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1 Introduction
This paper deals with a decomposition of a submodular set function into a sum of
submodular set functions on subdomains and its generalization. Submodular set func-
tions have an important role in mathematical programming [3], and a supermodular
set function, which is the conjugate of a submodular set function (see Section 2), also
is an important concept called a convex game in cooperative game theory [6]. There-
fore, the additive decomposition of submodular set functions has broad application
possibilities.

This paper is organized as follows. Section 2 explains basic concepts such as
inclusion-exclusion family, submodularity, and (weak) k-monotonicity. Section 3 shows
the results on additive decompositions of set functions we have obtained so far. Sec-
tion 4 gives the main results, that is, conditions for additive indecomposabihty, which
provide a foothold for further investigation of additive decompositions.

2 Preliminaries
For a finite set $X$ , the number of elements of $X$ is denoted by $|X|$ , the power set of $X$

by $2^{X}$ , and, for an integer $k$ such that $0\leq k\leq|X|$ , the family of k-element subsets of
$X$ is denoted by $(_{k}^{X})$ , i.e,

$(\begin{array}{l}Xk\end{array})def=\{Y\in 2^{X}||Y|=k\}$ .

Throughout this paper, $E$ is assumed to be a finite set.
A family $A$ of subsets of $E$ is called an antichain if $A,$ $A’\in A$ and $A\subseteq A’$ together

imply $A=A’$ . For antichains $A$ and $\mathcal{B}$ , we write $\mathcal{A}\subseteq \mathcal{B}$ if for every $A\in A$ there is
$B\in \mathcal{B}$ such that $A\subseteq B$ ; then $\subseteq$ is a partial ordering on the class of all antichains over
$E$ , and the class forms a lattice with the following meet:

A $n\mathcal{B}={\rm Max}\{A\cap B|A\in A, B\in \mathcal{B}\}$ ,
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where, for a family $\mathcal{F}$ of sets, ${\rm Max} \mathcal{F}$ is defined by

${\rm Max} \mathcal{F}^{d}=^{f}$ { $M\in \mathcal{F}|M$ is maximal in $\mathcal{F}$ with respect to set $inclusion\subseteq$ }.

A function $f$ : $2^{B}arrow R$ satisfying $f(\emptyset)=0$ is called a set function on $E$ . An
antichain $A$ of subsets of $E$ is called an inclusion-exclusion family, or an inclusion-
exclusion antichain, with respect to a set function $f$ on $E$ if $\langle IE\rangle$ below holds:

$\langle IE\rangle$ : $f(X)= \sum_{e\subseteq A,B\neq\emptyset}(-1)^{|6|+1}f(X\cap\cap \mathcal{B})$
for all $X\subseteq E$ .

If an antichain $A$ contains a subset $A$ such that $f(X)=f(X\cap A)$ for every $X\subseteq E$ ,
then $A$ is an inclusion-exclusion family with respect to $f$ , and $A$ is called a $t\dot{n}\dot{w}d$

inclusion-exclusion family; for example, $\{E\}$ is a trivial inclusion-exclusion family
with respect to any set function on $E$ . For $\bm{t}ticha\dot{i}s$ $A$ and $\mathcal{B}$ , if $A\subseteq \mathcal{B}$ , and if $A$

is an inclusion-exclusion family with respect to a set function $f$ , then so is $\mathcal{B}$ . If $A$

and $\mathcal{B}$ are inclusion-exclusion antichains with respect to a set function $f$ , then so is
An$\mathcal{B}$ . Therefore, every set function has its least (with respect to $\subseteq$) inclusion-exclusion
antichain.

For a set function $f$ on $E$ , the sign inversion-f of. $f$ and the conjugate, or dual,
$f^{\#}$ of $f$ are defined as follows [3]:

$(-f)(X)^{d}=^{c}-f(X)$ , $f^{*}(X)^{d}=^{t}f(E)-f(E\backslash X)$

for every $X\subseteq E$ . For any set fiiction $f_{A}$ on $A\subseteq E$ , we regard $f_{A}$ as a set function on
$E$ by defining $f_{A}(X)=f_{A}(X\cap A)$ for every $X\in 2^{B}\backslash 2^{A}$ . Let $A\subseteq 2^{B}$ and $\{f_{A}\}_{A\in A}$

be a collection of set functions $f_{A}$ on $A\in \mathcal{A}$ . Then the foUowing holds:

$f= \sum_{A\epsilon A}f_{A}$

$\Leftrightarrow$

$-f= \sum_{A\in A}(-f_{A})$
$\Leftrightarrow$

$f^{\#}= \sum_{A\in A}p_{A}$
;

note that, for every set function $f_{A}$ on $A\subseteq E$ , the conjugate $f_{A}(A)-f_{A}(A\backslash (\cdot))$ over
$A$ coincides, as a set function on $E$ , with the conjugate $f_{A}(E)-f_{A}(E\backslash (\cdot))$ over $E$ .

A set function $f$ is said to be submodular if the following inequalities hold [3]:

$f(X\cup Y)+f(X\cap Y)\leq f(X)+f(Y)$ for 迅 $X,$ $Y\subseteq E$ .
A set function $f$ is said to be supermodular if $f^{\#}$ is submodular.

The difference junction A $f$ : $2^{B}\cross N^{(2^{B})}arrow \mathbb{R}$ of a set function $f$ on $E$ is defined
recursively as follows [2]:

$\wedge f(X,\emptyset)^{d}=^{l}f(X)$ ,

$\wedge f(X,\mathcal{Y}\oplus\{Y\})^{d}=^{t}\wedge f(X,\mathcal{Y})-\wedge f(X\cap Y,\mathcal{Y})$ ,

where $N$ is the set of nonnegative integers, $\mathcal{Y}$ is a multiset over $2^{B}-\mathcal{Y}$ : $2^{B}arrow N$

and $\mathcal{Y}(Z)\in N$ is the multiplicity of $Z\in 2^{B}$ in $\mathcal{Y}-,$ $\oplus$ is the sum of multisets, and
it holds that

(V $w\{Y\}$) $(Z)=\{\begin{array}{ll}\mathcal{Y}(Z)+1 if Z=Y,\mathcal{Y}(Z) if Z\neq Y.\end{array}$

When $| \mathcal{Y}|(^{d}=^{t}\sum_{Z\in 2^{B}}\mathcal{Y}(Z))=k$ , we $write\wedge f(X,\mathcal{Y})$ as $\bigwedge_{k}f(X,\mathcal{Y})$ also.
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(i) [2] For a positive integer $k$ , a set function $f$ is said to be k-monotone if $\bigwedge_{k}f\geq 0$,

i.e., $\wedge f(X, \mathcal{Y})\geq 0$ whenever $X\in 2^{E}$ and $\mathcal{Y}\in((2^{E}k))^{d}=^{ef}\{\mathcal{X}\in N^{(2^{E})}||\mathcal{X}|=k\}$ .

(ii) [1] For an integer $k$ greater than 1, a set function $f$ is said to be weakly

k-monotone if for every $\mathcal{X}\in((2^{B}k))$

$f( \cup \mathcal{X})\geq\sum_{\mathcal{Y}\subseteq X,\mathcal{Y}\neq\emptyset}(-1)^{|\mathcal{Y}|+1}f(\cap \mathcal{Y})$
,

where, for $\mathcal{Z}\in N^{(2^{B})},$ $\cup \mathcal{Z}^{d}=^{f}\bigcup_{Z\in \mathcal{Z}}Z=\cup(suppZ),$
$\cap \mathcal{Z}^{d}=^{f}\bigcap_{Z\in Z}Z=\cap(supp\mathcal{Z})$,

$Z\in Z$ means $\mathcal{Z}(Z)>0$ , and suppZ is the ordinary set $\{Z|\mathcal{Z}(Z)>0\}\subseteq 2^{B}$

called the support of $Z$ .

The l-monotonicity is equivalent to the ordinary monotonicity, i.e., $X\subseteq Y\Rightarrow$

$f(X)\leq f(Y)$ . The concept of weak l-additivity is not defined. There are the following
relations between submodularity and weak 2-monotonicity:

$f$ is submodular $\Leftrightarrow$ $-f$ is weakly 2-monotone $\Leftrightarrow$ $f^{\#}$ is weakly 2-monotone.

For every integer $k$ greater than 1, a set function $f$ is k-monotone iff $f$ is monotone and
weakly k-monotone. If $k$ and $k’$ are integers such that $1\leq k\leq k’$ , and if a set function
$f$ is k’-monotone, then $f$ is k-monotone. If $k$ and $k’$ are integers such that $2\leq k\leq k’$ ,

and if a set function $f$ is weakly k’-monotone, then $f$ is weakly k-monotone.

3 Additive decomposition
This paper deals with the following additive decomposition of a set function $f$ on $E$

with respect to an antichain $A$ of subsets of $E$ .
$\langle AD\rangle$ : A set function $f$ on $E$ is decomposable into a sum of set functions $f_{A}$ over

all $A\in A$, that is, there exists a collection $\{f_{A}\}_{A\in A}$ such that each $f_{A}$ is a set
function on $A$ and

$f= \sum_{A\in A}f_{A}$
. (1)

A necessary and sufficient condition for the additive decomposition $\langle AD\rangle$ is $\langle IE\rangle$ , that
is, $A$ is an inclusion-exclusion family with respect to $f[5]$ .

If $f$ is a submodular set function, and if an antichain $A$ is an inclusion-exclusion
family with respect to $f$ , there does not always exist a collection $\{f_{A}\}_{A\in A}$ of submodular
set functions $satis\theta ing$ Eq. (1), while there always exists a collection $\{f_{A}\}_{A\in A}$ of set
functions satisying Eq. (1). That is to say, the antichain $A$ being an inclusion-exclusion
family is only a necessary condition and not a sufficient condition for a submodular
set function $f$ to be decomposable into a sum of submodular set functions $f_{A}$ over all
$A\in A$.

So far, the authors have obtained two theorems showing sufficient conditions for the
decomposition of submodular set functions into a sum of submodular set functions and
their generalizations [4] [7]. We show below the two generahized additive decomposition
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theorems. For an antichain $A$ of subsets of $E$ , a set function $f$ on $E$ is said to have
a k-monotone [resp. weakly k-monotone] $\mathcal{A}$-decomposition if there exists a coUection
$\{f_{A}\}_{A\in A}$ such that each $f_{A}$ is a k-monotone [resp. weakly k-monotone] set function
on $A$ and Eq. (1) holds. The two theorems deal with the following three types of
$conditions\cap(k, l,\mathcal{A}),$ $M(k’, k, A)$ , and $wM(k’, k, A)$ on positive integers $k,$ $k’$ , and $l$

such that $k\leq k’$ and an antichain $A$:

$\cap(k, l,A):|\cap \mathcal{B}|\leq k$ for $\bm{r}y\mathcal{B}\in(\begin{array}{l}Al\end{array})$ .

$M(k’, k,A)$ : Every k’-monotone set function $f$ with $A$ as an inclusion-exclusion family.
has a k-monotone A-decomposition.

$wM(k’, k,A)$ : Every weakly k’-monotone set fiiction $f$ with $A$ as an inclusion-exclusion
family has a weakly k-monotone A-decomposition.

Condition $wM(k’, 1,\mathcal{A})$ is not considered.

Theorem 1 (Generalized Additive Decomposition $Th\infty remA$). For a positive integer
$k$ and an antichain $A$, the three $conditions\cap(k, 2,A),$ $M(k, k,A)$ , and $wM(k, k,A)$

are equivalent to each other.

Theorem 2 (Generalized Additive Decomposition $Th\infty remB$). Let $k$ and $k’$ be posi-
tive integers, $k\leq k’$ , and $A$ be an antichain. $Then\cap(k-1, k’-k+2, A)$ is a sufficient
condition for each of $M(k’, k,A)$ and $wM(k’, k,A)$ .

4 Indecomposability
Our present subject is the unification of Theorems 1 and 2, that is, necessary and
sufficient conditions for $M(k’, k,\mathcal{A})$ and $wM(k’, k,A)$ . We have found a cue to this
subject, and we give it below. Note that, for every integer $k$ greater than 1, a monotone
set function $f$ has a k-monotone A-decomposition iff it has a weakly k-monotone
A-decomposition.

Proposition 1. Let $k,$ $k’,$ $l,$ $n$ be positive integers such that $k\leq k’\leq l\leq n-3$, and
$E$ be an n-element set. If

$(n-l)(l-k’+1)-2(l-k+1)>0$ , (2)

then there exists a $k’$ -monotone set function $f$ on E Utth $(\begin{array}{l}El+2\end{array})$ as the least inclusion-

exclusion family such that $f$ does not have a k-monotone $(\begin{array}{l}El+2\end{array})$ -decomposition.

If $A$ is a non-trivial inclusion-exclusion family with respect to a set function $f$ ,
a k-monotone A-decomposition of $f$ is said to be non-triwial.
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Corollary 1. Let $k$ and $k’$ be positive integers such that $k\leq k’$ , and $E$ be an n-element
set. If

$n>3k’-2k+2$ ,

then there exists a $k’$ -monotone set function on $E$ with a non-trivial inclusion-exclusion
family such that $f$ has no non-trimal k-monotone decomposition.

Corollary 2. Let $k$ and $k’$ be positive integers such that $k\leq k’$ , and $E$ be an n-element
set. If

$n>k’+1+\sqrt{8(k’-k)+1}$,

then there exist a $k’$ -monotone set function $f$ and an indusion-exdusion antichain $A$

Utth respect to $f$ such that $f$ does not have a k-monotone A-decomposition.
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