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Abstract
The purpose of this paper is to introduoe new approaches for kernel logistic $reyae8ion$ in a semi-supervised

setting. Using the special structure of Laplacian kernel matrices, we propose new formulations which min-
imize the negative log likelihood of the kernel logistic regroesion model quite efficiently. The proposed
formulations can be seen as a natural extension of the recently developed semi-supervised learning method
based on Gaussian random field and harmonic functions.

Also, we propoee new algorithms for performing pool-based active learning based on A-optimality in
which the semi-supervised kernel logistic regression is used to estimate the chae probabilities. We show
that the active learning algorithms csn be carried out in the feature space defined by the wciated kernel
matrices. We give experimental results showing that the proposed active learning method can generate
accurate classifiers using a fewer number of labeled data points $\infty mprd$ with the random queries.

1 Introduction
In the supervised leerning framework, we first need to prepare a number of labeled data points ss a set of

training data points. In many practical situations such as text classification or Web search, however, the tuk
for obtain$\dot{g}g$ labeled data points is very expensive, while a large number of unlabeled data points are easily

available.
Recently, several studies $[22, 20]$ have been devoted to develop $\epsilon em\succ\epsilon u\mu n\dot{n}\epsilon d$ leaming in which unlabeled

data points are employed to achieve quite high accuracies for the claesification problem8. These approaches are
based on Gaussian random field and harmonic functions, and often referred to as energy $\ovalbox{\tt\small REJECT}$tion. It has
been ahown that $[18, 17]$ these approaches can be viewed as a special case of $8upport$ vector machine (SVM)

with kernels deflned on a graph [14].

Active learning can also be used to obtain accurate cloesifiers with a small number of labaled data points. In
active learning, the learner actively select a data point as a query ffom a pool of unlabeled data so $u$ to improve

the accuruy of the current classifier. Then, the selected data point is added to the labeled set after its true label
is $as8iffled$ by a human expert, and the classifler is retrained. Several methods have been proposed for selecting
good queries from the pool, which include uncertainty sampling [$9|$ , query by $\infty mmittee[12]$ , and the version
space minimization [15]. Recently, Zhu et al. [23] introduced a new approach which $\infty mbinae$ semi-supervised
learning and active learning.

In this paper, we also propose semi-supervised learning which can be actively performed in a different way
than [23]. We first introduce formulations for semi-supervised logistic regression with kernels defined on a graph,

which is a natural extension of the semi-supervised SVM given in $|18$]. We then introduoe a new active learning

method based on A-optimality, in which the predicted variance is minimized. The A-optimality criterion is
often used for regression analysis in the field of experimental design in statistics, as well as neural networks
$[10, 2]$ .

The contributions of this work include the following:

(i) New formulations for kernel logistic regression are developed in a semi-supervised setting, which enables
us to naturally handle the multiclass classification problems in a semi-supervised setting, while the energy
minimization approaches $[22, 20]$ are $\infty 8entiaUy$ limited to the binary case.

(ii) Unlike the existing dual approach for kernel logistic regression [8], we can employ the kernel matrices in
the primal formulation which $\ovalbox{\tt\small REJECT}$ the negative log likelihood. Using the special structure of the
Laplacian kernel matrices, we can obtain quite simple formulations which can be minimized efficiently.
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(iii) Using the efficient procedure for the kernel logistic regression, we develop a method for calculating the
A-optimality criterion for active learning. We show that this active learning method can be carried out in
the feature space characterized by the associated kernel matrices.

The remaining part of the paper is organized as follows. In Sect. 2, we briefly review logistic regression and
the formulations for its kernel-based extension. Sect. 3 is devoted to develop the semi-supervised setting of the
kernel-based logistic regression. In Sect. 4, we introduce a method for calculating the kernel-based A-optimality
criterion, which is extended to the multiclass case in Sect. 5. Numerical experiments using a real world data set
are presented in Sect. 6, and conclusions are presented in Sect. 7.

2 Kernel Logistic Regression

2.1 Regularized Classiflers
Suppose that we have a set of $l$ training data points denoted by

(2.1) $\{(x_{1},y_{1}), (x_{2},y_{2}), \ldots,(x_{l},y_{l})\}$ ,

where $x_{j}\in R^{N}$ stands for the j-th training vector with N-dimensional attributes, and $y_{j}\in\{-1,+1\}$ is the
$\infty rraeponding$ binary class label.

In logistic regression, we estimate the conditional probability of the label $y$ given $g$ in the fom of

(2.2) $P(y|x)= \frac{1}{1+\infty(-y(w,x\rangle)}$ ,

where $w\in R^{N}$ is an N-dimensional vector of parameters. The parameter $w$ is learned by $m$ the

likelihood $\prod_{j-1}^{l}P(y_{j}|x_{j})$ , or equivalently by minimizing the negative log likelihood given below:

$\sum_{\dot{g}-1}^{l}\log(1+\infty(-y_{j}(\tau v, x_{j}\rangle))$ .

In order to improve numerical difficulties and to avoid overfitting, we usu可 lly $\infty n\epsilon ider$ the $regul\sim\log\dot{g}\Re$此$ic$

regression [19], which is formulated as foUows:

(2.3) $|{\rm Min}$. $\frac{\lambda}{2}||w||^{2}+\sum_{j-1}^{l}$ log $(1+\exp(-y_{j}(w, x_{j})))$ ,

where $\lambda$ is a positive parameter controlling the degree of regularization.

The idea of adding the regularization term is also used in several methods, which include linear ridge $reg\infty ion$

[4] and SVM [16]. In SVM, the foUowing linear discriminating function with a gradient vector $w$ and a threshold
$b$ is $\infty nsidered$

$d(x)=\langle w,$ $x$ ) $+b$.

The parameters $w$ and $b$ are learned by solving the follwing quadratic minimization problem:

(2.4) $|{\rm Min}$. $\frac{\lambda}{2}||w||^{2}+\sum_{j\approx 1}^{l}[1-y_{j}d(x_{j})]_{+}$ ,

where $[\cdot]_{+}$ denotu the hinge loss function:

$[z]_{+}=\{\begin{array}{ll}z if z\geq 0_{:}0 otherwise.\end{array}$
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Here, it is worth mentioning that the formulation of SVM given in (2.4) is quite similar to that of regularized

kernel logistic regression (2.3). However, the objective function of SVM is not differentiable, while that of the
logistic regression is smooth.

In the conventional SVM, instead of optimizing (2.4), we solve the corresponding dual formulation. Let
$\alpha=$ $(\alpha_{1},\alpha_{2}, \cdots , \alpha_{l})^{T}\in R^{l}$ be a vector of dual variables, the dual of (2.4) is given as follows:

(2.5) $|Mins.t$.
$j \approx 0\leq\sum^{l}y_{j}\alpha\frac{1}{2}\sum_{\alpha_{j}}^{l}$

$\sum_{j,1}^{l}(x_{i},x_{j}\rangle$

$y_{1}y_{j} \alpha_{1}\alpha_{j}-\sum_{j|arrow 1j=1=1}^{l}\alpha_{j}\leq\lambda^{-1}=0,,j=1,2,$

$\ldots,l$ .

Let $\alpha^{*}=$ $(\alpha\ddagger, \cdots , \alpha;)^{T}$ be an optimal solution of this problem. It has been shown that the $\mathfrak{B}8OCiated$ primal
optimal solution $w^{*}$ is given as a linear combination of the data points, i.e., $w^{*}= \sum_{j-1}^{l}\alpha_{j}^{l}y_{j}oe_{J}$ . See, e.g. [13]
for details.

2.2 Kernel Based Nonlinear Classiflers

In the $\infty nventional$ SVM framework, nonhnear classiflers can be generated by transforming the training data
point8 into a high dimensional space. Let us oesume that we have a function $\phi(\cdot)$ : $R^{N}rightarrow F$ which nonlinearly

maps the original data points into a high dimensional feature space $\mathcal{F}$. Generating linear di-scrim血協 tOr8 in the
feature space amounts to obtaining nonlinear discriminators in the original data space. In the rest of this paper,
let us denote the mapped image $\phi(x_{j})$ by $\phi_{j}$ , for simplicity.

The dual formulation plays a crucial role for handlng the above transformation. It is obvious to see that
the dual formulation is deflned only by the inner products of the data points. In addition, a number of&mel
jftmctions have been developed, which give the inner products directly from the original data points, without
knowing the transfomation $\phi(\cdot)$ , explicitly. For example, let $t$ be a hyper-parameter, the following RBF function:

$\mathcal{K}(x,x’)=\exp(\frac{-||oe-x’||^{2}}{t^{2}})$

is one of the most popular kernel functions.
Now, let $K$ be an $lxl$ symmetric matrix the $i-:j$ element of which is the ner product of the mapped

images $\phi_{i}$ and $\phi_{j}$ , i.e., $K_{ij}=\langle\phi_{i}, \phi_{j}\rangle$ given by the kernel function. The matrix $K$ is referred to as the kernel
matrix. Therefore, replacing the inner product terms in the dual formulation by the kernel functions, we can
obtain nonlinear classifiers without knowing $\phi_{j}’ s$ .

Also, let $y^{T}=(y_{1}, \ldots,y_{l})$ and $e$ be a vector of all ones. Then, let us write the dual problem as follows:

(2.6) $|s.tMin$ $\frac{1}{y,02}\alpha^{T}K\alpha-e^{T}\alpha r_{\alpha=0}\leq\alpha_{j}\leq\lambda^{-1},j=1,2,$

$\ldots,l$ .
We note that this problem is a quite simple $\infty nvex$ m血盛mization problem sinoe the kernel function generates a
positive semidefinite kernel matrix $K$ , and that, exploiting the special structure, there exist algorithms $[7, 11]$

for solving thi8 problem with a large number of training data $point_{8}$ , efficiently.

In logistic regression, $emplo\dot{p}g$ the same idea of the feature space maPping, we can introduce the kernel
based nonlinearity. More $preci\Re ly$, let us flrst consider the following problem defined in the feature spaoe:

(2.7) $|{\rm Min}$. $\frac{\lambda}{2}||w\Vert^{2}+\sum_{jarrow 1}^{l}$ log $(1+\exp(-y_{j}\langle w, \phi_{j}\rangle))$ ,
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where $w\in \mathcal{F}$ is the parameter we want to estimate.
Several methods for solving this problem without using the mapped image $\phi_{j}$ have been proposed. Keerthi $et$

al. [8] generate the dual formulation of (2.7) in which the inner products of the mapped images can be replaced

by the associated value of the kernel function. They also propose an SMO [11] like algorithm for solving the
dual formulation.

On the other hand, Zhu and Hastie [21] first assume that the vector of parameters is given by $w=$

$\sum_{j=1}^{l}\alpha_{j}\phi_{j}\in \mathcal{F}$ . Then, the problem (2.7) can be equivalently written as follows:

(2.8) $|{\rm Min}$ . $\frac{\lambda}{2}\alpha^{T}K\alpha+\sum_{j=1}^{l}\log(1+\alpha p(-y_{j}(K\alpha)_{j}))$ ,

where $(K\alpha)_{j}$ stands for the j-th element of the vector $K\alpha$ . They propose the Newton-Raphson method which
$appr\alpha imately$ mimmizes the problem (2.8).

It seems that the dual formulation of (2.7), as well as (2.8), is optimized not so easy as other kernel based
problems such as SVM. This is mainly due to the fact that, the kernel matrix $K$ and the optimal solution
$\alpha$ are, in general, very dense, which makes the problem intractable as the $sin$ of the data points gets large.

Therefore, most algorithms only work over a $smaU$ number of selected variables, and generate an approrcimate

solution.
In the next section, exploiting the special structure of the Laplacian matrix of a graph and the associated

kernel matrices, we introduoe the semi-supervised setting and a very sparse formulation for kernel $10\dot{y}\epsilon tic$

regression, which can be optimized very efficiently even when the number of data points is large.

3 Semi-Supervised Learning for Kernel Logistic Regression
In this section, let us first introduoe the semi-supervised setting. Let us assume that, in addition to the set

of $l$ labeled data points, a set of $u$ unlabeled data points $x_{j}\in R^{N}(j=l+1,l+2, \ldots,l+u)$ is available. In the
sequel, let $M=l+u$ be the total number of the data points, and let us redefine $K$ as an $MxM$ kernel matrix.

3.1 The Laplacian of a Graph and the Associated Kernel

Let us first introduce a weighted graph $G$ with vertices $\infty rr\infty ponding$ to all the data points. When the data
point $x$: is among the k-nearaet-neighbors of $x_{j}$ or $x_{j}$ is among those of $x_{i}$ , we put an edge between the node
$i$ and $j$ , and assign a nonnegative weight $b_{1j}$ representing the similarity between the points $x_{i}$ ahd $x_{j}$ , i.e., the
larger the weight is, the more similar the two data points are.

The edge weight8 $b_{1j}’ s$ are defined in several ways. For instanoe, $b_{:g}=1$ for each edge $(i,j)$ is the simplest

way, while we can set $b_{1j}=\exp(-||x_{i}-x_{j}||^{2}/t^{2})$ , where $t$ is a hyper-parameter. Note that we set $b_{ij}=0$ if
there eXists no edge between $i$ and $j$ . Let $B$ be an $MxM$ symmetric matrix with the elements $b_{:j}$ , and $D$ be
a diagonal matrix the i-th diagonal element of which is the sum of the \’i-th row of the matrix $B$, i.e.,

$D_{||}= \sum_{j\approx 1}^{M}b_{lj},$ $i=1,2,$ $\ldots,M$ .

Then, the Laplacian matrix $L$ of the graph $G$ is defined as

$L=D-B$,

which plays a central role for generating graph kernels.
There are several methods for generating kernel matrices based on $L$ . Fouss et al. have shown that the

pseudoinverse $L^{+}$ of $L$ is positive semidefinite, and then $L^{+}$ can act as a kernel matrix [3]. They show that, as

233



long as the graph is connected, $L^{+}$ is explicitly given as follows:

(3.9) $L^{+}=(L- \frac{ee^{T}}{M})^{-1}+\frac{ee^{T}}{M}$ ,

Also, Zhu et al. [24] have introduced the following regularized Laplacian kernel matrix

(3.10) $K_{R}=(I+tL)^{-1}$ ,

where $t$ is a Poeitive parameter.
$Mor\infty ver$ , by introducing the modified Laplacian $L_{\gamma}=\gamma D-B$ with a parameter $0\leq\gamma\leq 1$ , Ito et al. [6]

defined the modified Laplacian regularized kernel matrix as

(3.11) $K_{MR}=(I+tL_{\gamma})^{-1}$ .

In pwticulu, when $\gamma=0$ this kernel matrix is the von Neumann $diff_{U8}ion$ kernel which is defined as

(3.12) $K_{N}= \sum_{k\approx 0}^{\infty}t^{k}B^{k}=(I-tB)^{-1}$ .

Furthermore, introducing the normalized $Lapla\dot{\alpha}an\overline{L}\equiv D^{-1/2}LD^{-1/2}$, Smola and Kondor [14] propose several
kernel matrices such as the diffusion kernel

(3.13) $K_{D}= \exp(-\frac{\sigma}{2}\overline{L})$

and a normahzed variant of the regularized Laplacian kernel defined as follows:

(3.14) $\overline{K}_{R}=(I+t\overline{L})^{-1}$ .
It is rather obvious to see that these kernel matrices are $po\epsilon itive$ semidefinite, which implioe that the corre

sponding maPped immages $\phi_{j}\in F$ can be calculated $\alpha plicitly$ in the following way. In general, let $K$ be one
of these kernel matrices with elements $K_{2j}=\langle\phi:’\phi_{j}\rangle$ . Also, let $U$ be an orthonormal matrix whose columns
$corr\infty pond$ to the eigenvectors of $K$ , and $\Lambda$ be a diagonal matrix whose diagonal elements $corr\infty pond$ to the
eigenvalues of $K$ . Then, one can obtain the eigendecomposition $K=U\Lambda U^{T}$ . This allows us to obtain the
mapped image $\phi_{j}$ as the j-th column vector of the matrix $\Lambda\}_{U^{T}}$ . Now, let us deflne

(3.16) $P\equiv\Lambda$} $U^{T}=[\phi_{1}\phi_{2}\cdots\phi_{M}]$ .

We note that $P$ is an $MxM$ square matrix and thet the kernel matrix $K$ can be decomposed as $K=P^{T}P$.
3.2 Semi-SupervSsed 1muming

In this section, let us introduce a seqi-supervised approach for kernel logistic regression with the regularized
Laplacian kernel (3.10), or its normalized variant (3.14) given in the previous section.

Recall that we have $M$ data points where the first $l$ points are labeled and the rest are unlabeled, and that
$K$ is an $MxM$ positive deflne matrix deflned by (3.10) or (3.14). It should be noted that these matrices re
nonsingular. We have $a$]$so$ assumed that the mapped data points are denoted by $\phi_{j}\in F(j=1,2, \ldots,M)$.
Then, we can write the minimization problem for logistic $reyae8ion$ in the feature space is given as fOllows:

(3.16) $|{\rm Min}$. $\frac{\lambda}{2}||w||^{2}+\sum_{j\approx 1}^{l}$ log $(1+\exp(-y_{j}\langle w, \phi_{j}\rangle))$ ,

where $w\in \mathcal{F}$. Note that the $8econd$ tem consist8 of $l$ labeled points.
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Next, introducing new $l$ variables $\beta_{1},\beta_{2},$
$\ldots$ , $\beta_{l}$ , let us define

(3.17) $\beta_{j}=\langle w, \phi_{j}\rangle,$ $j=1,2,$ $\ldots,l$ .

Furthermore, let us introduce additional $u$ variables $\beta_{l+1},$ $\beta_{l+2},$
$\ldots,$

$\beta_{M}$ and define

(3.18) $\beta_{j}=\langle w, \phi_{j}\rangle,$ $j=l+1,l+2,$ $\ldots,M$.

Now, combining (3.17) and (3.18), we can substitute $w$ and $\phi_{j}’ s$ in (3.16) with the new variables $\beta_{\dot{f}}$ . It follows
from (3.15) that we can write

$\beta^{T}=w^{T}P$

where $\beta=(\hslash, \ , \ldots,\beta_{M})^{T}\in R^{M}$ .
In addition, when $K$ is the $regu\llcorner nrized$ Laplacian kernel matrix (3.10) or its normalized variant (3.14), it is

obvious to see that $K$ is $nons\dot{\bm{o}}$gtar, and so is the matrix P. $M\bm{t}tipl\dot{p}gP^{-1}$ , we have $w^{T}=\beta^{T}P^{-1}$ , which
results in

$(w, w\rangle=\beta^{T}P^{-1}(P^{-1})^{T}\beta=\beta^{T}K^{-1}\beta$ .

As a result, the problem (3.16) is finaUy written as follows:

(3.19) $|{\rm Min}$. $\frac{\lambda}{2}\beta K^{-1}\beta+\sum_{\dot{g}-1}^{l}\log(1+\exp(-y_{j}\beta_{j}))$ .

Here, it should be emphasized that this formulation for kernel logistic regression has several advantages:

(i) When the kernel matrix is the regularized Laplacian kernel (3.10), or its normalized variant (3.14), the
inverse of the kernel matrix $K^{-1}$ is explicitly given by the Laplacian matrix $L$ .

(i1) When the Laplacian matrix $L$ is sparse, so is the objective function of the problem (3.19).

We note that, compared to the $\infty nventional$ formulation (2.8) developed in the supervis$d$ setting, the $ProPO\mathfrak{g}d$

formulation (3.19) can be efficiently optimized due to the $\epsilon par\epsilon enae8$ of the objective function. In our numerical
oeperiments, we use the scaled $\infty njugate$ gradient method [1], which works quite $weU$.

Also, let $\beta^{*}=$ $(\beta;, \ , \cdots , \beta_{M})^{T}$ be an optimal solution of (3.19). Then,

(iu) the predicted probabihty of the class label $y$ of the unlabeled data point $x_{j}$ is $8imply$ given as

$\hat{P}(y|x_{j})=\frac{1}{1+\exp(-y\beta j)}$ , $j=l+1,l+2,\ldots,$ $M$.

Therefore, it is not necemary to obtain the optimal solution $w^{*}$ of the problem (3.16).

4 Active Learning
Suppose that we are given a small number of labeled points as well as a pool of unlabeled data points. The

purpose of active learning is to select a good data point from the pool to assign a label so as to improve the
accuracy of the current classifier. In the field of $\alpha perimental$ design in statistics, the prediction varianoe over
a pool of unlabeled data points is called the risk of the classifier, and is often used as a criterion for selecting a
data point. Minimization of this risk is referred to as A-optimality. In this section, we show that active lesrning
based on the A-optimal criterion can be carried out in the feature spaoe defined by the kernel matrices.
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4.1 A-optimal Active Learning for Logistic Regression

First, let us describe the A-optimality objective function for the conventional linear logistic regression. Recall
that the formulation of linear logistic regression minimizes the regularized negative log likelihood given in (2.3).

Let $\hat{w}\in R^{N}$ be an estimated parameter, i.e., an optimal solution of (2.3). For each data point $x_{j}$ in the pool,
the associated probability is given by

(4.20) $\sigma_{j}(\hat{w})\equiv P(y=1|x_{j})=\frac{1}{1+\exp(-(\hat{w},x_{j}\rangle)}$ , $j=l+1,$ $\ldots,$
$M$.

Moreover, for each data point $x_{j}$ , it is easy to verify that the gradient vector of the associated probability
$\sigma_{j}(\hat{w}),$ $i.e.$ ,

$\nabla\sigma_{j}(\hat{w})=(\frac{\partial\sigma_{j}(\theta)}{\partial w_{1}},$ $\frac{\partial\sigma_{j}(\hat{w})}{M},$

$\ldots,$
$\frac{\partial\sigma_{j}(\hat{w})}{\partial w_{N}}\in R$

ノ

$\tau.$ .

is given as follows:

$\nabla\sigma_{j}(\hat{w})=x_{j}\sigma_{j}(\hat{w})(1-\sigma_{j}(\hat{w}))$ .
Also, let $F(\hat{w})$ be the observed Fisher information matrix given as:

$F( \hat{w})=\sum_{j\approx 1}^{l}x_{j}x_{j}^{T}\sigma_{j}(\hat{w})(1-\sigma_{j}(\hat{w}))+\lambda I$,

where $I$ is the identity matrix. Then, the varianoe of $\sigma_{j}(\hat{w})$ is approximately expressed as follows:

$Var(\sigma_{j}(\hat{w}))=\nabla\sigma_{j}(\hat{w})^{T}F(\hat{w})^{-1}\nabla\sigma_{j}(\hat{w})$ .

Therefore, the total risk over the pool is given as follows:

(4.21) $\mathcal{R}(\hat{w})=\sum_{j-l+1}^{M}\nabla\sigma_{j}(\hat{w})^{T}F(\hat{w})^{-1}\nabla\sigma_{j}(\hat{w})=\sum_{3-l+1}^{M}(\sigma_{j}(\hat{w})(1-\sigma_{j}(\hat{w})))^{2}x_{j}^{T}F(\hat{w})^{-1}x_{j}$ .

The purpose of active $learn\dot{\bm{o}}g$ is to select an unlabeled data point in an attempt to minimize the above risk
function. Now, let $\hat{w}^{+(X}$“ $tVh$ ) denote the new estimate which is calculated after adding the data point $x_{k}$ with
the label $y_{k}$ to the training set. Using the current estimated label probability $\sigma_{k}(\hat{w})$ , the expected risk after
adding the data point $x_{k}$ is given as foUow\S :

$\hat{R}(\hat{w}^{+(X_{h})})\equiv\sigma_{k}(\hat{w})R(\hat{w}^{+(\emptyset_{h},1)})+(1-\sigma_{k}(\hat{w}))\mathcal{R}(\hat{w}^{+(X_{k\prime}0)})$ .

Therfore, in each iteration, the task of active learning is to select the data point $x_{k}$. which $\ovalbox{\tt\small REJECT}$ the
expected risk in the foUowing way:

$k \cdot=\arg\min\{\hat{\mathcal{R}}(\hat{w}^{+(X_{h})})|k=l+1,l+2,$ $\ldots,M\}$ .

4.2 Active Learning for Kernel Logistlc Regression

Let us now extend the A-optimality criterion for the conventional linear logistic regression to the kernel based
logistic regression. In the sequel, let $\hat{w}$ be an optimal solution of the problem (3.16) which is defined by the
transformed data points $\phi_{j}\in \mathcal{F}$. Then, the total risk over the pool is given as follows:

(4.22) $R( \hat{w})=\sum_{j=l+1}^{M}(\sigma_{j}(\hat{\omega})(1-\sigma_{j}(\hat{w})))^{2}\phi_{j}^{T}F(\hat{w})^{-1}\phi_{j}$,

where $F(\hat{w})$ is the Fisher information matrix corresponding to the log likelihood given in the problem (3.16).
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For simplicity, let us introduce an $MxM$ diagonal matrix $Z(\hat{\omega})\in R^{MxM}$ each diagonal element of which is
given as follows:

$\{Z(\hat{w})\}_{jj}=($

$\sigma_{j}(\hat{w})(1-\sigma_{j}(\hat{w}))$ , $j=1,2,$ $\ldots,$
$l$ ,

$0$ , otherwize.

Now, recall that the $MxM$ square matrix $P$ defined in (3.15) consists of the mapped data points in its column.
Then, the Fisher information matrix is equivalently given by

$F(\hat{w})=PZ(\hat{w})P^{T}+\lambda I$.
Now, let us $\infty n\epsilon ider$ the case when the kernel matrix $K$ is nonsingular. Sinoe the kernel matrix is $de\infty mposd$

as $K=P^{T}P$ , we have $I=PK^{-1}P^{T}$ , which result8 in the following expraesion for the Fisher infomation matrix.

$F(\hat{w})=PZ(\hat{w})P^{T}+\lambda PK^{-1}P^{T}=P(Z(\hat{w})+\lambda K^{-1})P^{T}$ .
In addition, for simplicity, let us deflne

$H(\hat{w})\equiv Z(\hat{w})+\lambda K^{-1}$ ,

and let $e_{j}\in R^{M}$ be the j-th unit vector. We then have

$\phi_{j}^{T}F(\hat{w})^{-1}\phi_{j}=(Pe_{j})^{T}F(\hat{w})^{-1}(Pe_{j})=e_{j}^{T}H(\hat{w})^{-1}e_{j}$,

which is the j-th diagonal element of the inverse of $H(\hat{w})$ . It follows from this equation that the total risk is
given $u$

(4.23) $R( \hat{w})=\sum_{j=l+1}^{M}(\sigma_{j}(\hat{w})(1-\sigma_{j}(\hat{w})))^{2}\phi_{j}^{T}F(\hat{w})^{-1}\phi_{j}=\sum_{j-l+1}^{M}(\sigma_{\dot{f}}(\hat{w})(1-\sigma_{\dot{f}}(\hat{w})))^{2}(H(\hat{w})^{-1})_{jj}$ .

Furthemore, when the number of labeled point, $l$ , is small, the $Sh\alpha man- Mo\dot{m}8on- W\infty dbury$ identity [5]
can be utillzed to calculate the inverse of $H(\hat{w})$ efficiently. To this end, let $\overline{Z}(\hat{w})$ be the $lxl$ leading principal
submatrix of $Z(\hat{w})$ , and $W$ be an $lxM$ matrix $\infty n8i\epsilon ting$ of the $lxl$ identity matrix $I_{l}$ and the $lxu$ zero
matrix Ot $xu$ ’ i.e., $W=[I_{l}0_{lxu}]$ . We then have

(4.24) $H( \hat{w})^{-1}=(\lambda K^{-1}+W^{T}\overline{Z}(\hat{w})W)^{-1}=\frac{1}{\lambda}(K-KW\pi^{-1}WK)$ ,

where

$X=\lambda Z(\hat{w})^{-1}+WKW^{T}$ .
Therfore, calculating the inverse of the $lxl$ matrix $F$, we can obtain the j-th diagonal element of $H(\hat{w})^{-1}$ in
the foUowing way:

$(H(\hat{w})^{-1})_{jj}=K_{jj}-\overline{k}_{j}^{T}K^{-1}\overline{k}_{j}$ ,

where

$k_{j}^{T}=(K_{1j}K_{2j}\cdots K_{lj})\in R^{l}$ .
We note that, after obtaining the kernel matrix $K$, the time $\infty mplexity$ for calculatin$g$ the risk $\mathcal{R}(\hat{w})$ is $O(l^{s}+$

$ul^{2})$ , while that for the direct calculation for obtaining the inverse of $H(\hat{w})$ amounts to $O(M^{3})$ .
Finally, it should be noted that the diagonal matrix $Z(\hat{w})$ , as well as the risk $R(\hat{w})$ are defined by the kernel

matrix $K$ and the probability $\sigma_{\dot{f}}(\hat{w})$ which is also given by the optimal solution $\beta$
. of the equivalent problem

(3.16) as follows:

$\sigma_{j}(\hat{w})=\frac{1}{1+\exp(-\beta j)}$ , $j=l+1,l+2,$ $\ldots,M$.
Therefore, we can calculate the risk $\mathcal{R}(\hat{\omega})$ in the feature sPaoe without using $\phi_{\dot{f}}$ .
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5 Multiclass ClassIfication
In this section, we extend the active learning algorithm for binary classification problems given in the previous

section to that for multiclass classification problem8, where the labels $y_{j}$ of the given training data points takes
one of three or more values rather $than\pm 1$ . We assume that each label $y_{j}$ takes one of the integer values ranging
from 1 to $h$ . Also, let us assume the probability model in the feature space is given as follows:

$P(y=c| \phi)=\frac{\exp(\langle w^{c},\phi))}{\sum_{k-1}^{h}\exp((w^{k},\phi))},c=1,2,$ $\ldots,$
$h$ ,

where $w^{c}\in F(c=1,2, \ldots,h)$ are vectors of parameters we need to estimate.
5.1 Multlclass Kernel Logistlc Regression

In the same way as the binary case, the parameters are learned by minimizing the sum of the negative log
likelihood and the regularized term as follows:

(5.25) $|{\rm Min}$ . $\frac{\lambda}{2}\sum_{karrow 1}^{\hslash}||w^{k}\Vert^{2}+\sum_{j-1}^{l}(-\langle\omega^{y_{f}}, \phi_{j}\rangle+\log\sum_{k-1}^{h}\alpha p(\langle w^{k}, \phi_{j}\rangle))$ .

Introducing $h$ vectors of variables $\beta^{k}\in R^{M}(k=1,2, \ldots, h)$ and letting

$\beta^{k^{T}}=w^{k^{T}}P$, $k=1,2,$ $\ldots,h$ ,

we can rewrite this problem using the kernel matrix $K$ as folows:

(5.26) $|{\rm Min}$. $\frac{\lambda}{2}\sum_{k\sim 1}^{\hslash}\beta^{k^{T}}K^{-1}\beta^{k}+\sum_{j-1}^{l}(-\beta_{\dot{f}}^{li}+\log\sum_{k-1}^{h}\exp(\beta_{j}^{k}))$ .

Note that we can optimize this problem efficiently especially when $K^{-1}$ is axplicitly given by the Laplacian
matrix.

5.2 A-optimality for Multiclass Case

In this section, let us describe the A-optimality risk criterion for the multiclass problems. Suppose that we
have obtained optimal parameters $\hat{w}^{k}\in F(k=1,2, \ldots,h)$ of the problem (5.25). Then, for each $j=1,2,$ $\ldots,M$

and $c=1,2,$ $\ldots,$
$h$ , let us denote the estimated probability by

$\sigma_{j}^{c}(\hat{\omega}^{1},\hat{w}^{2},$
$\cdots,\hat{w}^{h})\equiv\frac{\alpha p(\langle\hat{w}^{c},\phi_{j}\rangle)}{\sum_{k\sim 1}^{h}\alpha p(\langle\hat{\omega}^{k},\phi_{j}\rangle)}$ .

In the sequel, for notational $8implicity$, let us denote this probability by $\sigma_{j}^{c}(\hat{w})$ . Moreover, associated with this
probability, let us introduoe an h-dimensional vector as follows:

$\epsilon_{j}^{c}(w)\equiv(s_{j1}^{e}(\omega), t_{j2}^{C}(w),$ $\cdots,s_{j\hslash}^{e}(w))^{T}\in R^{h}$ ,

where

$s_{jk}^{c}(w)=\{\begin{array}{ll}-\sigma_{j}^{c}(w)\sigma_{j}^{k}(\omega) if k\neq c,\sigma_{j}^{c}(w)(1-\sigma_{j}^{k}(w)) if k=c.\end{array}$

It is straightforward to verify that the gradient vector of the $\sigma_{j}^{e}(\hat{w})$ with raepect to the vector $w^{k}$ is given as
follows:

$\nabla_{w^{\hslash}}\sigma_{j}^{c}(\hat{\omega})=s_{jk}^{c}(\hat{w})\phi_{\dot{f}}$ ,

238



which implies that

$\nabla\sigma_{j}^{c}(\hat{w})=(\nabla_{w^{1}}\sigma_{j}^{c}(\hat{\omega})^{T}, \nabla_{w^{2}}\sigma_{j}^{c}(\hat{w})^{T},$ $\ldots\nabla_{w^{\hslash}}\sigma_{j}^{c}(\hat{w})^{T})^{T}$

$=\epsilon_{j}^{c}(\hat{w})\otimes\phi_{j}$ ,

where the symbol @ denotes the Kronecker product. As a result, the total risk over the pool is given as follows:

RM(必) $= \sum_{J=l+1}^{M}\sum_{\epsilon\approx 1}^{h}\nabla\sigma_{j}^{c}(\hat{w})^{T}F_{M}(\hat{w})^{-1}\nabla\sigma_{j}^{c}(\hat{w})$

(5.27)
$= \sum^{M}\sum^{h}(\epsilon_{j}^{c}(\hat{w})\otimes\phi_{j})^{T}F_{M}(\hat{w})^{-1}(\epsilon_{\dot{f}}^{e}(\hat{w})\otimes\phi_{j})$,

$j-l+1\infty 1$

where $F_{M}(\hat{w})$ is the Fisher infOrmation matrix associated with the problem (5.25). Fbr each $i,$ $k=1,2,$ $\ldots,$
$h$,

let us define

(5.28) $F^{1k}(w)\equiv\{\begin{array}{ll}\sum_{j-1}^{l}\phi_{j}\phi_{j}^{T}\sigma_{j}^{1}(w)\sigma_{j}^{k}(w) if i\neq k,\sum_{j-1}^{l}\phi_{\dot{f}}\phi_{\dot{f}}^{T}\sigma_{j}^{1}(w)(1-\sigma_{j}^{k}(\omega))+\lambda I ti=k.\end{array}$

Then, the Fisher information matrix for the multiclass problem is given as $foUows$:

$F_{M}(\omega)\equiv\{\begin{array}{llll}F^{I1}(w) F^{12}(w) F^{1h}(w)F^{21}.(w) F^{22}(w) F^{2h}(w) | \ddots |F^{\hslash 1}(w) F^{h2}(w) F^{hh}(w)\end{array}\}$ .

In the same way as we have demonstrated in the previous section, the risk given in (5.27) can be calculated
only by the kernel matrix without using the feature vector $\phi_{j}$ . To this end, for each $c,k=1,2,$ $\ldots,h$, let us
first introduce an $MxM$ diagonal matrix $Z^{ck}(w)$ the j-th diagonal element of which is defined as

$\{Z^{ck}(w)\}_{jj}=\{\begin{array}{ll}\sigma_{j}^{c}(w)\sigma_{j}^{k}(w) if k\neq c,\sigma_{j}^{e}(w)(1-\sigma_{j}^{k}(\omega)) if k=c,\end{array}$

for all $j=1,2,$ $\ldots,$
$l$ , and $\{Z^{ck}(w)\}_{jj}=0$ , for all $j=l+1,l+2,$ $\ldots,M$ . Also, let us define the following block

matrix with size $hMxhM$

$Z_{M}(w)\equiv\{\begin{array}{llll}Z^{11}(w) Z^{12}(w) Z^{1h}(w)Z^{21}(w) Z^{22}(w) Z^{2h}(\omega)| | \ddots |Z^{h1}(w) Z^{h2}(w) Z^{\hslash h}(\omega)\end{array}\}$ .

It follows that the Fisher information matrix for multiclass problem is equivalently given as

$F_{M}(w)=(I_{h}\otimes P)H_{M}(w)(I_{h}\otimes P)^{T}$ ,

where

$H_{M}(w)=\lambda(I_{h}\otimes K^{-1})+Z_{M}(w)$

and $I_{h}$ is the identity matrix of size $h$ . Substituting this into (5.27), the risk is flnally given as

(5.29) $\mathcal{R}_{M}(\hat{w})=\sum_{j-l+1}^{M}\sum_{e-1}^{h}(\epsilon_{j}^{c}(\hat{w})\otimes e_{j})^{T}H_{M}(\hat{w})^{-1}(\epsilon_{j}^{c}(\hat{\omega})\otimes e_{j})$.
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Here, it should be mentioned that the vectors $\epsilon_{j}^{c}(\hat{w})$ as well as the matrix $H_{M}(\hat{w})^{-1}$ appeared in the above
expression are given by the kernel matrix $K$ and the estimated probabilities $\sigma_{j}^{c}(\hat{w})$ which is also given by the
solutions $\beta^{1^{*}},\beta^{2},$ $\ldots,\beta^{h}$ of the associated problem (5.26) as follows:

$\sigma_{j}^{c}(\hat{w})=\frac{\exp(\beta_{j}^{c*})}{\sum_{k=1}^{h}\exp(\beta^{k_{j}^{r}})}$.

Moreover, it should be noted that the Sherman-Morrison-Woodbury identity used in (4.24) can be further
generalized to calculate the inverse of the $MhxMh$ matrix $H_{M}(\hat{w})$ by the $lhxlh$ matrix in the following way.
First, for each $c,$ $k=1,2,$ $\ldots,$

$h$, let $\overline{Z}^{ck}(w)$ be the $lxl$ leading principal submatrix of $Z^{ck}(w)$ . Also, let us
define the block matrix with size $lhxlh$ as follows:

$Z_{M}(w)\equiv\{\begin{array}{llll}\tilde{Z}^{11}(w) \tilde{Z}^{12}(w) \overline{Z}^{1h}(w)\overline{Z}^{21}(w) \tilde{Z}^{22}(w) \tilde{Z}^{2h}(w)| | \ddots |\tilde{Z}^{hl}(\omega) \tilde{Z}^{h2}(w) \overline{Z}^{hh}(w)\end{array}\}$ .

Then, we have the following equation:

$H_{M}(\hat{w})^{-1}=(\lambda(I_{h}\otimes K^{-1})+Z_{M}(w))^{-1}$

$= \frac{1}{\lambda}(I_{h}\otimes K^{-1}+\frac{1}{\lambda}(I_{h}\otimes W^{T})\overline{Z}_{M}(w)(I_{h}\otimes W^{T})^{T})^{-1}$

$= \frac{1}{\lambda}(I_{h}\otimes K-(I_{h}\otimes KW^{T})K_{M}(w)^{-1}(I_{h}\otimes WK))$

where

$R_{M}(w)\equiv\lambda Z_{M}(w)+I_{h}\otimes WKW^{T}$ .
As a rosult, the risk is given as follows:

$\mathcal{R}_{M}(\hat{w})=\frac{1}{\lambda}\sum_{j\approx l+1}^{M}\sum_{e\approx 1}^{h}\epsilon_{j}^{e}(\hat{\omega})^{T}\epsilon_{\dot{f}}^{c}(\hat{w})K_{j\dot{f}}-(k_{j}^{T}\emptyset\epsilon_{j}^{c}(\hat{w}))^{T}\overline{K}(w)^{-1}(k_{j}^{T}\otimes\epsilon_{j}^{0}(\hat{\omega}))$

Now, let $\hat{w}^{+\langle X_{k},c)}$ denote the estimate calculated after adding the data point $x_{k}$ with the label $c$ to the
training set. Using the current estimated class probability $\sigma_{k}^{c}(\hat{w})$ , the expected risk after adding the data point
$x_{k}$ is given as follows:

$\hat{\mathcal{R}}_{M}(\hat{w}^{+(x_{k})})\equiv\sum_{\infty 1}^{h}\sigma_{k}^{c}(\hat{w})\hat{\mathcal{R}}_{M}(\hat{w}^{+(X_{k},c)})$ .

Therfore, in each iteration, the task of active learning is to select the data point $x_{k}$ . which the
expected risk in the folowing way:

(5.30) $k^{*}= arg\min\{\hat{\mathcal{R}}_{M}(\hat{w}^{+(X_{h})})|k=l+1,l+2,$ $\ldots,M\}$ .

6 Numerical Experiments
In this section, we will report the performance of the Proposed active learning method for multiclass classifl-

cation. The eoeperiments are conducted on four real-world datasets: Forest Cover IVpe (FORBST), UseNet news
articles $(20Newsgroup\epsilon)$ , USPS hand written digits (USPS), and Splioe Junction Gene Sequence (SJGS). These
are commonly used benchmark datasets for cloesification.
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Figure 1: Average accuracies. Top left: FOREST. Top right: $20Newsgroups$ . Bottom left: SJGS. Bottom right:

USPS
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Figure 2: Standard deviations. Top left: FOREST. np right: $20Nowsgroups$. Bottom left: SJGS. Bottom right:
USPS
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The F0REST dataset contains 581,012 instances of the forest cover type for 30 $x30$ meter cells, each of which
is represented by 10 quantitative and 44 binary variables, and is categorized into seven possible classes. We use
the instances of the three largest classes, Spruce-Fir, Lodgepole Pine, and Ponderosa Pine.

The 20Newsgroups dataset has about 20,000 articles which is divided almost evenly among 20 newsgroup8.

We delete articles belonging to more than two newsgroups, and generate dataset consisting of 18,597 articles.
After stemming and stop word removal, we use all terms that occur in more than three articles. We represent

each article as a vector of the terms with the TF-IDF tem weighting. We use the articles in three newsgroups,
rec.motorcycles, rec. sport. baseball and rec. sport. hockey.

The USPS dataset $\infty ntain\epsilon$ 9,298 digit imnages of size 16 $x16$ pixels, which are converted to vectors of size
256. We use digits 1, 2, and 3 in the experiments.

The SJGS dataset consists of 3,190 sequences of DNA. Each sequence has 60 symbolic characters representing
the nucleotides of eight types. Each charecter is replaced by 8 binary indicator variables. Thus, the sequences
are given ss the binary vectors of size 480. We use al the three clwes, EI, IE, and no boundary.

For each dataset, selecting 100 instances randomly in each class, we construct three-class classification problem
with 300 instances. We then build a $k- near\infty t$-neighbor graph with $k=6$ using the Euclidian distances for
the FOREST, USPS and SJGS datasets, while the cosine similarity is used for the 20Newsgroups dataset. Fbr all
datasets, we use the simple weight $b_{1j}=1$ for generating the matrix $B$ . All the experiments $ue$ carried out
using the kernel matrix given in (3.14) with $t=1.O$.

Each active learning trial start8 with a set of the randomly selected three initial labeled data points, i.e, one
data point for each class. Then, optimizing the problem (5.26), we obtain the estimates of the $c1_{\mathfrak{B}}s$ probabilities
for all data points. An index of the query data point is given by (5.30). After selecting a new query, we add it
to the training set with the true label and re-estimate the class probabMties. We iterate this prooedure until 15
queries are selected. In this \alpha Periment\S , We perfom 10 active learning trials by i the initial labeled
data points. We show the average accuracies over the pool as $weU$ as the standard deviations in each iteration.

We compare the $prop\propto ed$ method with two baeelines: the random query (RQ) and the most uncertain query
(MUQ) strategies. In RQ, we select the query randomly from the pool, while, in MUQ, we select the query
$x_{j}$ with the highest entropy, i.e., $- \sum_{e\approx 1}^{3}\hat{P}(c|x_{j})\log\hat{P}(c|x_{j})$ , where $P(c|x_{j})$ is the estimated probability of the
class label $c$.

The average accuracies and the standard deviations of three methods are 8hown in Figs. 1 and 2, raePectively.

We can see from these figures that the proposed active learning method outperfoms the two baselines for all
datasets in these experiments. It is obvious to see that the proposed active lewnin$g$ method leads to apparently
higher accuracies than RQ or MUQ after adding only 9 queries i.e., 12 labeled data points. It seems that the
proposed active learning method has an ability to improve the accuracies of the classifiers within a very small
number of queries. $A$]$w$ , surprisingly, the accuracies of MUQ is almost the same as that of RQ for three datasets,
and even worse than RQ for the USPS dataeets. $Mor\infty ver$ , we can see that, exoept for the SJGS datasets, the
standard deviations of the proposed active learning method decrease to almost the half of the two baselines
after 15 queries are generated. This also indicates the robustness of the proposed active learning method.

7 Conclusion
We have proposed new formulations for kernel logistic regression in the semi-supervised setting, as well as

methods for performing pool-based active learning based on the A-optimality criterion for both binary and
multiclass classification problem8. Exploiting the special structure of the Laplacian kernel matrices, we show
that the minimization of the regularized negative log likelihood can be formulated as the very sparse optimization
$problm\epsilon$ . Also, we have demonstrated that A-optimality based active learning can be carried out in the feature
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space characterized by the associated kernel matrices. Numerical experiments on the four multiclass claesification
datasets indicate that the proposed active learning method $generate8$ more accurate and robust classifiers than
those generated by the RQ or MUQ strategies.

References

[1] D. BERTSEKAS, ed., Nonlinear Programming, Athena Scientiflc, 1999.

[2] D. A. COHN, Neural network $\varphi lomtion$ using optimal $c\varphi e\dot{n}mentdesig\eta$ in Advances in Neural Information
Processing Systems, J. D. Cowan, G. Tbsauro, and J. Alspector, eds., vol. 6, Morgan Kaufmann $Publi\epsilon hers$, Inc.,
1994, $pp$ . $679\triangleleft 86$ .

[3] F. Fouss, A. PIROTTE, AND M. SAERENS, A novd way of computing $d\dot{u}$similanties between nodes of a gmph, with
application to collaborative filtering, in 15th European Conferenoe on $Mul\dot{u}ne$ Learning (ECML 2004); Proceedings
of the Workshop on Statistical Approaches for Web Mining (SAWM), 2004, pp. $2\triangleright 37$.

$|4]$ A. E. HOERL AND R. W. KENNARD, Rdge reyresaion: Biased estimation for nonorthoyonal $P^{f}oblem\cdot,$ ?khnomet-
rics, 12 (1970), $pp$. $5b\triangleleft 7$.

[5] R. A. HORN AND C. R. JOHNSON, Matltx analysie, Cambridge University Press, Cambridge-New York, 1985.
[6] T. ITO, M. SHIMBO, T. KUDO, AND Y. MATSUMOTO, Application of kemela to link analysis, in KDD 05: Pmeeding

of the eleventh ACM SIGKDD international $\infty nferenoe$ on Knowledge $dis\infty very$ in data mining, New York, NY,
USA, 2005, ACM Prem, pp. $58\triangleright 592$.

[7] T. JOACHIMS, Malbing $lu\eta e$-scale support vector machine leaming $pmu\infty l$, in Advances in Kernel Methods,
B. Sch\"olkoPf, C. Burges, and A. Smola, $ds.$ , The MIT Press, 1999, pp. $16k1u$.

[8] S. S. KEERrHI, K. DUAN, S. K. SIIEVADE, AND A. N. Poo, A fast duel algorithm for kernel logistic regression, in
Proceedings of the 19th International Conference on Machine Learning, 2002, $pp$. $2\Re-3\alpha$ .

[9] D. D. LEWIS AND W. A. GALE, A $\epsilon w\epsilon nt:a\iota$ algorithm for training text clasaifiers, in SIGIR, 1994, pp. $\succ 12$ .
[10] D. MACKAY, Infornvation-based $0$bjective $fl\mathfrak{n}ct|on\epsilon$ for active data selection, Neural Computation, 4 (1992), $pp$. $590-$

$604$.
[11] J. C. PLATT, Fast training of support vector machines using seguential minimal optimication, in Advances in Kernel

Methods, B. Sch\"olkoPf, C. Burges, and A. Smola, eds., The MIT $Pr\infty$ , 1999, pp. 185-208.
[12] H. S. SEUNC, M. OPPER, AND H. SOMPOLINSKY, Query by committee, in COLT, 1992, $PP\cdot 287-294$.
[13] J. SHAWE-TAYLOR AND N. CRISTIANINI, Kernel Methods for Pattem Analysia, Cambridge University Prem, Cam-

bridge, 2004.
[14] A. SMOLA AND I. KONDOR, Kemels and wldarizauon on gruphs, in Proceedings of the Annual Conferenoe on

Computational Learning $Th\infty ry$, B. Sch\"olkopf and M. Warmuth, eds., Lecture Notes in Computer Scienoe, Springer,
2003.

[15] S. TONG AND D. KOLLER, $s_{unof}t$ veclor machine active learning un軌 applications to lext da編轟 $a$ け j Journal
of Machine Learning Research, 2 (2001), pp. $4\# 66$ .

[16] V. N. VAPNIK, Statutioal Leaming Thcory, John Wiley&Sons, 1998.
[17] Y. YAJIMA, $On\epsilon$-dass $\epsilon upnrt$ vector machines for recommendation tasks, in 10th $Pacifl\triangleright A\epsilon ia$ Conffienco, PAKDD,

2006, pp. 230-239.
[18] Y. YAJIMA AND T. HOSHIBA, $\alpha um\dot{u}at\dot{w}nag|\mathfrak{v}a\epsilon het$ for $t$emi-supervtsed lenming, in ICMLA, 2005.
[19] T. ZHANG AND F. OLES, TUt categorixation based on warizd linear $classificatio\mathfrak{n}$ methods, Inbrmation Retrieval,

4 (2004), $pp$. $\triangleright 31$ .
[20] D. ZHOU, O. BOUSQUET, T. N. LAL, J. WESTON, AND B. SCH\"oLKOPF, Leaming $w|l\hslash$ loeal and $gloM$ aontiatency,

Advances in Neural Information Proceming Systems, 16 (2004), pp. 321-328.
[21] J. ZHU AND T. HASTIE, Kemel logistic reylession and the import vector machine., in NIPS, 2001, pp. 1081-1088.
$|22]$ X. ZHU, Z. GHAHRAMANI, AND J. LAFFERrY, $S\epsilon mi-\epsilon up\epsilon n\dot{n}\epsilon d$ leaming using Gaussian fielde and harmonic flnc-

rmu., in ICML, 2003, pp. 912-919.
[23] X. ZHU, J. LAFFERIY, AND Z. GHAHRAMANI, $Combn|ng$ aCuve leaming and $\epsilon\epsilon mi-\iota upen\dot{n}sd$ lCaming using $gau\iota\iota|an$

fiel& and harmonic functions, in ICML-2003 workshop on The Continuum from Labeled to Unlabeled Data in
Muhine Learning and Data Mining, 203, $pp$. $58\triangleleft 6$ .

[24] –, Semi-supervised lenrning: $Rvm$ Gaussian fields to $Gau\epsilon\dot{n}a\mathfrak{n}$ processes, Rhnical Report $CMU- oe_{-}03- 176$,
Carnegie Mellon University, 2003.

244


