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Abstract
We consider the existence of duck solutions in a two-region businaes cycle model

where each of the regions is described as Goodwin’s business cycle model and they
are coupled by interregional trade. We show that there exist duck solutions in our
model with monotonic investment functions, and present results from numerical
experiment8.

1 Preliminaries

1.1 Duck in $\mathbb{R}^{3}$

We describe some results of Benoit [1] by following Kakiuchi and Tchizawa [3]. Consider
the following system of differential equations in $\mathbb{R}^{3}$ :

$\{\begin{array}{l}\dot{x}=f(x,y,z,\epsilon)\dot{y}=g(x,y,z,\epsilon)\epsilon\dot{z}=h(x,y, z,\epsilon)\end{array}$ (1.1)

where $f,$ $g$ , and $h$ are defined on $R^{3}x\mathbb{R}^{1}$ and $\epsilon$ is infinitesimally small. We assume that
system (1.1) satisfies the following conditions.

(A1) $f$ and $g$ are of class $\mathbb{C}^{1}$ , and $h$ is of class $\emptyset$ .
(A2) The slow manifold $S_{1}=\{(x, y,z)\in R^{3}|h(x,y, z,0)=0\}$ is a two-dimensional dif-

ferentiable manifold and intersects the set $T_{1}=\{(x,y, z)\in \mathbb{R}^{3}|\partial h(x,y, z,0)/\partial z=$

$0\}$ transversely so that the pli set $PL=\{(x,y, z)\in S_{1}\cap T_{1}\}$ is a one-dimensional
differentiable manifold.

(A3) Either the value of $f$ or that of $g$ is nonzero at any point of $PL$ .
The following equation holds by differentiating $h(x, y, z,0)$ with respect to $t$ :

$h_{x}(x,y,z,0)f(x,y, z,0)+h_{y}(x)y,$ $z,$ $0$ )$g(x, y, z, 0)+h_{z}(x, y, z,0)\dot{z}=0$ ,

where $h_{\alpha}(x,y, z,0)=\partial h(x, y, z,0)/\partial\alpha(\alpha=x,y, z)$ . $(1.1)$ becomes the following:

$\{\begin{array}{l}\dot{x}=f(x,y, z,0)\dot{y}=g(x,y,z, 0)\dot{z}=-\{h_{x}(x,y,z,0)f(x, y, z, 0)+h_{y}(x,y, z, 0)g(x,y, z,0)\}/h_{z}(x,y, z,0)\end{array}$ (1.2)
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where $(x, y, z)\in S_{1}\backslash PL$ . To avoid degeneracy in (1.2), we consider the newly revised
system:

$\{\begin{array}{l}\dot{x}=-h_{\approx}(x, y, z,0)f(x, y, z, 0)\dot{y}=-h_{z}(x, y, z, 0)g(x, y, z, 0)\dot{z}=h_{x}(x,y, z,0)f(x, y, z,0)+h_{y}(x,y, z, 0)g(x,y, z,0)\end{array}$ (13)

Note that system (1.3) is well defined at any point of $\mathbb{R}^{3}$ . Therefore, system (1.3) is well
defined indeed at any point of $PL$ .
Definition 1.1 A singular point of (1.3), which is contained in $PL$ and satisfies

$h_{x}(x,y, z,0)f(x, y,z, O)+h_{y}(x,y, z,O)g(x,y, z,0)=0$,

is called a pseudo singular point.

(A4) For any $(x, y, z)\in S_{1}$ , either $h_{x}(x, y, z,0)\neq 0$ or $h_{y}(x,y, z, 0)\neq 0$ holds.

Then the slow manifold $S_{1}$ can be expressed like as $y=\varphi(x, z)$ in the neighborhood of
$PL$ and we obtain the following system, which restricts system (1.3) on $S_{1}$ :

$\{\begin{array}{l}\dot{x}=-h_{z}(x,\varphi(x, z), z,0)f(x,\varphi(x, z),z,0)\dot{z}=h_{x}(x,\varphi(x, z), z,0)f(x,\varphi(x, z), z,0)+h_{y}(x, \varphi(x, z), z,0)g(x, \varphi(x, z), z,0)\end{array}$ (1.4)

(A5) All singular points of (1.4) are nondegenerate, that is, the linearization of (1.4) at
a singular point has two nonzero eigenvalues. Note that all pseudo singular points
are the singular points of (1.4).

Definition 1.2 Let $\lambda_{1},$ $\lambda_{2}$ be two eigenvalues of the linearization of (1.4) at a pseudo
singular point. The pseudo singular point with real eigenvalues is called a pseudo singular
saddle point if $\lambda_{1}<0<\lambda_{2}$ .
Benoit [1] finally obtained the following theorem (for the definition of a duck solution in
(1.1), see e.g. [3]).

Theorem 1.3 If (1.1) has a pseudo singular saddle point, then there exists a duck so-
lution in (1.1).

1.2 Duck in $\mathbb{R}^{4}$

In this subsection, we consider a slow-fast system in $\mathbb{R}^{4}$ with a two-dimensinal slow
manifold. We reduce it to the system in $\mathbb{R}^{2}$ by following Tchizawa $[5, 6]$ and provide
the condition for the existence of a duck solution. Consider the following system of
differential equations in $\mathbb{R}^{4}$ :

$\{\begin{array}{l}\epsilon\dot{x}_{1}=h_{1}(x_{1},x_{2},y_{1},y_{2},\epsilon)\epsilon\dot{x}_{2}=h_{2}(x_{1},x_{2},y_{1},y_{2},\epsilon)\dot{y}_{1}=f_{1}(x_{1},x_{2},y_{1},y_{2},\epsilon)\dot{y}_{2}=f_{2}(x_{1},x_{2},y_{1},y_{2},\epsilon)\end{array}$ (15)

where $f_{1},$ $f_{2},$ $h_{1}$ , and $h_{2}$ are defined on $\mathbb{R}^{4}x\mathbb{R}^{1}$ and $\epsilon$ is infinitesimally small. In
the following we use the notations $x=(x_{1}, x_{2})^{T},$ $y=(y_{1},y_{2})^{T},$ $f=(f_{1}, f_{2})^{T}$ , and
$h=(h_{1}, h_{2})^{T}$ . We assume that system (1.5) satisfies the following conditions.
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(B1) $f$ is of class C’ and $h$ is of class $\mathbb{C}^{2}$ .
(B2) The slow manifold $S_{2}=\{(x,y)\in \mathbb{R}^{4}|h(x,y,0)=0\}$ is a two-dimensional differ-

entiable manifold and intersects the set $T_{2}= \{(x, y)\in \mathbb{R}^{4}|\det(\frac{\partial h}{\partial x}(x,y,0))=0\}$

transversely so that the generalized pli set $GPL=\{(x, y)\in S_{2}\cap T_{2}\}$ is a one-
dimensional differentiable manifold.

$\iota$

(B3) Either the value of $f_{1}$ or that of $f_{2}$ is nonzero at any point of $GPL$ .
(B4) rank $( \frac{\partial h}{\partial x}(x,y, 0))=2$ for any $(x, y)\in S_{2}\backslash GPL,$ $rank(\frac{\partial h}{\theta y}(x,y, 0))=2$ for any

$(x,y)\in S_{2},$ $\bm{t}d\frac{\partial h}{\partial x}\iota(x,y,0)2\neq 0$ or $\frac{\partial h}{\theta x}l1(x, y, 0)\neq 0$ for any $(x,y)\in GPL$ .
From the last part of (B4) we see that the implicit function theorem guarantees the
existence of a unique function $x_{2}=\psi_{2}(x_{1},y_{1},y_{2})$ (respectively, $x_{1}=\psi_{1}(x_{2},y_{1},y_{2})$ ) such
that $h_{1}(x_{1}, \psi_{2}(x_{1}, y_{1},y_{2}),y_{1},y_{2},0)=0$ (respectively, $h_{2}(\psi_{1}(x_{2},$ $y_{1},$ $y_{2}),x_{2},y_{1},y_{2},0)=0$).
By using the relation $x_{2}=\phi_{2}(x_{1},y_{1},y_{2})$ and $h_{2}$ instead of $h_{1}$ to avoid redundancy, (1.5)
can be reduced the following slow-fast system in $\mathbb{R}^{3}$ under the condition that $\dot{x}_{1}$ and $\dot{x}_{2}$

are limited, that is, $\epsilon|\dot{x}_{1}-\dot{x}_{2}|$ tends to $0$ as $\epsilon$ tends to $0$ :

$\{\begin{array}{l}\dot{y}_{1}=f_{1}(x_{1},\psi_{2}(x_{1},y_{1},y_{2}),y_{1},y_{2},\epsilon)\dot{y}_{2}=f_{2}(x_{1},\psi_{2}(x_{1},y_{1},y_{2}),y_{1},y_{2},\epsilon)\epsilon\dot{x}_{1}=h_{2}(x_{1},\psi_{2}(x_{1},y_{1}, y_{2}),y_{1},y_{2},\epsilon)\end{array}$ (1.6)

Similarly, we can get the following system:

$\{\begin{array}{l}\dot{y}_{1}=f_{1}(\psi_{1}(x_{2}, y_{1},y_{2}),x_{2},y_{1},y_{2},\epsilon)\dot{y}_{2}=f_{2}(\phi_{1}(x_{2},y_{1},y_{2}), x_{2},y_{1},y_{2},\epsilon)\epsilon\dot{x}_{2}=h_{1}(\psi_{1}(x_{2},y_{1},y_{2}),x_{2},y_{1}, y_{2},\epsilon)\end{array}$ (1.7)

Definition 1.4 If there exist duck solutions in both (1.6) and (1.7) at the common
pseudo singular point, they are called duck solutions in (1.5). If there exists a duck
solution in either of them, it is called a partial duck solution in (1.5).

From Theorem 1.3 we have the following corollary.

Corollary 1.5 If either (1.6) or (1.7) has a pseudo singular saddle point, then there
exists a partial duck solution in (1.5). If both $(1.\theta)$ and (1.7) have a common pseudo
singular saddle point, then there exist duck solutions in (1.5).

By differentiating $h(x,y,0)$ with respect to $t$ , we have

$\frac{\partial h}{\partial x}(x,y,0)\dot{x}+\frac{\partial h}{\partial y}(x,y, 0)\dot{y}=0$, (18)

where $\dot{x}=(\dot{x}_{1},\dot{x}_{2})^{T}$ and $\dot{y}=(\dot{y}_{1},\dot{y}_{2})^{\rceil}$ . By using the relation $\dot{y}=f(x, y,0),$ $(1.8)$ becomes

$\dot{x}=-[\frac{\partial h}{\partial x}(x,y,0)]^{-1}\frac{\partial h}{\partial y}(x, y, 0)f(x, y,0)$.
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By applying the second part of (B4), $y$ is uniquely described like as $y=\varphi(x)$ and we
have

$\dot{x}=-[\frac{\partial h}{\partial x}(x, \varphi(x),$ $0$ ) $]^{-1} \frac{\partial h}{\partial y}(x, \varphi(x),O)f(x,\varphi(x),0)$ . (1.9)

To avoid degeneracy in (1.9), we consider the following system:

$\dot{x}=$ -det $( \frac{\partial h}{\partial x}(x)\varphi(x),0))[\frac{\partial h}{\partial x}(x, \varphi(x),$ $0$)$]^{-1} \frac{\partial h}{\partial y}(x,\varphi(x),O)f(x,\varphi(x),0)$ . (110)

(B5) All singular points of (1.10) are nondegenerate.

Definition 1.6 A singular point of (1.10) is called a generalized pseudo singular point.

Definition 1.7 Let $\lambda_{1},$ $\lambda_{2}$ be two eigenvalues of the linearization of (1.10) at a general-
ized pseudo singular point. The pseudo singular point with real eigenvalues is called a
generalized pseudo singular saddle point if $\lambda_{1}<0<\lambda_{2}$ .
By applying Benoit’s criterion, Tchizawa $[5, 6]$ finally obtained the following theorem.

Theorem 1.8 If (1.5) has a generalized pseudo singular saddle point, then there exists
a partial duck solution in (1.5).

2 Economic models

2.1 Goodwin’s business cycle model
The Goodwin model consists of a national income identity $y(t)$ , a consumption function
$c(t)$ , and an investment function $\dot{k}(t)$ :

$y(t)=c(t)+\dot{k}(t)-\epsilon\dot{y}(t)$ ,
$c(t)=\alpha y(t)+\beta(t)$ , (21)
$\dot{k}(t+\theta)=\varphi(\dot{y}(t))+l(t+\theta)$ ,

where $k(t)$ denotes capital stock, $\epsilon(>0)$ a constant expressing a lag in the multi-
plier process, $\alpha(0<\alpha<1)$ the marginal propensity to consume, $\beta(t)$ an autonomous
consumption, $\varphi(\dot{y}(t))$ the induced investment function as shown in Figure 1, $l(t)$ is the
autonomous investment, and $\theta$ the lag between the decision to invest and the correspond-
ing outlays, respectively. Goodwin finally obtained the following second-order differential
equation (see [2] for details):

$\epsilon\theta\ddot{z}+[\epsilon+(1-\alpha)\theta]\dot{z}-\varphi(\dot{z})+(1-\alpha)z=0$, (2.2)

where $z$ is the deviations from the equilibrium income. Using graphical integration
method, Goodwin showed that (2.2) has a unique limit cycle. Viewing recent progress
in information and production technologies, we may take $\epsilon$ and $\theta$ to be small. As $\epsilon$ is
the parameter depending on the speed of information propagation, we can consider the
situation where $\epsilon$ tends to $0$ . On the other hand, as $\theta$ concerns production process, we
would not take $\theta$ to be small comparable to $\epsilon$ . Hence we shall henceforth assume

$0<\epsilon\ll\theta\ll 1$ .
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Figure 1 The induced investment function.

2.2 Two-region business cycle model
Now we present a two-region business cycle model which is a natural extension of the
Goodwin model obtained by introducing interregional trade. More precisely, the model
consists of the following equations:

$y_{i}(t)=c_{i}(t)+\dot{k}_{1}(t)-\epsilon_{i}\dot{y}_{*}\cdot(t)+e_{i}(t)-m_{i}(t)$ ,
$c_{i}(t)=\alpha_{i}y_{i}(t)+\beta_{i}(t)$ , (2.3)
$\dot{k}_{i}(t+\theta_{i})=\varphi_{i}(\dot{y}_{j}(t))+l_{i}(t+\theta_{i})$,

where the subscript $i(i=1,2)$ denotes the region $i,$ $e_{i}(t)$ the export of the region $i$ , and
$m_{i}(t)$ the import of the region $i$ , respectively. For simplicity, we put $\epsilon_{1}=\epsilon_{2}=\epsilon$ and
$\theta_{1}=\theta_{2}=\theta$ . As to the export and import terms, we put

$e_{i}(t+\theta)=m_{j}(t+\theta)=a_{j}y_{j}(t)+b_{j}\varphi i(\dot{y}_{j}(i))$ ,

where the subscript $j(j=1,2)$ denotes the region different from the region $i$ , and $a_{i}\geq 0$

and $b_{i}>0$ are constants.
By the same transformation as tfat in the Goodwin model, we have the following

second-order equation:

$\epsilon\theta_{\ddot{Z}j}+[\epsilon+(:\cdot$
Setting new variables, $x;=\dot{z}:(i=1,2)$ , we obtain the following system:

$\{\begin{array}{l}\epsilon\dot{x}_{1}=-\frac{1-\alpha+a_{1}}{\theta}z_{1}+\frac{a_{2}}{\theta}z_{2}-(\frac{\epsilon}{\theta}+1-\alpha)x_{1}+\frac{1-b_{1}}{\theta}\varphi_{1}(x_{1})+\frac{b_{2}}{\theta}\varphi_{2}(x_{2})\epsilon\dot{x}_{2}=\frac{a_{1}}{\theta}z_{1}-\frac{1-\alpha+a_{2}}{\theta}z_{2}+\frac{b_{1}}{\theta}\varphi_{1}(x_{1})-(\frac{\epsilon}{\theta}+1-\alpha)x_{2}+\frac{1-b_{2}}{\theta}\varphi_{2}(x_{2})\dot{z}_{1}=x_{1}\dot{z}_{2}=x_{2}\end{array}$ (2.4)

System (2.4) is the specific case of system (1.10) when we consider the situation where
$\epsilon$ tends to $0$ , so we can apply Tchizawa’s result to (2.4) in order to investigate the
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existence of a duck solution. It can be shown that there does not exist a duck solution in
the Goodwin model as far as the induced investment function $\varphi$ is the type of the function
as shown in Figure 1 (see [4]). Tchizawa et $al[7]$ considered the Goodwin-like business
cycle model and showed that there exists the condition on the economic parameters
under which a duck solution exists when we use a cubic polynomial as the function $\varphi$ .
In the next section, we prove that there exist duck solutions in (2.4) even though we use
a monotone increasing function with upper and lower limits as the investment function.

3 Duck solutions in the two-region model
By following the procedure described in Section 1.2, we obtain the following system in
$R^{2}$ , which corresponds to (1.10):

(3.1)

In what follows, we put $\alpha_{1}=\alpha_{2}=\alpha$ and $\varphi_{i}(x_{i})=t\bm{t}hx_{i}(i=1,2)$ for the sake of the
specific calculation of the generalized pseudo singular points. Note that the hyperbolic
tangent is a typical example of the function as shown in Figure 1. Then the general-
ized pseudo singular points, that is, the singular points of (3.1) are determined by the
following system:

$\{\begin{array}{l}[(-(1-\alpha)\theta+\frac{4(1-b_{2})}{(\exp(x_{2})+exp(-x_{2}))^{2}})(1-\alpha+a_{1})+\frac{4a_{1}b_{2}}{(\exp(x_{2})+\exp(-x_{2}))^{2}}]x_{1}-[(-(1-\alpha)\theta+\frac{4(1-b_{2})}{(\exp(x_{2})+\exp(-x_{2}))^{2}})a_{2}+\frac{4b_{2}(1-\alpha+a_{2})}{(\exp(x_{2})+\exp(-x_{2}))^{2}}]x_{2}=0-[\frac{4b_{1}(1-\alpha+a_{1})}{(\exp(x_{1})+\exp(-x_{1}))^{2}}+(-(1-\alpha)\theta+\frac{4(1-b_{1})}{(exp(x_{1})+\exp(-x_{1}))^{2}})a_{1}]x_{1}+[\frac{4a_{2}b_{1}}{(\exp(x_{1})+\exp(-x_{1}))^{2}}+(-(1-\alpha)\theta+\frac{4(1-b_{1})}{(\exp(x_{1})+\exp(-x_{1}))^{2}})(1-\alpha+a_{2})]x_{2}=0\end{array}$ (3.2)

172



In the case $x_{1}=-x_{2}(\neq 0),$ $(3.2)$ can be reduced to the $e$quation:

$\{\{_{(1-\alpha)(1-\alpha-a_{1}-a_{2})\theta-}^{(1-\alpha)(1-\alpha+a_{1}+a_{2})\theta-\frac{4(1-\alpha+a_{1}+a_{2})}{\frac{(\exp(x_{1})+\exp(-x4(1-\alpha-a_{1}-a_{2}^{1\})^{2}}}{(\exp(x_{1})+\exp(-x_{1}))^{2}}}})_{x_{1}=0}^{x_{1}=0}’$

.

Therefore the generalized pseudo singular points satisfy the following equation:

$(1- \alpha)\theta=\frac{4}{(\exp(x_{1})+\exp(-x_{1}))^{2}}$.

Putting $Y=\sqrt{\frac{4}{(1-\alpha)\theta}}$ and $Z=\exp(x_{1})$ , we obtain

$Z= \frac{Y\pm\sqrt{Y^{2}-4}}{2}$ .
From $0<\alpha<1$ and $\theta\ll 1$ , we have $Y^{2}-4>0$ . Then we get the following two
generalized pseudo singular points:

$P_{1}=(X, -X),$ $P_{2}=(-X,X)$ ,

where

$X= \log\frac{Y+\sqrt{Y^{2}-4}}{2}>\log\frac{2+0}{2}=0$.
Next we investigate the eigenvalues of the linearization of (3.1) at these generalized
pseudo singular points. The matrix we consider is as follows:

$(\begin{array}{ll}A BC D\end{array})$ ,

where

$A=(1- \alpha)(1-\alpha+a_{1})\theta-\frac{4[(1-\alpha)(1-b_{2})+a_{1}]}{(\exp(X)+\exp(-X))^{2}}$ ,

$B=- \frac{8(1-\alpha+a_{1}+a_{2})(\exp(X)-\exp(-X))X}{(\exp(X)+\exp(-X))^{3}}-(1-\alpha)\theta a_{2}+\frac{(1-\alpha)b_{2}+a_{2}}{(\exp(X)+\exp(-X))^{2}}$ ,

$C=- \frac{8(1-\alpha+a_{1}+a_{2})(\exp(X)+\exp(-X))X}{(\exp(X)+\exp(-X))^{3}}-(1-\alpha)\theta a_{1}+\frac{(1-\alpha)b_{1}+a_{1}}{(exp(X)+\exp(-X))^{2}}$,

$D=(1- \alpha)(1-\alpha+a_{2})\theta-\frac{4[(1-\alpha)(1-b_{1})+a_{2}]}{(\exp(X)+\exp(-X))^{2}}$.

The characteristic equation is $\lambda^{2}-(A+D)\lambda+AD-BC=0$ and we have two eigenvalues

$\lambda_{1},\lambda_{2}=\frac{(A+D)\pm\sqrt{(A+D)^{2}-4(AD-BC)}}{2}$ .
In a general economic condition, we can prove

$\lambda_{1}\lambda_{2}=AD-BC<-2(1-\alpha)^{3}(1-\alpha+a_{1}+a_{2})\theta^{2}X(2X.\tanh X-b_{1}-b_{2})<0$ .
Therefore, we have two generalized pseudo singular saddle points and the following
theorem is established by Theorem 1.8.
Theorem 3.1 If $\alpha_{1}=\alpha_{2}=\alpha$ and $\varphi_{i}(x_{i})=\tanh x_{i}(i=1,2)$ , then there exist partial
duck solutions in (2.4).
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(a) (b)
Figure 2 The solution of (2.4) and the generaliz$ed$ pseudo singular point $P_{1}$ . $(a)$ Projection
onto the $(x_{1)}x_{2})$ plane. The dotted lines are $GPL$ . $(b)$ Enlarged view of (a) in the neighborhood
of $P_{1}$ .

4 Numerical example

We illustrate our results with numerical examples. The parameters values are as follows:

$\alpha=0.6,$ $\theta=0.5,$ $\epsilon=0.003,$ $a_{1}=0.1,$ $a_{2}=0.2,$ $b_{1}=0.1,$ $b_{2}=0.2$ ,

and then we obtain $P_{1}=$ (1.44364, -1.44364) and $P_{2}=(-1.44364, 1.44364)$ , the eigen-
values 0.82036 and-0.358036, and the corresponding eigenvectors (0.686459, -0.727169)
and (0.678577, 0.73453), respectively. Hence we have two generalized pseudo singular
saddle points in (2.4).

Finally, we $pre8ent$ the results of numerical simulation of (2.4). The results shown in
Figures 2-5 are calculated by using the fourth-order Runge-Kutta method. In $(x_{1},x_{2})$

plane, after the solution passes near $P_{1}$ , it jumps upward and then converges to a limit
cycle. In the following we focus on studying the behavior of the solution around $P_{1}$ . Next
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Figure 4 (Top panel) $x_{1}(t)$ (solid line) and $x_{2}(t)$ (dashed line) of (2.4). (Bottom panel) $z_{1}(t)$

of (2.4) (solid line) and $z_{1}$ coordinate of the slow manifold projected onto $(x_{1}, x_{2}, z_{1})$ space
when $x_{1}$ and $x_{2}$ are the components of the solution to (2.4) (dashed line). The dotted line
indicates the position when the solution passes near $P_{1}$ .
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we observe this trajectory by giving three-dimensional views. Two three-dimensional
projections of the solution, the slow manifold of (2.4), and $P_{1}$ are depicted in Figure 3.
One can see that, after passing near $P_{1}$ , the solution moves along the slow manifold for
a short distance and then turn$s$ the direction. Figure 4 indicates that the time during
which the solution stays on the slow manifold is much larger than the order of $\epsilon$ . As
shown in Figures 4 and 5, even though $\epsilon$ decreases, the solution moves close to the slow
manifold during about 0.02 independent of the value of $\epsilon$ . These observed phenomena
demonstrate the properties of a duck solution. In our examples, duck solutions occur
at the moment of the transition from the state in out of phase in the business cycles to
their synchronization,

5 Concluding remarks
In this paper, we have shown that there exist duck solutions in the $tw\triangleright region$ model
even though we use monotonic investment functions. Notice that the Goodwin model
never has duck solutions unless we have an artificial setting for the induced investment
function as shown in [7].

In our numerical experiments, we adopted the hyperbolic tangent. It still remains a
question whether our model exhibits a duck phenomenon under more general investment
functions.
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