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1. INTRODUCTION

In a celebrated paper, V. Strassen (1965) gave necessary and sufficient conditions
for the existence of probability measures with given marginals in the context of
Polish spaces. Strassen’s theorem and some of its ofUpring have been extended for
real or vector-valued measures in more general settings. In this note, we will do a
survey of those results succinctly and give an imperfect but helpful list of papers on
Strassen’s marginal problems.

2. NOTATION AND PRELIMINARIES

Notation 2.1. Let $S$ be a Hausdorff space.

$\bullet$ $\mathcal{B}(S)$ : the Borel $\sigma- field$ of all Borel subsets of $S$ , that is, the $\sigma- field$ generated

by the open subsets of $S$

$\bullet$ $C_{b}(S):$ the set of all bounded, continuous, real functions on $S$

$\bullet$ $L_{b}(S)$ : the set of all bounded, lower semicontinuous, real functions on $S$

$\bullet$ $\mathcal{P}(S)$ : the set of all Borel probability measures on $S$

$\bullet$ $\mathcal{P}_{t}(S)$ : the set of all $\mu\in \mathcal{P}(S)$ which are Radon, that is, for every $A\in \mathcal{B}(S)$ ,
it holds that $\mu(A)=\sup${$\mu(K)$ : $K\subset A,$ $K$ is compact}

$\bullet$ $\mathcal{P}_{\tau}(S)$ : the set of all $\mu\in \mathcal{P}(S)$ which are $\tau$-smooth, that is, for every in-

creasing net $\{G_{\alpha}\}_{\alpha\in\Gamma}$ of open subsets of $S$ with $G= \bigcup_{\alpha\in\Gamma}G_{\alpha}$ , it holds that
$\mu(G)=\sup_{\alpha\in\Gamma}\mu(G_{\alpha})$ .
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Definition 2.2. Let $S$ be a Hausdorff space. We endow $\mathcal{P}(S)$ with the weak topology

of measures, that is, the weakest topology for which all mappings

$\mu\in \mathcal{P}(S)rightarrow/sfd\mu$

are lower semicontinuous whenever $f\in L_{b}(S)$ .

Fact 2.3. When $S$ is a completely regular Hausdorff space, the weak topology of
measures on $\mathcal{P}(S)$ is the weakest topology for which all mappings $\mu\in \mathcal{P}(S)\mapsto$

$\int_{S}fd\mu$ are continuous whenever $f\in C_{b}(S)$ .

Hahn-Banach Theorem: Let $X$ be a real vector space and $L$ a subspace of $X$ .
Let $q$ be a sublinear functional on $X$ , that is, $q$ is a real function on $X$ such that
$q(x+y)\leq q(x)+q(y)$ and $q(cx)=cq(x)$ for all $x,y\in X$ and $c\geq 0$ . Let $\varphi$ be a
real linear functional on $L$ such that $\varphi(x)\leq q(x)$ for all $x\in L$ . Then there is a real

linear functional $\overline{\varphi}$ on $X$ extending $\varphi$ and such that $\overline{\varphi}(x)\leq q(x)$ for all $x\in X$ .

Separation Theorem: Let $X$ be a real locally convex space and $F$ a non-empty,

closed, convex subset of $X$ . Let $x\not\in F$ . Then there is a real continuous linear

functional $\varphi$ on $X$ such that $\varphi(x)>\sup\{\varphi(y) : y\in F\}$ .

Weak* continuous linear functionals: Let $X$ be a topological vector space. A

linear functional $\Phi$ on the topological dual $X’$ of $X$ is $\sigma(X’,X)$-continuous if and
only if it is the evaluation at some point of $X$ , that is, there is a point $x\in X$ such

that $\Phi(\varphi)=\varphi(x)$ for all $\varphi\in X’$ .

Extension of positive operators (Kantrovi\v{c}): Let $U$ and $V$ be two Riesz spaces

with $V$ Dedekind complete. Let $L$ be a vector subspace of $U$ . Assume that $L$ is

majorizing $U$ , that is, for each $u\in U$ there is $v\in L$ such that $u\leq v$ . If $T:Larrow V$

is a positive linear operator, then $T$ has a positive extension to all of $U$ .

3. MARGINAL PROBLEM: FUNCTION-TYPB

MP1 (Marginal problem; function-type): Let $S$ and $T$ be Hausdofff spaces.

Let $\mu\in \mathcal{P}(S)$ and $\nu\in \mathcal{P}(T)$ . Assume that $Q$ is a non-empty, closed, convex subset

of $\mathcal{P}(S\cross T)$ . The following conditions are equivalent:

(i) There is $\lambda\in Q$ with marginals $\mu$ and $\nu$ .
(ii) For every $f\in C_{b}(S)$ and $g\in C_{b}(T)$ , it holds that

$\int_{S}fd\mu+\int_{T}$ $gdv \leq\sup\{\int_{S\cross T}f\oplus gd\lambda:\lambda\in Q\}$ ,

where $(f\oplus g)(s,t)$ $:=f(s)+g(t)$ for all $(s,t)\in S\cross T$ .
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Remark 3.1. The proof of implication $(i)\Rightarrow(ii)$ is easy. Indeed, the inequality in

condition (ii) holds for every bounded, Borel functions $f$ and $g$ .

Strassen (1965) [34, Theorem 7]: The assertion (MP1) holds whenever

$\bullet$ $S$ and $T$ are complete separable metric spaces.
$\bullet$ $\mu\in \mathcal{P}(S)$ and $\nu\in \mathcal{P}(T)$ .
$\bullet$ $Q$ is a non-empty, $cl\dot{o}sed$ , convex subset of $\mathcal{P}(S\cross T)$ .

Edwards (1979) [7, Theorem 5.2]: The assertion (MP1) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .
$\bullet$ $Q$ is a non-empty, closed, convex subset of $\mathcal{P}_{t}(S\cross T)$ .

Tahata (1984) [35, Theorem 2.3]: The assertion (MP1) holds whenever

$\bullet$ $S$ and $T$ are Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $v\in \mathcal{P}_{t}(T)$ .
$\bullet$ $Q$ is a non-empty, closed, convex subset of $\mathcal{P}_{t}(S\cross T)$ .
$\bullet$ $f\in L_{b}(S)$ and $g\in L_{b}(T)$ instead of $f\in C_{b}(S)$ and $g\in C_{b}(T)$ .

Skala (1993) [33, Theorem 1]: The assertion (MP1) holds whenever

$\bullet$ $S$ and $T$ are Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .
$\bullet$ $Q$ is a non-empty, closed, convex subset of $\mathcal{P}_{t}(S\cross T)$ .

$\bullet$ $f\in L_{b}(S)$ and $g\in L_{b}(T)$ instead of $f\in C_{b}(S)$ and $g\in C_{b}(T)$ .

Khurana (2005) [18, Theorem 5]: The assertion (MP1) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{\tau}(T)$ , and vice versa.
$\bullet$ $Q$ is a non-empty, closed, convex subset of $\mathcal{P}_{\tau}(S\cross T)$ .

The proof of (MP1): compact case.
Denote by $\pi_{S}$ and $\pi_{T}$ the projections from $S\cross T$ onto $S$ and $T$ , respectively.

Denote by $\mathcal{M}_{t}(S),$ $\mathcal{M}_{t}(T)$ , and $\mathcal{M}_{t}(S\cross T)$ the set of all Radon real measures on

$S,$ $T$ , and $S\cross T$ , respectively. Consider the weak topology $\sigma_{0}$
$:=\sigma(\mathcal{M}_{t}(S)\cross$

$\mathcal{M}_{t}(T),$ $C_{b}(S)\oplus C_{b}(T))$ defined by the natural duality

$\langle(\varphi,\psi), (f,g)\rangle$ $:= \int_{S}fd\varphi+\int_{T}gd\psi$ .
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Then $\sigma_{0}$ coincides with the product topology $\sigma(\mathcal{M}_{t}(S), C_{b}(S))$ and $\sigma(\mathcal{M}_{t}(T), C_{b}(T))$ ,
that is,

$\sigma_{0}=\sigma(\mathcal{M}_{t}(S), C_{b}(S))\cross\sigma(\mathcal{M}_{t}(T), C_{b}(T))$ .

Put

$M_{Q}$ $:=\{(\varphi,\psi)\in \mathcal{M}_{t}(S)\cross \mathcal{M}_{t}(T) : \exists\gamma\in Q;\pi_{S}(\gamma)=\varphi,\pi_{T}(\cdot\gamma)=\psi\}$ .

Then we have only to prove that $(\mu, \nu)\in M_{Q}$ .
It is easy to show that $M_{Q}$ is a non-empty, convex subset of $\mathcal{M}_{t}(S)\cross \mathcal{M}_{t}(T)$ .

IFMrther, $M_{Q}$ is $\sigma_{0}$-closed since $Q$ is $\sigma(\mathcal{M}_{t}(S\cross T), C_{b}(S\cross T))$-compact by the Banach-
Alaoglue theorem. Assume to the contrary that $(\mu, \nu)\not\in M_{Q}$ . By the separation

theorem, there is $\Phi\in(\mathcal{M}_{t}(S)\cross \mathcal{M}_{t}(T))’$ such that

$\Phi(\mu, \nu)>\sup\{\Phi(\varphi,\psi):(\varphi,\psi)\in M_{Q}\}$ . $(^{*})$

Sinoe $\Phi$ is $\sigma_{0}$-continuous, there is $(f_{0}, g_{0})\in C_{b}(S)\oplus C_{b}(T)$ such that

$\Phi(\varphi,\psi)=\langle(\varphi,\psi), (f_{0},g_{0})\rangle=\int_{S}f_{0}d\varphi+\int_{T}g_{0}d\psi$

for all $(\varphi)\psi)\in \mathcal{M}_{t}(S)\cross \mathcal{M}_{t}(T)$ . Thus, it fofows from $(^{*})$ that

$\int_{S}f_{0}d\mu+\int_{T}g_{0}d\nu>\sup\{\int_{S}f_{0}d\varphi+\int_{T}g_{0}d\psi:(\varphi,\psi)\in M_{Q}\}$

$\geq\sup\{I_{SxT}^{(f_{0}\oplus g_{0})d\gamma:\gamma\in Q}\}$

which leads us to a contradiction!

The proof of (MPI): general case.
$\bullet$ Approach 1: Use the Stone-6ech compactification! We need the following lemma

to pull. back arguments in the compact space into the original space: Let $S$ be a
completely regular Hausdorff space. Let $S$ be the Stone-Cech compactification of $S$

and $\kappa:Sarrow\kappa(S)\subset\check{S}$ the associated homeomorphism. Let $\check{\mu}\in \mathcal{P}_{t}(S)$ . Then, there
is $\mu\in \mathcal{P}_{t}(S)$ such that $\kappa\mu=\check{\mu}$ if and only if for every $\epsilon>0$ , there is a compact

subset $K$ of $S$ such that $\check{\mu}(S-\kappa(K))<\epsilon$.
$\bullet$ Approach 2: We shall divide the proof into steps.

(1) Prove $(\mu, v)\in\overline{M_{Q}}0$ by the separation theorem.
(2) Then there is a net $\{(\mu_{\alpha}, v_{\alpha})\}_{\alpha\epsilon\Gamma}\in M_{Q}$ with $(\mu_{\alpha}, \nu_{\alpha})arrow^{\sigma_{0}}(\mu, \nu)$ , so that

$\mu_{\alpha}arrow^{w}\mu$ and $\nu_{\alpha}arrow^{w}\nu$ . Since each $(\mu_{\alpha}, v_{\alpha})$ is an element of $M_{Q}$ , there is $\gamma_{\alpha}\in Q$

such that $\pi_{S}(\gamma_{\alpha})=\mu_{\alpha}$ and $\pi_{T}(\gamma_{\alpha})=v_{\alpha}$ . Thus, it holds that $\pi_{S}(\gamma_{\alpha})arrow^{w}\mu$ and
$\pi_{T}(\gamma_{\alpha})arrow^{w}\nu$.
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(3) Prove the Key Lemma: Let $\{\gamma_{\alpha}\}_{\alpha\in\Gamma}$ be a uniformly bounded net in $\mathcal{P}_{t}(S\cross T)$ .
If $\pi_{S}(\gamma_{\alpha})arrow^{w}\mu\in \mathcal{P}_{t}(S)$ and $\pi_{T}(\gamma_{\alpha})arrow^{w}\nu\in \mathcal{P}_{t}(T)$ , then every subnet of $\{\gamma_{\alpha}\}_{\alpha\in\Gamma}$

has a subnet converging weakly to $\gamma\in \mathcal{P}_{t}(S\cross T)$ such that $\pi_{S}(\gamma)=\mu$ and $\pi_{T}(\gamma)=\nu$ .
(4) By the Key Lemma, there is a subnet $\{\gamma_{\beta}\}_{\beta\in\Lambda}$ of $\{\gamma_{\alpha}\}_{\alpha\in\Gamma}$ and $\gamma\in \mathcal{P}_{t}(S\cross T)$

such that $\gamma_{\beta}arrow^{w}\gamma$ . Since $Q$ is closed for the weak topology of measures, $\gamma\in Q$ .
Further, it follows from the continuity of $\pi s$ and $\pi_{T}$ that $\pi_{S}(\gamma)=\mu$ and $\pi_{T}(\gamma)=\nu$ ,
and the proof is complete!

4. MARGINAL PROBLEM: SET-TYPE

MP2 (Marginal problem; set-type): Let $S$ and $T$ be Hausdorff spaces. Let
$\mu\in \mathcal{P}(S)$ and $\nu\in \mathcal{P}(T)$ . Assume that $D$ is a non-empty, closed subset of $S\cross T$ .
Fix $\epsilon\geq 0$ . The followin9 conditions are equivalent:

(i) There is $\lambda\in \mathcal{P}(S\cross T)$ with marginals $\mu$ and $\nu$ such that $\lambda(D)\geq 1-\epsilon$ .
(ii) It holds that $\mu(A)+\nu(B)\leq 1+\epsilon$ whenever $A\in \mathcal{B}(S)$ and $B\in \mathcal{B}(T)$ satisfy

$(A\cross B)\cap D=\emptyset$ .

Remark 4.1. The proof of implication $(i)\Rightarrow(ii)$ is easy.

Strassen (1965) [34, Theorem 11]: The assertion (MP2) holds whenever
$\bullet$ $S$ and $T$ are complete separable metric spaces.
$\bullet$ $\mu\in \mathcal{P}(S)$ and $\nu\in \mathcal{P}(T)$ .

Edwards (1979) [7, Proposition 5.4]: The assertion (MP2) for $\epsilon=0$ holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .

Kellerer (1984) [17, Proposition 3.8]: The assertion (MP2) for $\epsilon=0$ holds when-

ever
$\bullet$ $S$ and $T$ are Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .

Tahata (1984) [35, Proposition 2.5]: The assertion (MP2) for $\epsilon=0$ holds whenever

$\bullet$ $S$ and $T$ are Hausdorff spaces.
$\bullet$ $\mu\in P_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .

Hansel-Troallic (1986) [11, Theorem 4.4]: The assertion (MP2) holds whenever

$\bullet$ $S$ and $T$ are Hausdorff spaces.
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$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .

Plebanek (1989) [25, Corollary to Theorem 4]: The assertion (MP2) holds when-
ever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $\mu\in P_{t}(S)$ and $\nu\in \mathcal{P}(T)$ , and vice versa.

Skala (1993) [33, Corollary 6]: The assertion (MP2) holds whenever
$\bullet$ $S$ and $T$ are Hausdorff spaces.
$\bullet$ $\mu\in \mathcal{P}_{t}(S)$ and $\nu\in \mathcal{P}_{t}(T)$ .

5. MARGINAL PROBLEM FOR VECTOR MEASURES: FUNCTION-TYPE

Definition 5.1. A vector space $V$ is called an ordered vector space if the following
axioms are satisfied:

(i) $u\leq v$ implies $u+w\leq v+w$ for all $u,$ $v,w\in V$

(ii) $u\leq v$ implies $\sigma u\leq cv$ for all $u,$ $v\in V$ and $c>0$ .

Definition 5.2. Let $(\Omega, A)$ be a measurable space. Let $V$ be an ordered vector
space. Let $\mu:Aarrow V$ be a set function.

(1) $\mu$ is called a vector measure if it is finitely additive.
(2) $\mu$ is said to be positive if $\mu(A)\geq 0$ for all $A\in \mathcal{A}$ .
(3) Let $S$ be a Hausdorff space. A finitely additive set function $\mu:\mathcal{B}(S)arrow V$ is

called a Borel vector measure on $S$ .

Notation 5.3. Let $S$ be a Hausdorff space. Let $V$ be a locally convex space which

is an ordered vector space.
$\bullet$ $\mathcal{M}^{+}(S;V)$ : the set of all positive, Borel vector measures $\mu:\mathcal{B}(S)arrow V$ which

is countably additive for the locally convex topology on $V$

$\bullet$ $\mathcal{M}_{t}^{+}(S;V)$ : the set of all $\mu\in \mathcal{M}^{+}(S;V)$ which are Radon, that is, for each
$\epsilon>0,$ $A\in \mathcal{B}(S)$ , and continuous seminorm $q$ on $V$ , there is a compact subset
$K$ of $S$ such that $||\mu||_{q}(A-K)<\epsilon$ , where

$\Vert\mu\Vert_{q}(A)$ $:= \sup${ $|v’\mu|(A)$ : $v’\in V’,$ $|\langle u,v’\rangle|\leq q(u)$ for all $u\in V$}

denotes the q-semivariation of $\mu$ .
$\bullet$ A subset $\mathcal{V}$ of $\mathcal{M}^{+}(S;V)$ is said to be uniformly bounded if $\sup_{\mu\epsilon v}||\mu||_{q}(S)<$

$\infty$ for every continuous seminorm $q$ on $V$ .
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Definition 5.4. Let $S$ be a completely regular Hausdorff space. We endow $\mathcal{M}^{+}(S;V)$

with the weak topology of vector measures, that is, the weakest topology for which
all mappings

$\mu\in \mathcal{M}^{+}(S;V)\mapsto\int_{S}fd\mu$

are continuous for the locally convex topology on $V$ whenever $f\in C_{b}(S)$ .

VMPI (Marginal problem for vector measures; function-type I): Let $S$

and $T$ be Hausdorff spaces. Let $V$ be a locally convex space which $\dot{u}$ an ordered
vector space. Let $\mu\in \mathcal{M}^{+}(S;V)$ and $\nu\in \mathcal{M}^{+}(T;V)$ . Assume that $Q$ is a non-
empty, uniformly bounded, closed, convex subset of $\mathcal{M}^{+}(S\cross T;V)$ . The folloutng
conditions are equivalent:

(i) There is $\lambda\in Q$ with marginals $\mu$ and $\nu$ .
(ii) For any $n\in N$ and any $\{f_{i}\}_{1\leq t\leq n}\subset C_{b}(S),$ $\{g_{i}\}_{1\leq i\leq n}\subset C_{b}(T)$ , and $\{u_{i}’\}_{1\leq i\leq n}$

$\subset V’$ , it holds that

$\sum_{i=1}^{n}\langle\int_{S}f_{i}d\mu+\int_{T}g_{i}d\nu,u_{i}’\rangle\leq\sup\{\sum_{i=1}^{n}\langle\int_{SxT}f_{i}\oplus g_{i}d\lambda,u_{i}’\rangle$ : $\lambda\in Q\}$ ,

where $(f\oplus g)(s, t):=f(t)+g(s)$ for all $(s, t)\in S\cross T$.

Kawabe (2000) [15, Theorem 1]: The assertion (VMPI) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $V=U_{\sigma}’$ ; the topological dual of $U$ with the weak topology $\sigma(V, U)$ , where

$U$ is a barreled locally convex space which is an ordered vector space, each

of whose element can be decomposed into the difference of two positive ele

ments.
$\bullet$ $\mu\in \mathcal{M}_{t}^{+}(S;V)$ and $\nu\in \mathcal{M}_{\ell}^{+}(T;V)$ .

Why do we need finitely many $\{f_{i}\},$ $\{g_{i}\}$ and $\{u_{\dot{t}}’\}$ ?

In the proof of [Kawabe (2000)] we consider the duality between $\mathcal{M}_{t}(S;V)\cross$

$\mathcal{M}_{t}(T;V)$ and $(C(S)\otimes U)\oplus(C(T)\otimes U)$ defined by

$\langle(\mu, \nu), (f, g)\rangle$ $:= \sum_{:=1}^{n}\int_{S}f_{i}d(u_{i}\mu)+\sum_{j=1}^{m}\int_{T}g_{j}d(v_{j}\nu)$ ,

where $f= \sum_{i=1}^{n}f_{i}\otimes u_{i}\in C(S)\otimes U$ and $g= \sum_{j=1}^{m}g_{j}\otimes v_{j}\in C(T)\otimes U$ . That is the

reason!

Khurana (2006) [19, Theorem 2]: The assertion (VMPI) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
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$\bullet$ $V$ is a semi-reflexive, ordered locally convex space whose positive cone is
normal.

$\bullet$ $\mu\in \mathcal{M}_{t}^{+}(S;V)$ and $\nu\in \mathcal{M}_{t}^{+}(T;V)$ .

Remark 5.5. The ordered locally convex space $V=U_{\sigma}’$ in [Kawabe (2000)] is
semi-reflexive, since $U$ is assumed to be barreled.

Definition 5.6. (1) A topological vector space $V$ is said to be quasi-complete if
every bounded, closed subset of $V$ is complete.

(2) Let $V$ be a locally convex space which is an ordered vector space. $V$ is said
to be an ordered locally convex space whose positive cone is normal if the positive

cone $C$ $:=\{u\in V : u\geq 0\}$ is closed in $V$ and there is a generating family $Q$ of

semi-norms on $V$ such that $q(u)\leq q(u+v)$ whenever $u\geq 0,$ $v\geq 0$ and $q\in Q$ .
(3) A Riesz space $V$ is called a $lo$cally convex Riesz space if it is a locally convex

space that possesses a O-neighborhood base of solid sets.

Fact 5.7. Every locally convex Riesz space is an ordered topological vector space
whose positive cone is normal [27, p.235].

Khurana (2006) [19, Theorem 4]: The assertion (VMPI) holds whenever
$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $V$ is a Dedekind complete and quasi-complete locally convex Riesz space

such that if an order bounded net $\{u_{\alpha}\}_{\alpha\in\Gamma}$ of elements of $V$ order converges

to $u\in V$ , then $u_{\alpha}arrow u$ for the locally convex topology on $V$.
$\bullet\mu\in \mathcal{M}_{t}^{+}(S;V)\bm{t}d\nu.\in \mathcal{M}_{t}^{+}(T;V)$.

Notation 5.8. Let $S$ be a Hausdorff space. Let $V$ be a Riesz space.
$\bullet$ $\mathcal{M}_{o}^{+}(S;V)$ : the set of all positive, Borel vector measures $\mu$ : $\mathcal{B}(S)arrow V$ which

are countably additive for the order convergence on $V$

$\bullet$ $\mathcal{M}_{o,t}^{+}(S;V)$ : the set of all $\mu\in \mathcal{M}_{o}^{+}(S;V)$ which are quasi-Radon, that is,

for every open subset $G$ of $S$ , it holds tfat $\mu(G)=\sup\{\mu(K)$ : $K\subset$

$G,$ $K$ is compact}.
$\bullet$ $\mathcal{M}_{o,\tau}^{+}(S;V)$ : the set of all $\mu\in \mathcal{M}_{o}^{+}(S;V)$ which are $\tau$-smooth, that is, for

every increasing net $\{G_{\alpha}\}_{\alpha\in\Gamma}$ of open subsets of $S$ with $G= \bigcup_{\alpha\in\Gamma}G_{\alpha}$, it

holds that $\mu(G)=\sup_{\alpha\in\Gamma}\mu(G_{\alpha})$ .
VMP2 (Marginal problem for vector measures; function-type II): Let
$S$ and $T$ be Hausdorff spaces. Let $V$ be a Riesz space. Let $\mu\in \mathcal{M}_{o}^{+}(S;V)$ and
$\nu\in \mathcal{M}_{o}^{+}(T;V)$ . Assume that $\mu(S)=\nu(T)=e$ . Let $D$ be a non-emPty, closed

subset of $S\cross T$ . Fix $u\in V^{+}$ with $u\leq e$ . The following conditions are equivalent:
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(i) There is $\lambda\in \mathcal{M}_{o}^{+}(S\cross T,\cdot V)$ with marginals $\mu$ and $\nu$ such that $\lambda(D)\geq u$ .
(ii) For any $f\in C_{b}(S)$ and $g\in C_{b}(T)’$. it holds that $\int_{S}fd\mu+\int_{T}gd\nu\geq u$ whenever

$f(s)+g(t)\geq 1$ for all $(s, t)\in D$ .

Khurana (2007) [20, Theorem 3]: The assertion (VMP2) holds whenever
$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $V$ is a Dedekind complete Riesz space.
$\bullet$ $\mu\in \mathcal{M}_{o)t}^{+}(S;V)$ and $\nu\in \mathcal{M}_{o,t}^{+}(T;V)$ .

Definition 5.9. Let $V$ be a Dedekind $\sigma$-complete Riesz space.
(1) $V$ is said to be weakly $\sigma- dist\dot{n}butive$ if whenever $\{v_{i,j}\}_{(ii)\in N^{2}}$ is an order

bounded subset of $V$ with $v_{i,j+1}\leq v_{i,j}$ for each $(i,j)\in N^{2}$ then it holds that
$\sup_{i\in N}\inf_{j\in N}v_{i,j}=\inf_{\theta\in N^{\aleph}}\sup_{i\in N}v_{i,\theta(i)}$ .

(2) Assume that $V$ is Dedekind complete. $V$ is said to be weakly $(\sigma,\infty)- dist\dot{n}butive$

if whenever $\mathcal{L}$ is an infinite set with card $\mathcal{L}\leq\aleph$ and $\{v_{n.\lambda}\}_{(\mathfrak{n},\lambda)\in Nx\mathcal{L}}$ is an order
bounded family of elements of $V$ , then it holds that

$\sup_{n\in N}\inf_{\lambda\in \mathcal{L}}v_{n,\lambda}=\inf_{\zeta\in L^{N}}\sup_{n\in N}v_{n,\zeta(n)}$
,

where $L$ is the set of all non-empty finite subsets of $\mathcal{L}$ and, for each $n\in N$ and
$\zeta\in L^{N},$

$v_{\mathfrak{n},\zeta(n)}$ is defined to be $\inf_{\lambda\in\zeta(n)}v_{n,\lambda}$ .

Khurana (2007) [20, Theorem 3]: The assertion (VMP2) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $V$ is a Dedekind complete and $(\sigma, \infty)$-distributive Riesz space.
$\bullet$ $\mu\in \mathcal{M}_{ot)}^{+}(S_{j}V)$ and $\nu\in \mathcal{M}_{o,\tau}^{+}(T;V)$ , and vice versa.

6. MARGINAL PROBLBM FOR VECTOR MEASURES: SET-TYPE

VMP3 (Marginal problem for vector measures; set-type I): Let $(\Omega,A)$ and
$(\Lambda,\mathcal{B})$ be measurable spaces. Let $V$ be a Riesz space or a Riesz space unth locally

convex topology. Let $\mu$ : $\mathcal{A}arrow V^{+}$ and $\nu$ : $\mathcal{B}arrow V^{+}$ are countably additive vector
measures such that $\mu(\Omega)=\nu(\Lambda)=e$ . Let $D\in \mathcal{A}\otimes \mathcal{B}$ be a countable intersection of
sets in $\mathcal{A}\cross \mathcal{B}$ . Fix $u\in V^{+}$ with $u\leq e$ . The folloving conditions are equivdent:

(i) There is a countably additive vector measure $\lambda$ : $A\otimes \mathcal{B}arrow V^{+}$ with marginals

$\mu$ and $\nu$ such that $\lambda(D)\geq u$ .
(ii) It holds that $\mu(A)+\nu(B)\leq 2e-u$ whenever $A\in A$ and $B\in \mathcal{B}$ satisfy

$(A\cross B)\cap D=\emptyset$ .

59



Remark 6.1. In (VMP3), the countable additivity of the involved vector mea-
sures means the countable additivity for the order convergence or the locally convex
topology on $V$ in context.

Strassen’s theorem for finitely additive vector measures (Hirshberg-Shortt

(1997) [12, Theorem 2]; D’AnieU -Wright (2000) [3, Lemma 3.6]); Let $(\Omega, \mathcal{A})$ and
$(\Lambda, \mathcal{B})$ be measurable spaces. Let $V$ be a Dedekind $\sigma$-complete Riesz space. Let
$\mu$ : $\mathcal{A}arrow V^{+}$ and $\nu$ : $\mathcal{B}arrow V^{+}$ be vector measures such that $\mu(\Omega)=\nu(\Lambda)=e$ . Let
$D\in A\otimes \mathcal{B}$ be a countable intersection of sets in $A\cross \mathcal{B}$ . Let $C$ be the field generated

by $\mathcal{A}\cross \mathcal{B}$ and $D$ . Fix $u\in V^{+}$ with $u\leq e$ . The following conditions are equivalent:

(i) There is a vector measure $\lambda$ : $Carrow V^{+}$ with marginals $\mu$ and $\nu$ such that
$\lambda(D)\geq u$ .

(ii) It holds that $\mu(A)+\nu(B)\leq 2e-u$ whenever $A\in \mathcal{A}$ and $B\in \mathcal{B}$ satisfy
$(A\cross B)\cap D=\emptyset$ .

Countable additivity of indirect product measures (D’Aniello-Wright [3, The-
orem 3.3]: Let $(\Omega, \mathcal{A})$ and $(\Lambda, \mathcal{B})$ be measurable spaces. Let $V$ be a Dedekind $\sigma-$

complete and weakly $\sigma$-distributive Riesz space. Let $\mu$ : $\mathcal{A}arrow V^{+}$ be a countably

additive vector measure for the order convergence on $V$ and $v:\mathcal{B}arrow V^{+}$ a $\sigma$-compact

(see Definition 6.5) vector measure such that $\mu(\Omega)=\nu(\Lambda)$ . Let $\lambda_{0}$ : $A$ $x\mathcal{B}arrow V^{+}$ be

a vector measure with marginals $\mu$ and $\nu$ . Then $\lambda_{0}$ is countably additive and extends
to a countably additive vector measure $\lambda$ : $A\otimes \mathcal{B}arrow V^{+}$ for the order convergence
on $V$ .

Definition 6.2. Let $V$ be a Banach lattice.
(1) $V$ is called a KB-space if each norm bounded increasing sequence of elements

of $V$ is norn convergent.
(2) $V$ is said to have order continuous no$rm$ if every order convergent net of

elements of $V$ norm converges.

Fact 6.3. (1) Every KB-spaoe has order continuous norm.
(2) Every Banach lattice having order continuous norm is Dedekind complete.

Definition 6.4. Let $(\Omega, \mathcal{A})$ be a measurable space and $V$ a Banach lattice. Let
$\mu$ : $Aarrow V^{+}$ be a vector measure.

(1) A class $\mathcal{K}$ of subsets of $\Omega$ is said to be compact if whenever $\{K_{n}\}_{n\in N}$ is a
sequence of elements of $\mathcal{K}$ such that $K_{1}\cap K_{2}\cap\ldots K_{n}\neq\emptyset$ for each $n\in N$ , then it

holds that $\bigcap_{n=1}^{\infty}K_{n}\neq\emptyset$ .
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(2) $\mu$ is said to be compact if there is a compact class $\mathcal{K}$ of subsets of $\Omega$ such that
for any $A\in \mathcal{A}$ and $\epsilon>0$ , there are sets $B\in \mathcal{A}$ and $K\in \mathcal{K}$ with $B\subset K\subset A$ and
$\Vert\mu(A-B)\Vert<\epsilon$ .

(3) $\mu$ is said to be perfect if the restriction of $\mu$ to every countably generated sub
$\sigma.- field$ of $\mathcal{A}$ is compact.

Hirshberg-Shortt (1998) [13, Theorem 2]: The assertion (VMP3) holds when-
ever

$\bullet$ $V$ is a KB-space.
$\bullet$ $\mu:Aarrow V^{+}$ and $\nu:\mathcal{B}arrow V^{+}$ are countably additive vector measures for the

norm topology on $V$ , one of which is perfect.

D’Aniello (1999/2000) [2, Theorem 3.10]: The assertion (VMP3) holds whenever
$\bullet$ $V$ is a Banach lattice with order continuous norm.
$\bullet$ $\mu:\mathcal{A}arrow V^{+}$ and $\nu:\mathcal{B}arrow V^{+}$ are countably additive vector measures for the

norm topology on $V$ , one of which is perfect or compact.

Definition 6.5. Let $(\Omega, \mathcal{A})$ be a measurable space and $V$ a Dedekind complete

Riesz space. Let $\mu:Aarrow V^{+}$ be a vector measure.
(1) $\mu$ is said to be $\sigma$-compact if there is a compact class $\mathcal{K}$ of subsets of $\Omega$ such

that, for each $A\in A$ , there is a nonotone increasing sequence $\{B_{n}\}_{n\in N}$ of sets in $\mathcal{A}$

with the following properties:

(i) for each $n\in N$ , there is $K_{n}\in \mathcal{K}_{s}$ such that $B_{n}\subset K_{n}\subset A$ , where $\mathcal{K}_{s}$ is the

class of all finite unions of sets in $\mathcal{K}$ ,

(ii) $\mu(A)=\sup_{n\in N}\mu(B_{n})$ .

(2) $\mu$ is said to be completely compact if there is a compact class $\mathcal{K}$ of sub-

sets of $\Omega$ such that for each $A\in \mathcal{A}$, it holds that $\mu(A)=\sup\{\mu(B)$ : $B\in$

$\mathcal{A}$ is such that there is $K\in \mathcal{K}_{\delta}$ with B C K C $A$}.

D’Aniello-Wright (2000) [3, Theorem 3.7]: The assertion (VMP3) holds whenever

$\bullet$ $V$ is a Dedekind $\sigma$-complete and weakly $\sigma$-distributive Riesz space.
$\bullet$

$\mu$ : $\mathcal{A}arrow V^{+}$ and $\nu:\mathcal{B}arrow V^{+}$ are countably additive vector measures for the

order convergence on $V$ , one of which is $\sigma$-compact.

D’Aniello-Wright (2000) [3, Theorem 3.13]: The assertion (VMP3) holds when-

ever
$\bullet$ $V$ is a Dedekind complete and weakly $(\sigma, \infty)$-distributive Riesz space.
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$\bullet$

$\mu$ : $\mathcal{A}arrow V^{+}$ and $\nu:\mathcal{B}arrow V^{+}$ are countably additive vector measures for the
order convergence on $V$ , one of which is completely compact.

Definition 6.6. Let $V$ be a Riesz space. A locally convex topology on $V$ is said
to be sequentially Lebesgue if every monotone decreasing sequence with infimum $0$

converges to $0$ for the locally convex topology on $V$ .

Definition 6.7. Let $(\Omega, \mathcal{A})$ be a measurable space. Let $V$ be alocally convex space
and a Riesz space. Assume that $V’\subset V^{\sim}$, where $V^{\sim}$ is the order dual of $V$, that is,
the set of all linear functionals on $V$ which are bounded on order bounded sets. A
vector measure $\mu:Aarrow V^{+}$ is said to be weakly perfect if for every $u’\in V’$ , the real
measure $|u’|\mu$ is perfect.

Guerra and Munoz-Bouzo (2002) [9, Theorem 1]: The assertion (VMP3) $h6lds$

whenever

$\bullet$ $V$ is a Dedekind complete Riesz space with a sequentially Lebesgue locally
convex topology.

$\bullet$ $\mu:Aarrow V^{+}$ and $\nu:\mathcal{B}arrow V^{+}$ are countably additive vector measures for the
locally convex topology on $V$ , one of which is weakly perfect.

VMP4 (Marginal problem for vector measures; set-type II): Let $S$ and
$T$ be Hatsdorff spaces. Let $V$ be a locally convex space which is an ordered vector
space. Let $\mu\in \mathcal{M}^{+}(S;V)$ and $\nu\in \mathcal{M}^{+}(T;V)$ . Assume that $\mu(S)=\nu(T)=e$ . Let
$D$ be a non-empty, closed subset of $S\cross T$ . ‘Fix $u\in V^{+}$ with $u\leq e$ . The folloeuing
conditions are equivalent:

(i) There is $\lambda\in \mathcal{M}^{+}(S\cross T;V)$ with marginals $\mu$ and $\nu$ such that $\lambda(D)\geq u$ .
(ii) It holds that $\mu(A)+\nu(B)\leq 2e-u$ whenever $A\in \mathcal{B}(S)$ and $B\in \mathcal{B}(T)$ satisfy

$(A\cross B)\cap D=\emptyset$ .

Khurana (2006) [19, Theorem 5]: The assertion (VMP4) holds whenever

$\bullet$ $S$ and $T$ are completely regular Hausdorff spaces.
$\bullet$ $V$ is a Dedekind complete locally convex Riesz space such that if an order

bounded net $\{u_{\alpha}\}_{\alpha\in\Gamma}$ of elements of $V$ order converges to $u\in V$ , then $u_{\alpha}arrow u$

for the locally convex topology on $V$ .
$\bullet$ $\mu\in \mathcal{M}_{t}^{+}(S;V)$ and $\nu\in \mathcal{M}_{t}^{+}(T;V)$ .
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