t))k(t-s, s;x_{j})y_{j}(s)ds$

$+$ $\int_{0}^{\infty}\beta(t+s,x_{j}(t))L(t, s;x_{j})\varphi(s)ds,0\leq t\leq\alpha/j$ ,

$x_{j}(t)$ $=$ $\int_{0}^{t-\alpha/j}k(t-\alpha/j, s;x_{j})y_{j}(s)ds$

$+$ $\int_{0}^{\infty}L(t, s;x_{j})\varphi(s)ds,$ $\alpha/j<t\leq\alpha$ ,

$y_{j}(t)$ $=$ $\int_{0}^{t}\beta(t-s, x_{j}(t))k(t-s, s;x_{j})y_{j}(s)ds$

$+$ $\int_{0}^{\infty}\beta(t+s,x_{j}(t))L(t, s;x_{j})\varphi(s)ds,$ $\alpha/j<t\leq\alpha$ .

First step. Suppse that $(x_{n},y_{n})\in F(P)$ and $(x_{n},y_{n})arrow(x, y)$ , then from the
hypotheses $(x, y)\in F(P)$ . This fact proves that $F(P)$ is closed. Also We can
prove that each series $\{(x_{n},y_{n})\}\subset F(P)$ is equicontinuous and equibounded.
Then there exists a sub-sequence of $\{(x_{n},y_{n})\}$ , which converges to one solution
of $F(P)$ . Hence first step was established. Second step is the general fact of
topological theory.
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Third step. We can make the $\epsilon$-asymptotic solutions for every positive $\epsilon$ .
The set of $\epsilon$-asymptotlc solutions are no empty. Note that $F(P)=\cap F(P;\epsilon_{n})$ .
If $F(P;\epsilon_{n})$ is continuum, by the step two $F(P)$ is also continuum. For every
$\epsilon>0$ , choose sufficiently small $\delta>0$ and choose $(x, y),$ $(x’, y’)\in F(P;\epsilon)$ with
$\rho((x, y),$ $(x’, y’))<\delta$ , with supremun norm $\rho$ . Let the interval $[0, T]$ , where
the solutions exist, divide into the subintervals on which we can make the $\epsilon-$

asymptotic solutions. Put $\xi\in[0, T]$ , and call the point $(\xi, x(\xi),$ $y(\xi)),$ $(\xi, x’(\xi),$ $y’(\xi))$

as $Q$ and $Q$ ’respectively. Let $(x_{\xi}, y_{\xi})$ and $(x_{\xi}’, y_{\xi}’)$ be $\epsilon$-asymptotic solutions with
initial points $Q$ and $Q$ ’respectively. Dfine two $\epsilon$-asymptotic solutions as follows.

$(1 -\lambda)Y_{\xi}(t)+\lambda Y_{\xi}’(t),$ $0\leq\lambda\leq 1$ . If we change the value of $\lambda$ from $0$ to 1,
$(u_{\xi}, v_{\xi})$ goes from $(X_{\xi}, Y_{\xi})$ to $(X_{\xi}’, Y_{\xi}’)$ continuously. And if $\xi$ moves from $0$ to
$T$ , then $(x, y)$ goes to $(x’, y’)$ continuously. At last we can prove that the set of
$\epsilon$-asymptotic solutions is continuum.

The proof of the step four is same as usual thory of differential equation.
Hence Kneser type thmrem will be established.
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