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STRASSEN’S MARGINAL PROBLEMS FOR VECTOR
VALUED-MEASURES—A SHORT SURVEY
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1. INTRODUCTION

In a celebrated paper, V. Strassen (1965) gave necessary and sufficient conditions
for the existence of probability measures with given marginals in the context of
Polish spaces. Strassen’s theorem and some of its offspring have been extended for
real or vector-valued measures in more general settings. In this note, we will do a
survey of those results succinctly and give an imperfect but helpful list of papers on
Strassen’s marginal problems.

2. NOTATION AND PRELIMINARIES

Notation 2.1. Let S be a Hausdorff space.

e B(S): the Borel o-field of all Borel subsets of S, that is, the o-field generated
by the open subsets of § ,

o Cp(S): the set of all bounded, continuous, real functions on §

o Ly(S): the set of all bounded, lower semicontinuous, real functions on S

e P(S): the set of all Borel probability measures on S

e P,(S): the set of all u € P(S) which are Radon, that is, for every A € B(S),
it holds that u(A) = sup{u(K) : K C A, K is compact} '

e P.(S): the set of all 4 € P(S) which are T-smooth, that is, for every in-
creasing net {Gq}aer of open subsets of S with G = | J e Ga, it holds that

#(G) = supger #(Ga)-
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Definition 2.2. Let S be a Hausdorff space. We endow P(S) with the weak topology
of measures, that is, the weakest topology for which all mappings

1eP(S) - fsfdu

are lower semicontinuous whenever f € Ly(S).

Fact 2.3. When S is a completely regular Hausdorff space, the weak topology of
measures on P(S) is the weakest topology for which all mappings u € P(S) —
Jg fdp are continuous whenever f € Cy(S).

Hahn-Banach Theorem: Let X be a real vector space and L a subspace of X.
Let ¢ be a sublinear functional on X, that is, ¢ is a real function on X such that

g(z +y) < g(z) + q(y) and g(cz) = cg(z) for all z,y € X and ¢ > 0. Let ¢ be a

real linear functional on L such that ¢(z) < g(z) for all z € L. Then there is a real

linear functional @ on X extending ¢ and such that @(z) < g(z) for all z € X.

Separation Theorem: Let X be a real locally convex space and F' a non-empty,
closed, convex subset of X. Let z ¢ F. Then there is a real continuous linear
functional ¢ on X such that p(z) > sup{p(y) : y € F}.

Weak* continuous linear functionals: Let X be a topological vector space. A
linear functional & on the topological dual X’ of X is o(X’, X)-continuous if and
only if it is the evaluation at some point of X, that is, there is a point z € X such
that &(p) = p(z) for all p € X'.

Extension of positive operators (Kantrovi€): Let U and V be two Riesz spaces
with V Dedekind complete. Let L be a vector subspace of U. Assume that L is
majorizing U, that is, for each u € U thereis v € Lsuch that u <v. fT: L -V
is a positive linear operator, then T has a positive extension to all of U.

3. MARGINAL PROBLEM: FUNCTION-TYPE

MP1 (Marginal problem; function-type): Let S and T be Hausdorff spaces.
Let p € P(S) and v € P(T). Assume that Q is a non-empty, closed, convex subset
of P(8 x T). The following conditions are equivalent:

(i) Thereis A € @ with marginals g and v.

(ii) For every f € Cy(S) and g € Cy(T), it holds that

/fdu+/gdv_<_sup{ f@gdA:AEQ},
s T SxT
where (f @ g)(s,t) := f(s) + g(t) for all (s,t) € S x T.
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Remark 3.1. The proof of implication (i) = (ii) is easy. Indeed, the inequality in
condition (ii) holds for every bounded, Borel functions f and g.

Strassen (1965) [34, Theorem 7]: The assertion (MP1) holds whenever

e S and T are complete separable metric spaces.
o u€P(S)and v e P(T).
e Q is a non-empty, closed, convex subset of P(S x T).

Edwards (1979) [7, Theorem 5.2]: The assertion (MP1) holds whenever

e S and T are completely regular Hausdorff spaces.
o 4 € Pi(S) and v € P,(T).
e Q is a non-empty, closed, convex subset of P,(S x T).

Tahata (1984) [35, Theorem 2.3]: The assertion (MP1) holds whenever

e S and T are Hausdorff spaces.

o u € Pi(S) and v € Py(T).

e Q is a non-empty, closed, convex subset of P.(S x T).

o f € Ly(S) and g € Ly(T) instead of f € Cy(8) and g € Co(T).

Skala (1993) [33, Theorem 1]: The assertion (MP1) holds whenever

e S and T are Hausdorff spaces.
o 1 € Py(S) and v € P(T).
e Q is a non-empty, closed, convex subset of P(S x T).
o f € Ly(S) and g € Ly(T) instead of f € Cp(S) and g € Cy(T).

Khurana (2005) [18, Theorem 5]: The assertion (MP1) holds whenever

e S and T are completely regular Hausdorff spaces.
o i € Pi(S) and v € P-(T), and vice versa.
e Q is a non-empty, closed, convex subset of Pr(S x T).

The proof of (MP1): compact case.

Denote by mg and mr the projections from S x T' onto S and T, respectively.
Denote by .Mt(S), My(T), and M, (S x T the set of all Radon real measures on
S, T, and S x T, respectively. Consider the weak topology oo = o(My(S) x
M(T), Cs(S) ® Co(T)) defined by the natural duality

(e, %), (f,9)) :=/Sfdso+/ng¢.
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Then oy coincides with the product topology a(M;(S), Cy(S)) and o(M(T), Co(T)),
that is,

oo = 0(M(S), Cy(8)) x o(Mu(T), Cy(T)).
Put

Mg = {(p,¥) € M(S) x My(T) : 3y € @; ms(7) = @, mr(y) = ¢}

Then we have only to prove that (u,v) € M.

It is easy to show that My is a non-empty, convex subset of M(S) x M(T).
Further, My is op-closed since Q is 0(M(SxT), Cy(S x T'))-compact by the Banach-
Alasoglue theorem. Assume to the contrary that (u,v) € Mg. By the separation
theorem, there is & € (M,(S) x M;(T))' such that

P(u,v) > sup {P(p, ) : (¢, %) € Mg} . *)

Since @ is op-continuous, there is (fo, g0) € Cb(S) & Cp(T) such that

D(p, %) = ((‘P,’Ab)a(fo,go»=/sfod<p+/Tgod¢

for all (¢, %) € M(S) x M(T). Thus, it follows from (*) that

fsfod#+/Tgodv > sup {/Sfodw+ngod¢= (e, %) qu}
2sup{/s f(foaago)dvr*rEQ},

which leads us to a contradiction!

The proof of (MP1): general case.

e Approach 1: Use the Stone-Cech compactification! We need the following lemma
‘to pull back arguments in the compact space into the original space: Let S be a
completely regular Hausdorff space. Let S be the Stone-Cech compactification of S
and % : S — k(S) C § the associated homeomorphism. Let i € P,(5). Then, there
is u € P(S) such that ku = [ if and only if for every € > 0, there is a compact
subset K of S such that (S — k(K)) <. :

o Approach 2: We shall divide the proof into steps.

(1) Prove (u,v) € Mg ° by the separation theorem.

(2) Then there is a net {(lay Vo) }aer € Mg with (Ua,Ve) — (u,V), so that
/Ja — p and vy —> v. Since each (lq, Va) is an element of Mg, there is 7, € Q
such that 7g(Ye) = fa 80d Tp(Ys) = Va. Thus, it holds that 75(ya) — u and

WT('Ya) 7
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(3) Prove the Key Lemma: Let {7, }qer be a uniformly bounded net in P;(SxT).
If ms(Ya) — p € Py(S) and 77(va) — v € Py(T), then every subnet of {Va}aer
has a subnet converging weakly to v € P,(SxT) such that 7g(y) = p and nr(y) = v.

(4) By the Key Lemma, there is a subnet {ys}ger Of {Va}aer and v € P,(S x T)
such that 73 — 7. Since Q is closed for the weak topology of measures, v € Q.
Further, it follows from the continuity of mg and 7 that wg(y) = p and nr(y) = v,
and the proof is complete! |

4. MARGINAL PROBLEM: SET-TYPE

MP2 (Marginal problem; set-type): Let S and T be Hausdorff spaces. Let
p € P(S) and v € P(T). Assume that D is a non-empty, closed subset of S x T.
Fiz € > 0. The following conditions are equivalent:

(i) There is A € P(S x T') with margiﬁals u and v such that A(D) > 1 —e.
(ii) It holds that u(A) +v(B) < 1+ ¢ whenever A € B(S) and B € B(T) satisfy
(Ax BynD =0.

Remark 4.1. The proof of implication (i) = (ii) is easy.

Strassen (1965) [34, Theorem 11]: The assertion (MP2) holds whenever
e S and T are complete separable metric spaces.
e u€P(S)and v e P(T).
Edwards (1979) [7, Proposition 5.4]: The assertion (MP2) for € = 0 holds whenever

e S and T are completely regular Hausdorff spaces.
o u € PyS) and v € P(T).

Kellerer (1984) [17, Proposition 3.8]: The assertion (MP2) for € = 0 holds when-

ever
e S and T are Hausdorff spaces.
o u € Py(S) and v € P(T).

Tahata (1984) [35, Proposition 2.5): The assertion (MP2) for € = 0 holds whenever
e S and T are Hausdorff spaces. ' ‘
o uE Pt(S) and v € Pt(T)

Hansel-Troallic (1986) [11, Theorem 4.4]: The assertion (MP2) holds whenever
e S and T are Hausdorff spaces.
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® L E Pt(S) and v € Pt(T)

Plebanek (1989). (25, Corollary to Theorem 4]: The assertion (MP2) holds when-
ever

e S and T are completely regular Hausdorff spaces.
® 41 € Py(S) and v € P(T), and vice versa.

Skala (1993) [33, Corollary 6]: The assertion (MP2) holds whenever

e S and T are Hausdorff spaces.
o 4 € P(S) and v € P(T).

5. MARGINAL PROBLEM FOR VECTOR MEASURES: FUNCTION-TYPE

Definition 5.1. A vector space V is called an ordered vector space if the following
axioms are satisfied:

(i) u <vimpliesu+w <v+wfor all u,v,w eV

(ii) u < v implies cu < cv for all u,v € V and ¢ > 0.

Definition 5.2. Let (2,.4) be a measurable space. Let V be an ordered vector
space. Let u: A — V be a set function.

(1) p is called a vector measure if it is finitely additive. |

(2) u is said to be positive if u(A) > 0 for all A € A.

(3) Let S be a Hausdorff space. A finitely additive set function p : B(S) — V is
called a Borel vector measure on S.

Notation 5.3. Let S be a Hausdorff space. Let V be a locally convex space which
is an ordered vector space. '
o Mt(S;V): the set of all positive, Borel vector measures u : B(S) — V which
is countably additive for the locally convex topology on V ‘
o M} (S;V): the set of all u € M*(S;V) which are Radon, that is, for each
e > 0, A € B(S), and continuous seminorm ¢ on V/, there is a compact subset
K of 8 such that ||u|l¢(A — K) < &, where

lllg(A) = sup{|v'ul(4) : v' € V', |{u,v")| < q(u) for all u € V'}

denotes the g-semivariation of .
o A subset V of M*(S; V) is said to be uniformly bounded if sup ¢y, ||1ll4(S) <
oo for every continuous seminorm q on V.
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Definition 5.4. Let S be a completely regular Hausdorff space. We endow M™(S;V)
with the weak topology of vector measures, that is, the weakest topology for which
all mappings

he MHS;V) / fdu
S

are continuous for the locally convex topology on V whenever f € Cy(S).

VMP1 (Marginal problem for vector measures; function-type I): Let S
and T be Hausdorff spaces. Let V be a locally conver space which is an ordered
. vector space. Let u € M*H(S;V) and v € MT(T;V). Assume that Q is a non-
empty, uniformly bounded, closed, convez subset of M*(S x T;V). The following
conditions are equivalent:

(i) There is A € Q with marginals p and v.

(11) For any n € N and any {fi}lSiSn C Cb(S), {95}15,'5” C Cb(T), and {'U,:-}1_<_,'5_n
C V', it holds that

E </ fidp + / gidv, u§> < sup {Z( fi eag,-dA,u;> tA€E Q} ,
S T SxT )

=1 i=1

where (f @ g)(s,t) := f(t) + g(s) for all (s,t) € Sx T.

Kawabe (2000) [15, Theorem 1]: The assertion (VMP1) holds whenever

e S and T are completely regular Hausdorff spaces.

e V = U!; the topological dual of U with the weak topology o(V,U), where
U is a barreled locally convex space which is an ordered vector space, each
of whose element can be decomposed into the difference of two positive ele-

ments.
o u € M{f(S;V) and v € M{(T; V).

Why do we need finitely many {f:}, {g:} and {u}}?
In the proof of [Kawabe (2000)] we consider the duality between M.(S;V) X
M(T;V) and (C(S) @ U) & (C(T) ® U) defined by

(@) (90 =Y [ paltwa) + Y [ asdtosw),
=195 j=1 T
where f =Y. fi®w € C(S)®U and g=3 -, 9; ®v; € C(T) ®U. That is the
reason!

Khurana (2008) [19, Theorem 2]: The assertion (VMP1) holds whenever

e S and T are completely regular Hausdorff spaces.
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e V- is a semi-reflexive, ordered locally convex space whose positive cone is
normal.

o u € MS(S;V)and v e M (T;V).

Remark 5.5. The ordered locally convex space V' = U! in [Kawabe (2000)] is

semi-reflexive, since U is assumed to be barreled.

Definition 5.6. (1) A topological vector space V is said to be quasi-complete if
every bounded, closed subset of V' is complete.

(2) Let V be a locally convex space which is an ordered vector space. V is said
to be an ordered locally conver space whose positive cone is normal if the positive
cone C := {u € V : u > 0} is closed in V and there is a generating family @ of
semi-norms on V such that g(u) < g(u + v) whenever u > 0, v > 0 and g € Q.

(3) A Riesz space V' is called a locally conver Riesz space if it is a locally convex
space that possesses a O-neighborhood base of solid sets.

Fact 5.7. Every locally convex Riesz space is an ordered topological vector space
whose positive cone is normal [27, p.235].

Khurana (2006) [19, Theorem 4]: The assertion (VMP1) holds whenever
e S and T are completely regular Hausdorff spaces.
e V is a Dedekind complete and quasi-complete locally convex Riesz space
such that if an order bounded net {u,}qer Of elements of V' order converges

to u € V, then u, — u for the locally convex topology on V.
oy MH(S;V) and v.€e M (T;V).

Notation 5.8. Let S be a Hausdo.rff space. Let V be a Riesz space.

e MF(S;V): the set of all positive, Borel vector measures p : B(S) — V which
are countably additive for the order convergence on V'

e M}, (S;V): the set of all 4 € MJ(S;V) which are quasi-Radon, that is,
for every open subset G of S, it holds that u(G) = sup{u(K) : K C
G, K is compact}.

o M} (S;V): the set of all u € M (S; V) which are T-smooth, that is, for
every increasing net {Gg}eer of open subsets of S with G = Uyer G, it
holds that u(G) = supger #(Ga)-

VMP2 (Marginal problem for vector measures; function-type II): Let
S and T be Hausdorff spaces. Let V be a Riesz space. Let p € M (S;V) and
v € MI(T;V). Assume that u(S) = v(T) = e. Let D be a non-empty, closed
subset of S x T. Fiz u € V* with u < e. The following conditions are equivalent:
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(i) There is A € M (S x T; V) with marginals z and v such that A(D) > u.
(ii) Forany f € Cy(S) and g € Cy(T), it holds that f¢ fdu+ [ gdv > u whenever -
f(s)+g(t) > 1 for all (s,t) € D.

Khurana (2007) [20, Theorem 3]: The assertion (VMP2) holds whenever

e S and T are completely regular Hausdorff spaces.
e V is a Dedekind complete Riesz space.
o 4 € M}(S;V) and v € MI(T;V).

Definition 5.9. Let V be a Dedekind o-complete Riesz space.

(1) V is said to be weakly o-distributive if whenever {v;;}gjjenz is an order
bounded subset of V' with v;;4; < wv;; for each (4,j) € N? then it holds that
Sup;eN infjen vi; = infaenn SUP;en Vi00i)-

(2) Assume that V' is Dedekind complete. V is said to be weakly (o, 00)-distributive
if whenever £ is an infinite set with card£L < R and {Un}(n.ayeNxc i8 an order
bounded family of elements of V', then it holds that '

sup inf v, ) = inf su v
ne}h)l xeL ™ ¢eLN p mn):

where L is the set of all non-empty finite subsets of £ and, for each n € N and
¢ € LN, vn¢(n) is defined to be infyeen) Un,- :

Khurana (2007) {20, Theorem 3}: The assertion (VMP2) holds whenever

e S and T are completely regular Hausdorff spaces.
e V is a Dedekind complete and (o, o00)-distributive Riesz space.
o u€ML(S;V)and v e M}, (T;V), and vice versa.

6. MARGINAL PROBLEM FOR VECTOR MEASURES: SET-TYPE

VMP3 (Marginal problem for vector measures; set-type I): Let (R2,.A) and
(A, B) be measurable spaces. Let V be a Riesz space or a Riesz space with locally
convez topology. Let p: A — V¥ and v : B — V7 are countably additive vector
measures such that u(Q) = v(A) = e. Let D € A® B be a countable intersection of
sets in A x B. Fiz u € V* with u < e. The following conditions are equivalent:

(i) There is a countably additive vector measure A : A®B — V* with marginals
u and v such that (D) > u.

(i) It holds that p(A) + v(B) < 2e — u whenever A € A and B € B satisfy
(Ax BynD = 0.



60

Remark 6.1. In (VMP3), the countable additivity of the involved vector mea-
sures means the countable additivity for the order convergence or the locally convex
topology on V in context. ’

Strassen’s theorem for finitely additive vector measures (Hirshberg-Shortt
(1997) [12, Theorem 2]; D’Aniello-Wright (2000) (3, Lemma 3.6}): Let (£,.4) and
(A, B) be measurable spaces. Let V' be a Dedekind o-complete Riesz space. Let
u: A—V*tand v:B— V* be vector measures such that u(2) = ¥(A) =e. Let
D € A® B be a countable intersection of sets in 4 x B. Let C be the field generated
by A x B and D. Fix u € V' with u < e. The following conditions are equivalent:

(i) There is a vector measure A : C — V* with marginals g and v such that

A(D) 2 u.
(ii) It holds that u(A) + v(B) < 2e — u whenever A € A and B € B satisfy
(Ax BynD = 0.

Countable additivity of indirect product measures (D’Aniello-Wright [3, The-
orem 3.3]: Let (2,.4) and (A, B) be measurable spaces. Let V be a Dedekind o-
complete and weakly o-distributive Riesz space. Let p: A — V7 be a countably
additive vector measure for the order convergenceon V and v : B — V1 a o-compact
(see Definition 6.5) vector measure such that u(Q) = v(A). Let Ao : AXB — V¥ be
a vector measure with marginals p and v. Then ) is countably additive and extends
to a countably additive vector measure A : A ® B — V' for the order convergence |
onV.

Definition 6.2. Let V be a Banach lattice.

(1) V is called a KB-space if each norm bounded increasing sequence of elements
of V' is norm convergent. ‘

(2) V is said to have order continuous norm if every order convergent net of
elements of V' norm converges.

Fact 6.3. (1) Every KB-space has order continuous norm.
(2) Every Banach lattice having order continuous norm is Dedekind complete.

Definition 6.4. Let (£2,.4) be a measurable space and V a Banach lattice. Let
7 . A — V* be a vector measure. ‘

(1) A class K of subsets of  is said to be compact if whenever {Kn}nen is &
sequence of elements of K such that KiNnKy;N...K, # 0 for each n € N, then it
holds that (oo, Kn # 0.

in=1
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(2) p is said to be compact if there is a compact class K of subsets of © such that
for any A € A and € > 0, there are sets B € Aand K € K with BC K C A and
lu(A - B)|l <e.

(3) w is said to be perfect if the restriction of u to every countably generated sub
o-field of A is compact.

Hirshberg-Shortt (1998) [13, Theorem 2]: The assertion (VMP3) holds when-
ever | |

e Visa KB—spacé.
o u: A—V*tand v: B— V' are countably additive vector measures for the
norm topology on V, one of which is perfect.

D’Aniello (1999/2000) [2, Theorem 3.10]: The assertion (VMP3) holds whenever
e V is a Banach lattice with order continuous norm.

e u: A—V*+and v:B — V1 are countably additive vector measures for the
norm topology on V, one of which is perfect or compact.

Definition 6.5. Let (Q2,.4) be a measurable space and V' a Dedekind complete
Riesz space. Let u: A — V* be a vector measure. |
(1) u is said to be o-compact if there is a compact class X of subsets of {2 such
that, for each A € A, there is a monotone increasing sequence { By, }nen of sets in A
with the following properties:
(i) for each n € N, there is K, € K, such that B, C K, C A, where IC,'is the
class of all finite unions of sets in IC,
(if) p(A) = suppen 4(Bn)-
(2) w is said to be completely compact if there is a compact class K of sub-
sets of Q such that for each A € A, it holds that u(A) = sup{u(B) : B €
A is such that there is K € K, with B C K C A}.

D’ Aniello-Wright (2000) 3, Theorem 3.7): The assertion (VMP3) holds whenever

e V is a Dedekind o-complete and weakly o-distributive Riesz space.
e i: A= V*and v: B— V* are countably additive vector measures for the

- order convergence on V, one of which is o-compact.

D’Aniello-Wright (2000) [3, Theorem 3.13]: The assertion (VMP3) holds when-

ever

e V is a Dedekind complete and weakly (o, 0o)-distributive Riesz space.
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e u: A—V*tandv:B— VT are countably additive vector measures for the

order convergence on V, one of which is completely compact.

Definition 6.6. Let V be a Riesz space. A locally convex topology on V is said
to be sequentially Lebesgue if every monotone decreasing sequence with infimum 0
converges to 0 for the locally convex topology on V.

Definition 6.7. Let (£,.4) be a measurable space. Let V be a locally convex space
and a Riesz space. Assume that V' C V7, where V"is the order dual of V, that is,
the set of all linear functionals on V which are bounded on order bounded sets. A
vector measure /,4, : A — V' is said to be weakly perfect if for every u’ € V', the real
measure |u'|u is perfect.

Guerra and Muiioz-Bouzo (2002) [9, Theorem 1}: The assertion (VMP3) holds
whenever

e V is a Dedekind complete Riesz space with a sequentially Lebesgue locally
convex topology.

e u:A—V*tandv:B— V* are countably additive vector measures for the
locally convex topology on V, one of which is weakly perfect.

VMP4 (Marginal problem for vector measures; set-type II): Let S and
T be Hausdorff spaces. Let V be a locally convex space which is an ordered vector
space. Let y € M*(S;V) and v € M*(T;V). Assume that u(S) = v(T) = e. Let
D be a non-empty, closed subset of S x T. Fiz u € VT with u < e. The following
conditions are equivalent:

(i) There is A € M*(S x T; V) with marginals u and v such that A(D) > u.
-~ (ii) It holds that u(A)+v(B) < 2e—u whenever A € B(S) and B € B(T) satisfy
(Ax BynD = 0. '

Khurana (2006) [19, Theorem 5|: The assertion (VMP4) holds whenever

e S and T are completely regular Hausdorff spaces.

e V is a Dedekind complete locally convex Riesz space such that if an order
bounded net {uq }aer of elements of V order converges tou € V, then uq — u
for the locally convex topology on V.

o u€MF(S;V)and v € M(T;V).
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