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, Abstract
We raise a question on jointly Markovian sample paths given marginal

Markov chains, and prove that such a bivariate Markov chain exists when
the state space is a compact Polish space.

1 Introduction

Strassen [4] proved the existence of a probability measure A to realize a pair (X, X’)
of random variables whose marginals, say p and p/, are given. Kamae, Krengel and
O’Brien [3] investigated extensively the realization of an ordered pair X < X',
and associate Strassen’s result with stochastic ordering when the underlying space
S is equipped with a partial ordering <. A probability measure p on S is said to
be stochastically smaller than p’, denoted by p < ¢/, if [ f(s) p(ds) < [ f(s)p'(ds)
for every real-valued increasing function f on S. Then p < p is a necessary and
sufficient condition for the existence of probability measure A whose marginals
are p and p’, and whose support lies on the set A = {(s,s') € S x S :s < §'}
(the Nachbin-Strassen theorem; see Theorem 1 of [3]). This existence theorem was
immediately applied to that of Markov chains. A Markov transition kernel k is said
to be stochastically cross-monotone to a kernel k' (or, k stochastically dominates
k'), if k(r,-) X k'(r',-) whenever » < r’. Assuming the cross-monotonicity between
k and k', the respective Markov chain sample paths

(1.1) X = (Xo, X1,...) and X' = (X}, X1,...)

can be realized so as to maintain the pairwise order X, < X for alln > 0
if the initial distribution my for Xj is also stochastically smaller than #j for Xj
(Theorem 2 of [3]).

The paired sample path (X, X/ )n=01,.. in (1.1) is not necessarily Markovian.
But if so, there is a bivariate kernel K on A satisfying the marginal conditions

(1.2) k(r,E) = K((r,v"), E x §) and k'(r', E") = K((r,7'),8 x E')
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for (r,r") € A and measurable sets £ and E’. Note in (1.2) that we view the
measure K({r,7'),-) as if it lies on S x S and has its support on A. Such a
bivariate kernel exists via the Nachbin-Strassen theorem when S is discrete (finite
or countable). A probability measure A"™)(-) on A exists for each pair (r,r') € A
so that it has marginals k(r,-) and k'(r',-). Then A™™)(.) can be collectively
viewed as a kernel K((r,7'),-). When S is continuous (typically referred to a
Polish space), however, the measurability of A""™) with respect to (r;r’) has to
be taken into account. This raises a question on whether A(™™) can be selected to
ensure the measurability, and this expository paper discusses our investigation on
a compact Polish space.

2 Measure space and selections

Let S be a compact Polish space, and let C be the space of real-valued continuous
functions on the product space S x S. The space C becomes a Banach space
with the norm ||f|| = sup|f(S x S)|. A Radon measure X is a continuous linear
functional on C, and the functional has an integral form A(f) = [ f(r)A(dr).
The space M of Radon measures is a complete lattice, and the positive cone M*
consists of positive Radon measures (Theorem 11.2 of Choquet [2]). The space M
is equipped with weak* topology, and the cone M* is metrizable and separable
(Theorem 12.10 of [2]). Let D be a countable dense subset of C. The family of
the semi-norms, |A(f)| for f € D, introduces the topology on M, and it coincides
with the weak* topology on the cone M™. Then we can form a countable subbase
via
Upg:={AeM*: Xf)>q}, feD,geq,

‘where Q denotes the set of all rational numbers. '

Let A be a closed set-valued map from A to M*. If A is measurable, there
exists a selection function A" € A(r, ') such that the map A" is measurable
from A to M™* (Theorem 8.1.3 of Aubin and Frankowska [1]). In particular,
M) (f) becomes a measurable function on A for each f € C. To see whether A
is measurable, it suffices to show that

A7 (Uypg) ={(r,7') € &: Alr,7') N Usg # 0}

is a Borel measurable subset for every f € D, and g € Q (Definition 8.1.1 of [1)).
It is easily observed that A(r,r’) N Usq # 0 is equivalent to

g < Hyr,v)= sup AP
AEA(r,r)

Thus, the verification of measurability of the set-valued map A is reduced to that
of the function Hy(r,r’).
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3 Validation of measurability

Let Cg be the space of real-valued continuous functions on S. We write the
direct sum (f1 & f2)(s,8') = fi(s) + f2(s') for fi, fa € Cs, and the subspace
Cs®Cs={f1i® fo: f1,fo € Cs} on C. A probability measure p is stochastically

smaller than p’ if and only if p(f1) + p(f2) < sup(fi @ f2)(A) for any f1, f2 € Cs.
The Nachbin-Strassen theorem can be similarly stated on a par with this form of

stochastic inequality. If p < p’ then there exists A € M7 satisfying (i) AM(f1® f2) =
p(f1) + p(f2) for any fi, f2 € Cs, and (il) A(f) < sup f(A) for any f € C. The
above conditions clearly imply that (i) A has the marginals p and p/, and (ii) it
has a support on A.

A Markov transition kernel k on S is a collection of positive Radon measures
k(s,-) on S such that k(s,-) is a probability measure for each s € S and

(k, f) = / £(s) k(r, ds)

is a measurable function of r for every f € Cs. Suppose that a Markov transition
kernel k is cross-monotone to k. Then the cross-monotonicity is equivalently
stated as

61 ((k, f1) @ (K, f2))(r;7) < sup(f1 @ £2)(A)

for any f1, f2 € Cg. For each (r,7') € A we define the subset A(r,7’) consisting of
M) e M which satisfies the following two conditions.

(3.2) AT (L @ fo) = ((k, 1) @ (K, fa))(r,r)  for fu, fo € Cs;
(3.3) AT)(f) < sup f(A)  for feC.

Tt is easily observed that A(r, ) is closed and that it is nonempty via the Nachbin-
Strassen theorem. Let

(64)  Hynr)= inf fup(h® it D)= (k1) & K, L))

for each (r,7') € A and f € C. Then we have
Proposition 3.1. sup,ep(r,r) M f) = Hs(r, 7).

Proof. Let (r,r') € A and f € C be fixed. By replacing f with f; & fo+f in (3.3),
we can immediately observe that

(3.5) | | () < Hy(r,r")

for every A € A(r,r"). By (3.2) the equality attains in (3.5) if f € Cs ® Cs;
thus, it is assumed that f & Cs ® Cs. Let £(f1 ® f2) = ((k, f) & (K', f2))(r r') for
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f1, f2 € Cs. Then £ is a well-defined linear functional on Cs®Cs. By applying (3.1)
and (3.2) together, we can observe that

—sup(—f — g)(A) — &g) < sup(f +¢')(D) — £(g)

for any g, g’ € Cs & Cs, and therefore, that

Kf = eénfc (sup(f+g)(A) £(9))

has a finite value. We can extend the subspace £ = {g+tf: g€ Cs ®Cs, te R}
by a.ddmg the element f, and define

Ug +1tf) = £(g) + trs

forg € Cs®Cs and t € R. The map ? is a well-defined linear functional on E and
satisfies (3.2) and (3.3) with Z and £ in place of A"™) and C. The same argument
is essentially recycled to show that Z on E is extended to \™™) € A(r,r') via
Zorn’s lemma. This particular A" will achieve the equality in (3.5). a

Observe that the space Cg in the infimum of (3.4) can be replaced by a count-
able dense set, and consequently H(r,7’) is a measurable function of (r,r’) for
each f € C. Therefore, A is a measurable set-valued map from A to M™*, and
there exists a measurable selection A" € A(r,r'); thus, K((r,r),-) = A®(.)
becomes a desired bivariate kernel on A satisfying (1.2).
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