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Abstract

The purpose of this paper is to introduce new approaches for kernel logistic regression in a semi-supervised
setting. Using the special structure of Laplacian kernel matrices, we propose new formulations which min-
imize the negative log likelihood of the kernel logistic regression model quite efficiently. The proposed
formulations can be seen as a natural extension of the recently developed semi-supervised learning method
based on Gaussian random field and harmonic functions.

Also, we propose new algorithms for performing pool-based active learning based on A-optimality in
which the semi-supervised kernel logistic regression is used to estimate the class probabilities. We show
that the active learning algorithms can be carried out in the feature space defined by the associated kernel
matrices. We give experimental results showing that the proposed active learning method can generate
accurate classifiers using a fewer number of labeled data points compared with the random queries.

1 Introduction

In the supervised learning framework, we first need to prepare a number of labeled data points as a set of
training data points. In many practical situations such as text classification or Web search, however, the task
for obtaining labeled data points is very expensive, while a large number of unlabeled data points are easily
available.

Recently, several studies [22, 20] have been devoted to develop semi-supervised learning in which unlabeled
data points are employed to achieve quite high accuracies for the classification problems. These approaches are
based on Gaussian random field and harmonic functions, and often referred to as energy minimization. It has
been shown that [18, 17) these approaches can be viewed as a special case of support vector machine (SVM)
with kernels defined on a graph [14].

Active learning can also be used to obtain accurate classifiers with a small number of labeled data points. In
_ active learning, the learner actively select a data point as a query from a pool of unlabeled data so as to improve
the accuracy of the current classifier. Then, the selected data point is added to the labeled set after its true label
is assigned by a human expert, and the classifier is retrained. Several methods have been proposed for selecting
good queries from the pool, which include uncertainty sampling [9], query by committee (12], and the version
space minimization [15). Recently, Zhu et al. (23] introduced a new approach which combines semi-supervised
learning and active learning.

In this paper, we also propose semi-supervised learning which can be actively performed in a different way
than [23]. We first introduce formulations for semi-supervised logistic regression with kernels defined on a graph,
which is a natural extension of the semi-supervised SVM given in [18]. We then introduce a new active learning
method based on A-optimality, in which the predicted variance is minimized. The A-optimality criterion is
often used for regression analysis in the field of experimental design in statistics, as well as neural networks
(10, 2). '

The contributions of this work include the following:

(i) New formulations for kernel logistic regression are developed in a semi-supervised setting, which enables
us to naturally handle the multiclass classification problems in a semi-supervised setting, while the energy
minimization approaches [22, 20] are essentially limited to the binary case.

(ii) Unlike the existing dual approach for kernel logistic regression [8], we can employ the kernel matrices in
the primal formulation which minimizes the negative log likelihood. Using the special structure of the
Laplacian kernel matrices, we can obtain quite simple formulations which can be minimized efficiently.



231

(iii) Using the efficient procedure for the kernel logistic regression, we develop a method for calculating the
A-optimality criterion for active learning. We show that this active learning method can be carried out in

the feature space characterized by the associated kernel matrices.

The rémaining part of the paper is organized as follows. In Sect. 2, we briefly review logistic regression and
the formulations for its kernel-based extension. Sect. 3 is devoted to develop the semi-supervised setting of the
kernel-based logistic regression. In Sect. 4, we introduce a method for calculating the kernel-based A-optimality
criterion, which is extended to the multiclass case in Sect.5. Numerical experiments using a real world data set
are presented in Sect. 6, and conclusions are presented in Sect. 7.

2 Kernel Logistic Regression

2.1 Regularized Classifiers
Suppose that we have a set of ! training data points denoted by

(2.1) {(=1,31), (®2,43), .-, (20, 00)}

where x; € RN stands for the j-th training vector with N-dimensional attributes, and Vi e {-1,+1} is the
corresponding binary class label. ‘
In logistic regression, we estimate the conditional probability of the label y given z in the form of

1

where w € R" is an N-dimensional vector of parameters. The parameter w is learned by maximizing the
likelihood ]'[;-_1 P(y;|®;), or equivalently by minimizing the negative log likelihood given below:

1
Elog (1 +exp(~y; (w, =5)))-
J=l

In order to improve numerical difficulties and to avoid overfitting, we usually consider the regularized logistic
regression [19], which is formulated as follows:

]
(23) | Min. Zllwl? + " log (1 + exp(~s (w, z;))),
J=1

where ) is a positive parameter oontfolling the degree of regularization.
The idea of adding the regularization term is also used in several methods, which include linear ridge regression

[4] and SVM [16]. In SVM, the following linear discriminating function with a gradient vector w and a threshold
b is considered

dz) ={(w, ) +b.
The parameters w and b are learned by solving the following quadratic minimization problem:

]
@4) | Min. Zfwl?+ 3 (1 - yyd(as),

J=1

where [-], denotes the hinge loss function:

2], = z ifz22>0,
+ 0 otherwise.
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Here, it is worth mentioning that the formulation of SVM given in (2.4) is quite similar to that of regularized
kernel logistic regression (2.3). However, the objective function of SVM is not differentiable, while that of the
logistic regression is smooth.

In the conventional SVM, instead of optimizing (2.4), we solve the corresponding dual formulation. Let

a=(ay,az,- - ,a;)T € R' be a vector of dual variables, the dual of (2.4) is given as follows:

1 d l

Min. 2 EZ (=i, &5 )yiyjoua; — Zaj
lizl J=1 J=1
2.5 :
( ) B.t. Zyjaj - 0’
Rt
0<a; <27Y, j=12,...,L

Let a® = (a}, - ,a})T be an optimal solution of this problem. It has been shown that the associated primal
optimal solution w* is given as a linear combination of the data points, i.e., w* = Z;-l ajyje;. See, e.g. [13]
for details.

2.2 Kernel Based Nonlinear Classifiers

In the conventional SVM framgwork, nonlinear classifiers can be generated by transforming the training data
points into a high dimensional space. Let us assume that we have a function ¢(:) : RN ~— F which nonlinearly
maps the original data points into a high dimensional feature space F. Generating linear discriminators in the
feature space amounts to obtaining nonlinear discriminators in the original data space. In the rest of this paper,
let us denote the mapped nge #(zx;) by ¢;, for simplicity.

The dusl formulation plays a crucial role for handling the above transformation. It is obvious to see that
the dual formulation is defined only by the inner products of the data points. In addition, & number of kernel
Jfunctions have been developed, which give the inner products directly from the original data points, without
knowing the transformation ¢(-), explicitly. For example, let ¢ be a hyper-parameter, the following RBF function:

K(z,z') = exp (——"w; ‘”’",’)
is one of the most popular kernel functions.

Now, let K be an ! x | symmetric matrix the i = j element of which is the inner product of the mapped
images ¢; and ¢;, i.e., Ki; = (¢, @ ) given by the kernel function. The matrix K is referred to as the kernel
matrix. Therefore, replacing the inner product terms in the dual formulation by the kernel functions, we can
obtain nonlinear classifiers without knowing ¢,’s. '

Also, let yT = (1,...,41) and e be a vector of all ones. Then, let us write the dual problem as follows:

Min. %aTK a-ela
(2°6) 8.t. yTa =0,
0<a; <A i=12,...,L

We note that this problem is a quite simple convex minimization problem since the kernel function generates a
positive semidefinite kernel matrix K, and that, exploiting the special structure, there exist algorithms [7, 11)
for solving this problem with a large number of training data points, efficiently.

In logistic regression, employing the same idea of the feature space mapping, we can introduce the kernel
based nonlinearity. More precisely, let us first consider the following problem defined in the feature space:

1
@7) | Min Sfwl+ g (1 + exp(-uy (w, 8, ),
J=1
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where w € F is the parameter we want to estimate.

Several methods for solving this problem without using the mapped image ¢, have been proposed. Keerthi et
al. [8] generate the dual formulation of (2.7) in which the inner products of the mapped images can be replaced
by the associated value of the kernel function. They also propose an SMO [11] like algorithm for solving the
dual formulation. | |

On the other hand, Zhu and Hastie [21] first assume that the vector of parameters is given by w =
}:;=1 a;j¢; € F. Then, the problem (2.7) can be equivalently written as follows:

[]

A

(2.8) | Min. EaTKa+.§ log (1 + exp(-y; (Ka);)),
j=1

where (Ka); stands for the j-th element of the vector Ka. They propose the Newton-Raphson method which
approximately minimizes the problem (2.8).

It seems that the dual formulation of (2.7), as well as (2.8), is optimized not so easy as other kernel based
problems such as SVM. This is mainly due to the fact that, the kernel matrix K and the optimal solution
a* are, in general, very dense, which makes the problem intractable as the size of the data points gets large.
Therefore, most algorithms only work over a small number of selected variables, and generate an approximate
solution.

In the next section, exploiting the special structure of the Laplacian matrix of a graph and the associated
kernel matrices, we introduce the semi-supervised setting and a very sparse formulation for kernel logistic
- regression, which can be optimized very efficiently even when the number of data points is large.

3 Semi-Supervised Learning for Kernel Logistic Regression

In this section, let us first introduce the semi-superviéed setting. Let us assume that, in addition to the set
of I labeled data points, a set of u unlabeled data points z; € RN (j =1+1,1+2,...,l+ u) is available. In the
sequel, let M = | 4 u be the total number of the data points, and let us redefine K as an M x M kernel matrix.

3.1 The Laplacian of a Graph and the Associated Kernel

Let us first introduce a weighted graph G with vertices corresponding to all the data points. When the data
point z; is among the k-nearest-neighbors of «; or x; is among those of «;, we put an edge between the node
i and j, and assign a nonnegative weight b;; representing the similarity between the points #; and =;, i.e., the
larger the weight is, the more similar the two data points are.

The edge weights b;;’s are defined in several ways. For instance, b;; = 1 for each edge (i, j) is the simplest
way, while we can set b;; = exp (—||z; — z;||?/t?) , where t is a hyper-parameter. Note that we set b;; = 0 if
~ there exists no edge between i and j. Let B be an M x M symmetric matrix with the elements b;;, and D be
a diagonal matrix the i-th diagonal element of which is the sum of the i-th row of the matrix B, i.e.,

M ‘
Dy=) bj, i=12,...,M.
i=1

Then, the Laplacian matrix L of the graph G is defined as
L=D-B,

which plays a central role for generating graph kernels.
There are several methods for generating kernel matrices based on L. Fouss et al. have shown that the
pseudoinverse L* of L is positive semidefinite, and then L* can act as a kernel matrix [3]. They show that, as
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long as the graph is connected, L™ is explicitly given as follows:
-1 T
+_{r_e€eT ee
(3.9) L+ = (L e78 ) + 35

Also, Zhu et al. [24] have introduced the following regularized Laplacian kernel matrix
(3.10) Kp = (I +tL)™*,

where ¢ i8 a positive parameter. _
Moreover, by introducing the modified Laplacian Ly = 7D — B with a parameter 0 < v < 1, Ito et al. [6]
defined the modified Laplacian regularized kernel matrix as

(3.11) Kyp = (I +tL,)™".
In particular, when v = 0 this kernel matrix is the von Neumann diffusion kernel which is defined as

[~ -]
(3.12) Ky =) t*B*=(I-tB)™".
' k=0
Furthermore, introducing the normalized Laplacian L = D-1/2LD~*/2, Smola and Kondor [14] propose several
kernel matrices such as the diffusion kernel

(3.13) Kp = exp(- 2 L)

and a normalized variant of the regularized Laplacian kernel defined as follows:
(3.14) Kr = (I+¢L) !

It is rather obvious to see that these kernel matrices are positive semidefinite, which implies that the corre-
sponding mapped images ¢; € F can be calculated explicitly in the following way. In general, let K be one
of these kernel matrices with elements K;; = ( i, @; ) Also, let U be an orthonormal matrix whose columns
correspond to the eigeni'ectors of K, and A be a diagonal matrix whose diagonal elements correspond to the
eigenvalues of K. Then, one can obtain the eigendecomposition K = UAUT. This allows us to obtain the
mapped image ¢; as the j-th column vector of the matrix AYUT. Now, let us define

(3.15) P=AUT = (¢, bp]-

We note that P is an M x M square matrix and thet the kernel matrix K can be decomposed as K = PTP.

3.2 Semi-Supervised Learning

In this section, let us introduce a semj-supervised approach for kernel logistic regression with the regularized
Laplacian kernel (3.10), or its normalized variant (3.14) given in the previous section.

Recall that we have M data points where the first ! points are labeled and the rest are unlabeled, and that
K is an M x M positive define matrix defined by (3.10) or (3.14). It should be noted that these matrices are
nonsinguia.r. We have also assumed that the mapped data points are denoted by ¢; € F(i=12..,M).
Then, we can write the minimization problem for logistic regression in the feature space is given as follows:

(3.16) | Min. —uwu’+Zlos(1+exp( yi{w, 9;)))
=1

where w € F. Note that the second term consists of | labeled points.



235

Next, introducing new [ variables (;, 02, ..., 8, let us define
(317) Bj=(w, ¢;), i=12,...,L
Furthermore, let us introduce additional u variables G141, 8142, ..., 8nm and define
(318) Bj=(w, ¢;), j=1+1,1+2,...,. M.

Now, combining (3.17) and (3.18), we can substitute w and ¢,’s in (3.16) with the new variables ;. It follows
from (3.15) that we can write

BT =wTP

where 8 = (B1,,,...,8m)" € RM.

In addition, when K is the regularized Laplacian kernel matrix (3.10) or its normalized variant (3.14), it is
obvious to see that K is nonsingular, and so is the matrix P. Multiplying P!, we have wT = T P~1, which
results in

(w,w)=pTP(P-Tg=p8TK"B.

As a result, the problem (3.16) is finally written as follows:

{
(319) | Min. 2BK-2A+ " log(1+exp(~ysy)).

F=1
Here, it should be emphasized that this formulation for kernel logistic regression has several advantages:

(i) When the kernel matrix is the regulanzed Laplacian kernel (3.10), or its normalized variant (3 14), the
inverse of the kernel matrix K~ is explicitly given by the Laplacian matrix L.

(ii) When the Laplacian matrix L is sparse, so is the objective function of the problem (3.19).

We note that, compared to the conventional formulation (2.8) developed in the supervised setting, the proposed
formulation (3.19) can be efficiently optimized due to the sparseness of the objective function. In our numerical
experiments, we use the scaled conjugate gradient method [1), which works quite well.

Also, let 8* = (87,063, ,8})7 be an optimal solution of (3.19). Then,

(iii) the predicted probability of the class label y of the unlabeled data point z; is simply given as

B(ylz;) = j=1+1,1+2,...,.M.

1
1 +exp(-yB;)’
Therefore, it is not nedessa.ry to obtain the optimal solution w* of the problem (3.16).

4 Active Learning

Suppose that we are given a small number of labeled points as well as a pool of unlabeled data points. The
purpose of active learning is to select a good data point from the pool to assign a label so as to improve the
accuracy of the current classifier. In the field of experimental design in statistics, the prediction variance over
a pool of unlabeled data points is called the risk of the classifier, and is often used as a criterion for selecting a
data point. Minimization of this risk is referred to as A-optimality. In this section, we show that active learning
based on the A-optimal criterion can be carried out in the feature space defined by the kernel matrices.
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4.1 A-optimal Active Learning for Logistic Regression

First, let us describe the A-optimality objective function for the conventional linear logistic regression. Recall
that the formulation of linear logistic regression minimizes the regularized negative log likelihood givén in (2.3).
Let @ € RY be an estimated parameter, i.e., an optimal solution of (2.3). For each data point @; in the pool,
the associated probability is given by

1
1+ exp(—(w, x;))

(4.20) o;() = P(y = ;) = . =141, M.

Moreover, for each data point x;, it is easy to verify that the gradient vector of the associated probability
gj (ii)). i.e.,

" o T
Vo () = (a‘gﬁ), L a‘;ﬁ:’)) €RY,

is given as follows:
Vo, () = 2505 ()(1 - o;(1)).

Also, let F(1b) be the observed Fisher information matrix given as:
L
F(i) =Y zj2] 0;()(1 — 0;(th)) + M,
i=1

where I is the identity matrix. Then, the variance of o;(t) is approximately expressed as follows:
Var(o; (1)) = Vo ()7 F(t) ™ Vo, ().

Therefore, the total risk over the pool is given as follows:

M M
(421) R(®) = Y Vo ()T F(b) " Vo;(t) = Y (05()(1 — 05(h)))’ =] F(b) ;.
=i+l J=l+1

The purpose of active learning is to select an unlabeled data point in an attempt to minimize the above risk
function. Now, let t+(®*¥*) denote the new estimate which is calculated after adding the data point ) with
the label yx to the training set. Using the current estimated label probability o (1b), the expected risk after
adding the data point z; is given as follows: '

7&(ﬁ’+(mu)) = dk(‘l'b)R(ﬁ)"'(z'"l)) +(1- Uk(ib))k(tb+(z“'o)).

Therfore, in each iteration, the task of active learning is to select the data point ®;- which minimizes the
expected risk in the following way:

k* = argmin {'R(ﬁ:"‘“"")lk =1 +1,t+2,...,M}.

4.2 Active Learning for Kernel Logistic Regression

Let us now extend the A-optimality criterion for the conventional linear logistic regression to the kernel based
logistic regression. In the sequel, let & be an optimal solution of the problem (3.16) which is defined by the
transformed data points ¢; € F. Then, the total risk over the pool is given as follows:

M
(4.22) R@) = Y (o5(@)(1 = 05(@)))* & F(@) 05,

J=l+1

where F(&) is the Fisher information matrix corresponding to the log likelihood given in the problem (3.16).
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For simplicity, let us introduce an M x M diagonal matrix Z(w) € RM*M each diagonal element of which is
given as follows:

{Z(@)};5 = { oi(@)(1-0;(@), i=12,...,1,

0, otherwize.

Now, recall that the M x M square matrix P defined in (3.15) consists of the mapped data points in its column.
Then, the Fisher information matrix is equivalently given by

F(&) = PZ(&)PT + AL
Now, let us consider the case when the kernel maf.rix K is nonsingular. Since the kernel matrix is decomposed
as K = PTP, we have I = PK~1PT, which results in the following expression for the Fisher information matrix.
F(&) = PZ(@)PT + APK~'PT = P (Z(&) + AK~Y) PT.
In addition, for simplicity, let us define .
H(W) = Z(@)+ K1,
and let e; € RM be the j-th unit vector. We then have
¢]F(@)"¢; = (Pe;)” F(@)™" (Pe;) = eTH(&) e

‘which is the j-th diagonal element of the inverse of H(&). It follows from this equation that the total risk is
given as '

M M
(4.23) R(@) = ) (05(@)(1 - a5(@)) ¢] F@) ;= Y (o5(@)(1 — 05(@)))* (H(&)),, -
j=i+1 j=i+1

Furthermore, when the number of labeled point, I, is small, the Sherman-Morrison-Woodbury identity [5]
can be utilized to calculate the inverse of H(w) efficiently. To this end, let Z(&) be the ! x ! leading principal
submatrix of Z(w), and W be an | x M matrix consisting of the [ x [ identity matrix I; and the ! x u zero
matrix Oixy, i.e., W = [[;0;xy]. We then have

4.24) H@)™' = (K~ + WTZ(@)W) ™ % (k- kW™K 'WK),
where
K =2Z@)' +WKWT.
Therfore, calculating the inverse of the ! x | matrix X, we can obtain the j-th diagonal element of H (@)~ in
the following way: '
(H@)™),, =K -k K 'K,
where
K; = (K1;K3; - Kij) € RV

We note that, after obtaining the kernel matrix K, the time complexity for calculating the risk R() is O(I® +
ul?), while that for the direct calculation for obtaining the inverse of H(&) amounts to O(M?).

Finally, it should be noted that the diagonal matrix Z(&), as well as the risk R(w) are defined by the kernel
matrix K and the probability o;(@) which is also given by the optimal solution 8* of the equivalent problem
(3.16) as follows: '

1
1 +exp(-B;)’
Therefore, we can calculate the risk R(&) in the feature space without using ¢;.

oj() = i=l+141+2,...,M.
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5 Multiclass Classification

In this section, we extend the active learning algorithm for binary classification problems given in the previous
section to that for multiclass classification problems, where the labels y; of the given training data points takes
one of three or more values rather than 1+=1. We assume that each label y; takes one of the integer values ranging
from 1 to h. Also, let us assume the probability model in the feature space is given as follows:

exp({w®, ¢))
Th=1 exp({w* , $))
where w® € F (¢ =1,2,...,h) are vectors of parameters we need to estimate.
5.1 Multiclass Kernel Logistic Regression

In the same way as the binary case, the parameters are learned by minimizing the sum of the negative log
likelihood and the regularized term as follows:

h ] ' h
Min. %Zuw"u’ +3 (—(ww » @) +log Y exp({w, ¢ >)).

k=1 g1 kmel

P(y=c|¢) = ,e=12,...,h,

(5.25)

Introducing k vectors of variables 8* € RM (k=1,2,...,h) and letting

kT

B =“?hTP’ k=1,2,...,h,

we can rewrite this problem using the kernel matrix K as follows:

h ! a
Min 3350 TKot 43 (<8 +lg e () ).

k==l J=1 k=1

(5.26)

Note that we can optimize this problem efficiently especially when K~! is explicitly given by the Laplacian
matrix.
5.2 ' A-optimality for Multiclass Case ,
In this section, let us describe the A-optimality risk criterion for the multiclass problems. Suppose that we
have obtained optimal parameters & € F (k=1,2,...,A) of the problem (5.25). Then, foreachj = 1,2,...,M
and ¢c=1,2,...,h, let us denote the estimated probability by '

exp(( @°, ¢j )) .
Tharexn(( &, ¢ ))

In the sequel, for notational simplicity, let us denote this probability by o§(w). Moreover, associated with this
probability, let us introduce an h-dimensional vector as follows:

o5 (@', 0% - ,o")

85(w) = (85 (W), 85W), -, 85 (w)” e RY,
where

—0o5(w)ok(w) if k#c,

) = { os(W)(1 - kW) if k=c.

It is straightforward to verify that the gradient vector of the o§(&) with respect to the vector wk is given as
follows:

Vuroj(@) = 85, () o5,
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which implies that
Vo§(@) = (Vuno§(@)T, Vuao§(@)T, - , Venat(&)T) T
= 3;(‘:)) ® ¢j’

where the symbol ® denotes the Kronecker product. As a result, the total risk over the pool is given as follows:

M h
Ru(@) = Y Y Voi(&) Fu (@)~ Vo§()

(5.'27) J=l+1e=1

M h
= D D (55(@) ® b;)T Far (@)~} (85() ® &),

J=l+1 cx=1

where Fj(@) is the Fisher information matrix associated with the problem (5.25). For each i,k = 1,2,...,h,
let us define

(5.28) Fi*(w) = { E;'-l ¢,¢}; CAC) if i #k,
i1 G507 0L (w)(1 — 0¥ (w)) + AT if i=k.

Then, the Fisher information matrix for the multiclass problem is given as follows:

Fll(w) FIZ(w) . ven F”‘(w)

21 22 . 2h
P = | T T P
Fhl(w) F""(w) .. Fhh(y)

In the same way as we have demonstrated in the previous section, the risk given in (5.27) can be calculated
only by the kernel matrix without using the feature vector ¢;. To this end, for each ¢,k = 1,2,...,h, let us
first introduce an M x M diagonal matrix Z<*(w) the j-th diagonal element of which is defined as

N _ o;(w)a}‘(w) if k#ec,
{2%H(w)}y { o§(w)(1 - o¥(w)) if k=c,

forallj=1,2,...,1, and {Z""(w)}jj =0,forall j=1+1,1+2,..., M. Also, let us define the following block
matrix with size AM x hM

zll(w) ' Z12(w) - Z”‘(w)

31 22 Ve 2h
Zu) = z :(w) z :(w) : z :(w)
Zhl (w) th(w) e Z"h(w)

It follows that the Fisher information matrix for multiclass problem is equivalently given as
Fu(w) = (In ® P) Hu(w) (I ® P)7

where
Hy(w) =A@ K1) + Zy(w)

and Jj, is the identity matrix of size h. Substituting this into (5.27), the risk is finally given as

M h
(5:20) Ru(@) = ) Y (s5(&) ® ;)T Har() ™ (s5() ® e;).
jml+1 cml
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Here, it should be mentioned that the vectors s5(w) as well as the matrix H. M(@)~! appeared in the above

expression are given by the kernel matrix K and the estimated probabilities o5(w) which is also given by the

solutions 8", 3%",..., B"" of the associated problem (5.26) as follows:
T ey exp(8%])

Moreover, it should be noted that the Sherman-Morrison-Woodbury identity used in (4.24) can be further
generalized to calculate the inverse of the Mh x Mh matrix Hps (&) by the lh X lh matrix in the following way.
First, for each ¢,k = 1,2,...,h, let Z°*(w) be the I x ! leading principal submatrix of Z*(w). Also, let us
define the block matrix with size lh x lh as follows:

Zu-(w) le(w) ven Zlh(w)

7 722 ... 73
Zre(w) = Z”‘(w) z? '(w) Z .(w)

Zhl(w) th(w) ee.  Zhh (w)

Then, we have the following equation:
Hu(@)™ = (A (In ® K1) + Zp(w)) ™

: -1
(hox=143 e WD) Zuw) town)")

ol > e

(In®K - (In® KWT) R p(w) ™! (In ® WK))
where
Ru(w) = 2 Zp(w) + Ih e WKWT,

As a result, the risk is given as follows:

M h
Rul@) =5 Y D o5(@) 5(@)Kys — (k,T ® a;(a))T?(w)-l (k‘;.' ® a;f(u‘:))

j=i+1 c=1

-

Now, let ¥ (®*°) denote the estimate calculated after adding the data point x) with the label ¢ to the
training set. Using the current estimated class probability of(tb), the expected risk after adding the data point
x5 is given as follows:

h
ﬁM(ﬁ,ku)) = Zdﬁ(ﬁ’)ﬁM(sz*’c))-
c==l

Therfore, in each iteration, the task of active learning is to select the data point Zx. which minimizes the
expected risk in the following way:

(5.30) k* = argmin {ﬁM(«b‘f“"*)nk =1+1,1+2,.. M}

6 Numerical Experiments

In this section, we will report the performance of the proposed active learning method for multiclass classifi-
cation. The experiments are conducted on four real-world datasets: Forest Cover Type (FOREST), UseNet news
articles (20Newsgroups), USPS hand written digits (USPS), and Splice Junction Gene Sequence (SJGS). These
are commonly used benchmark datasets for classification.
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Figure 1: Average accuracies. Top left: FOREST. Top right: 20Newsgroups. Bottom left: 8JGS. Bottom right:
USPS
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The FOREST dataset contains 581,012 instances of the forest cover type for 30 x 30 meter cells, each of which
is represented by 10 quantitative and 44 binary variables, and is categorized into seven possible classes. We use
the instances of the three largest classes, Spruce-Fir, Lodgepole Pine, and Ponderosa Pine.

The 20Newsgroups dataset has about 20,000 articles which is divided almost evenly among 20 newsgroups.
We delete articles belonging to more than two newsgroups, and generate dataset consisting of 18,597 articles.
After stemming and stop word removal, we use all terms that occur in more than three articles. We represent
each article as a vector of the terms with the TF-IDF term weighting. We use the articles in three newsgroups,
rec.motorcycles, rec.sport.baseball and rec.sport.hockey. "

The USPS dataset contains 9,298 digit images of size 16 x 16 pixels, which are converted to vectors of size
256. We use digits 1, 2, and 3 in the experiments.

The SJGS dataset consists of 3,190 sequences of DNA. Each sequence has 60 symbolic characters representing
the nucleotides of eight types. Each character is replaced by 8 binary indicator variables. Thus, the sequences
are given as the binary vectors of size 480. We use all the three classes, EI, IE, and no boundary.

For each dataset, selecting 100 instances randomly in each class, we construct three-class classification problem
with 300 instances. We then build a k-nearest-neighbor graph with k¥ = 6 using the Euclidian distances for
the FOREST, USPS and SJGS datasets, while the cosine similarity is used for the 20Newsgroups dataset. For all
datasets, we use the simple weight b;; = 1 for generating the matrix B. All the experiments are carried out
using the kernel matrix given in (3.14) with ¢t = 1.0.

Each active learning trial starts with a set of the randomly selected three initial labeled data points, i.e, one
data point for each class. Then, optimizing the problem (5.26), we obtain the estimates of the class probabilities
for all data points. An index of the query data point is given by (5.30). After selecting a new query, we add it
to the training set with the true label and re-estimate the class probabilities. We iterate this procedure until 15
queries are selected. In this experiments, We perform 10 active learning trials by changing the initial labeled
data points. We show the average accuracies over the pool as well as the standard deviations in each iteration.

We compare the proposed method with two baselines: the random query (RQ) and the most uncertain query
(MUQ) strategies. In RQ, we select the query randomly from the pool, while, in MUQ, we select the query
x; with the highest entropy, i.e., — 22_1 P(c|z;) log P(c|x;), where P(c|x;) is the estimated probability of the
class label ¢.

The average accuracies and the standard deviations of three methods are shown in Figs. 1 and 2, respectively.
We can see from these figures that the proposed active learning method outperforms the two baselines for all
datasets in these experiments. It is obvious to see that the proposed active learning method leads to apparently
higher accuracies than RQ or MUQ after adding only 9 queries i.e., 12 labeled data points. It seems that the
proposed active learning method has an ability to improve the accuracies of the classifiers within a very small
number of queries. Also, surprisingly, the accuracies of MUQ is almost the same as that of RQ for three datasets,
and even worse than RQ for the USPS datasets. Moreover, we can see that, except for the SJGS datasets, the
standard deviations of the proposed active learning method decrease to almost the half of the two baselines
after 15 queries are generated. This also indicates the robustness of the proposed active learning method.

7 Conclusion

We have proposed new formulations for kernel logistic regressidn in the semi-supervised setting, as well as
methods for performing pool-based active learning based on the A-optimality criterion for both binary and
multiclass classification problems. Exploiting the special structure of the Laplacian kernel matrices, we show
that the minimization of the regularized negative log likelihood can be formulated as the very sparse optimization
problems. Also, we have demonstrated that A-optimality based active learning can be carried out in the feature
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space characterized by the associated kernel matrices. Numerical experiments on the four multiclass classification
datasets indicate that the proposed active learning method generates more accurate and robust classifiers than
those generated by the RQ or MUQ strategies.

References

[1] D. BERTSEKAS, ed., Nonlinear Programming, Athena Scientific, 1999.

[2] D. A. ConN, Neural network ezploration using optimal experiment design, in Advances in Neural Information
Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, eds., vol. 6, Morgan Kaufmann Publishers, Inc.,
1994, pp. 679-686.

[3] F. Fouss, A. PIROTTE, AND M. SAERENS, A novel way of computing dissimilarities between nodes of a graph, with
application to collaborative filtering, in 15th European Conference on Machine Learning (ECML 2004); Proceedings
of the Workshop on Statistical Approaches for Web Mining (SAWM), 2004, pp. 26-37.

[4] A. E. HOERL AND R. W. KENNARD, Ridge regression: Biased estimation for nonorthogonal problems, Technomet-
rics, 12 (1970), pp. 55-67.

[5]. R. A. HORN AND C. R. JOHNSON, Matriz analysis, Cambridge University Press, Cambridge-New York, 1985.

(6] T.Ito, M. SHIMBO, T. KuDO, AND Y. MATSUMOTO, Application of kernels to link analysis, in KDD ’05: Proceeding
of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, New York, NY,
USA, 2005, ACM Press, pp. 586-592.

[7] T. JOACHIMS, Making large-scale support vector machine learning practical, in Ad§m0e5 in Kernel Methods,
B. Schélkopf, C. Burges, and A. Smola, eds., The MIT Press, 1999, pp. 169-184.

[8] S.S. KEERrTHI, K. DUAN, S. K. SHEVADE, AND A. N. P00, A fast dual algorithm for kernel logistic regression, in
Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 299-306.

[9] D. D. LEwis AND W. A. GALE, A sequential algorithm for training text classifiers, in SIGIR, 1994, pp. 3-12.

[10] D. MacKAY, Information-based objective functions for active data selection, Neural Computation, 4 (1992), pp. 590-
604.

[11] J. C. PLATT, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel
Methods, B. Schélkopf, C. Burges, and A. Smola, eds., The MIT Press, 1999, pp. 185-208.

[12] H. S. SEUNG, M. OPPER, AND H. SOMPOLINSKY, Query by committee, in COLT, 1992, pp. 287-294.

[13] J. SHAWE-TAYLOR AND N. CRISTIANINI, Kernel Methods for Pattern Analysis, Cambridge University Prees, Cam-
bridge, 2004. '

[14) A. SmoLA AND I. KONDOR, Kernels and regularization on graphs, in Proceedings of the Annual Conference on
Computational Learning Theory, B. Schélkopf and M. Warmuth, eds., Lecture Notes in Computer Science, Springer,
2003. :

[15] S. ToNG AND D. KOLLER, Support vector machine active learning with applications to text classification, Journal
" of Machine Learning Research, 2 (2001), pp. 45-66.

[16] V. N. VAPNIK, Statistical Learning Theory, John Wiley & Sons, 1998.

[17] Y. YAJIMA, One-class support vector machines for recommendation tasks, in 10th Pacific-Asia Conference, PAKDD,
2006, pp. 230-239.

[18] Y. YAJiMA AND T. HOSHIBA, Optimization approaches for semi-supervised learning, in ICMLA, 2005.

[19) T. ZHANG AND F. OLES, Text categorization based on regularized linear classification methods, Information Retrieval,
4 (2004), pp. 5-31. :

[20] D. ZHou, O. BousQUET, T. N. LAL, J. WESTON, AND B. SCHOLKOPF, Learning with local and global consistency,
Advances in Neural Information Processing Systems, 16 (2004), pp. 321-328.

[21] J. Zuu AND T. HASTIE, Kernel logistic regression and the import vector machine., in NIPS, 2001, pp. 1081-1088.

[22] X. ZHU, Z. GHAHRAMANI, AND J. LAFFERTY, Semi-supervised learning using Gaussian fields and harmonic func-
tions., in ICML, 2003, pp. 912-919.

{23] X. ZHU, J. LAFFERTY, AND Z. GHAHRAMANI, Combining active learning and semi-supervised learning using gaussian
fields and harmonic functions, in ICML-2003 workshop on The Continuum from Labeled to Unlabeled Data in
Machine Learning and Data Mining, 2003, pp. 58-65.

, Semi-supervised learning: From Gaussian fields to Gaussian processes, Technical Report CMU-CS-03-175,
Carnegie Mellon University, 2003. '

(24)




