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1 lntroduction
The straightening theorem for polynomial-hke mappings by Douady and Hubbard [DH]

naturally induces a map between a family of renormalizable polynomials and the connected-
ness locus of polynomials, which we call the straightening map. It is known such a map is
always continuous if it is of degree two and this implies the self-similarity of the boundary of
the Mandelbrot set. However, Douady and Hubbard also showed that straightening maps for
analytic families of polynomial-hke mappings of degree greater than two are not contnuous
in general. In [In3], we gave a much more detailed description how a straightening map be-
comes discontinuous and gave an example of a discontinuous $s\alpha aightening$ map for a family
of polynomial-like restrictions of polynomials (of ycater degree).

Here we show that it is not continuous or at least not a homeomorphism in general and
show how generally such a discontinuity occurs. To see this, we study parabolic and Mis-
iurcwicz bifurcation to find perturbations which satisfies the assumption of the theorem in
[In3] and use Prado-Rzytycki-Urbtski theorem [Pr] to show that if the straightening map is
continuous (or homeomorphism), then we have local analytic conjugacy between a renornal-
izable polynomial and the straightening of the renormalization. However, we also show that
such alocal analytic conjugacy implies global correspondence [In4], which is impossible for
renormahzable polynomials.

2 Polynomial-like mappings
A polynomial-like mapping is a proper holomorphic map $f$ : $U’arrow U$ such that $U’$ and $U$

are topological disks in $C$ and $U’GU$. We denote thefilled Julia set by $K(f)=K(- f;U’, U)=$
$\bigcap_{n\geq 0}f^{-n}(U)$ and the Julia set by $J(f)=J(f;U‘, U)=\partial K(f)$.

For a periodic point $x\in C$ of period $n$ for a polynomial-like map (or a polynomial) $f$, let
us denote its multiplier by $mult_{f}(x)$, i.e.,

$mult_{f}(x)=(fi)’(x)$.
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Definition. Let $f$ : $U’arrow U$ and $g$ : $V’arrow V$ are polynomial-like mappings and $\varphi$ : $Uarrow V$

$be$ a hybrid conjugacy. We say that $\varphi$ preserves multipliers if for any periodic point $x$ for $f$,
we have

$|mult_{f}(x)|=|mult_{l}(\varphi(x))|$ .
The following theorem is proved by Prado [Pr] for “off-critically hyperbolic“ polynomial-

like mappings, and extended to tame rational maps by Rzytycki and Urbanski [PU].

Theorem 2.1 (Prado-Przflych-Urbtsh). Let $f$ : $U’arrow U$ and $g$ ; $Varrow V$ are tame
polynomial-like mappings hybrid equivalent. If theoe $e\kappa ists$ ahybrid conjugaq between $f$

and $g$ preseハノ ing mulnpliers, then $tw$ am analytically conjugate on neighborhoods of the
fillcd Julia sets.

We do not give the precise deflnition of tame polynomial-like mappings here, because we
need only the fact that polynomial-like mappings hybrid equivalent to $z+z^{2}$ are tame, which
is guaranteed by the following. (See [Url], [Ur2] and [PU] for details on tame maps.)

Theorem 2.2. Every polynomial-like mapping with no recurrent critical points in its Julia
set (abbr. $NCP$) is tame.

Furthermore, when a given polynomial-like mappings are restrictions of rational maps, we
can say more (see [In4] for more details).

Theorem 23. Let $f_{1}$ and $f_{2}$ be two rational maps. Assume $t\emptyset$ havepolynomial-like restric-
tions $f_{i}$ : $U_{i}’arrow U_{i},$ $i=1.2$ analytically conjugate. Then there exist rational maps $g,$ $\varphi_{1}$ and
$\varphi_{2}$ such that $\varphi_{i}\circ g=f_{i}\circ\varphi_{i}$ andg has a polynomial-like restriction $g:V’arrow V$ analyncally
conjugate to $f_{i}$ : $U_{i}’arrow U_{i}$ . In pamcular. $f_{1}$ and $f_{2}$ have the same degree.

Funhemore, if$f_{1}$ and $f_{2}$ are polynomials, then $g,$ $\varphi_{1}$ and $\varphi_{2}$ are also polynomials.

Outline ofproof. By shrinking $U_{i}$ if necessary, we may assume that there exists an analytic
conjugacy $\phi:U_{1}arrow U_{2}$ between $f_{1}$ and $f_{2}$ . Let $\Gamma_{0}=((z,\emptyset(z));z\in U_{1}I\subset\hat{C}^{2}$ be the graph of
$\phi$ . Define $F:6^{2}arrow 6^{2}$ by $F(z_{1},z_{2})=(f_{1}(z_{1}),f_{2}(z_{2}))$ and let $\Gamma_{n}=F^{n}(\Gamma_{0})$ for $n\geq 1$ . Then it
is easy to see that $\Gamma_{n}\subset\Gamma_{n+1}$ . Therefore, $\Gamma=\bigcup_{n\geq 0}\Gamma_{n}$ is a connected invariant set under $F$ .

Furthermore, we can $*desingul\dot{\bm{t}}ze’\Gamma$ ; namely, there exists a Riemann surface $X$ and
holomorphic maps $g$ : $Xarrow X$ and $\Phi$ : $Xarrow \mathbb{C}^{2}$ such that $\Phi(X)=\Gamma,$ $F\circ\Phi=\Phi\circ g$ , and there
exists an open set $\overline{U}$ such that $\Phi|_{U}$ : $O-\Gamma_{0}$ is a conformal isomorphism and $g$ : $\tilde{U}’arrow\tilde{U}$ is
a polynomial-like map analytically conjugate to $f_{j}$ : $U_{i}’arrow U_{i}$ by $\pi_{j}\circ\Phi$, where $\pi_{i}(z\iota,z_{2})=z_{i}$

be the natural projection and $\tilde{U}’=(\pi_{1}\circ\Phi|_{0})^{-1}(U_{1}’)$ .
Since $g$ has a chaotic dynamics (e.g.. $g$ has a repelling periodic point), $X$ cannot be hyper-

bolic. Therefore $X$ is isomorphic to either $\hat{C},$ $C,$ $C‘=C\backslash \{0\}$ or a torus (and we can show
that the case $X$ is a torus cannot happen). Since the degree of $F$ is flnite, the degree of $g$

is also finite, thus $g$ is a rational map. It is not difficult to show that $\phi_{j}=\pi_{j}\circ\Phi$ is also a
rational map. (It is trivial when $x\underline{\approx}6$ . For other cases, see, e.g., [BE]. Note that $\phi_{i}$ can be
$\alpha anscendental$ when $f_{i}$ : $U_{i}^{j}arrow U_{i}$ is a polynomial-like mappings of degree one, i.e., $U_{i}’$ and
$U_{i}$ are neighborhoods of a repelling fixed point and $\phi_{i}$ is alinearizing coordinate for it.) $0$

Deflnition. We say two polynomials $f_{1}$ and $f_{2}$ are polynomially semiconjugate up to fnite
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cover if the conclusion of Theorem 2.3 holds.

Combining the theorems above, we have the following.

Theorem 2.4. Let $f_{1}$ and $f_{2}$ be polynomials. Assume they have polynomial-like restrictions
$f_{i}$ : $U_{i}’arrow U_{i},$ $i=1,2$ which are hybrid conjugate via a conjugacy prese$n\prime ing$ multipliers.
Then $f_{1}$ and $f_{2}$ are polynomially semiconjugate up tofinite cover.

3 Analytic families of polynomial-like mappings and
straightening maps

In [In3], we have proved a theorem which relates continuity of straightening maps and
multipliers of periodic points. Before stating the theorem, we introduce some notations and
definitions. Let $Poly_{d}$ be the set of affine conjugacy classes of polynomials of degree $d(\geq 2)$

and $C_{d}=$ {$f\in Poly_{d};K(f)$ is connected}. By the straightening theorem [DH], for an analytic
family of polynomial-like mappings $f=$ $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda})_{\lambda\epsilon\Lambda})$ (in the sense of [DH]), we can
define the straightening map $S_{f}$ : $C_{i}arrow C_{d}$ as follows. Let $C_{f}=$ { $\lambda\in\Lambda;K(- f_{\lambda})$ is connected}
and for $\lambda\in Cr$ , there exists a unique $g_{\lambda}\in C_{d}$ hybrid equivalent to $f_{\lambda}$ . Let $S_{f}(\lambda)=g_{\lambda}$ .

We say $f=$ $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda},x_{\lambda})_{\lambda\epsilon\Lambda}$ is an analytic family ofpolynomial-like mappings with
a markzdpoint if $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda})_{\lambda\epsilon\Lambda}$ is an analytic family of polynomial-like mappings, and
$x:Aarrow C$ is a holomorphic map such that $x_{\lambda}\in U_{\lambda}$ . Also for such a fanily $f$ of degree $d\geq 2$ ,
let

$CK_{i}=$ { $\lambda\in\Lambda;K\zeta f_{\lambda})$ is connected and $x_{\lambda}\in K(f_{\lambda})$}

and we can similarly define the straightenin$g$ map

$S_{i}$ : $CK_{f}arrow M_{d}$

as follows. Let $M_{d}=$ { $\zeta f,z);f$: polynomial of degree $d,$ $z\in K(f)$} $f\sim$ , where $(f,z)\sim(g,w)$

if there exists an affine map $A$ such that $A\circ g=f\circ A$ and $A(w)=z$ For each $\lambda\in M_{f},$ $f_{\lambda}$

is hybrid equivalent to some polynomial $g_{\lambda}$ of degree $d$ with a hybrid conjugacy $\psi_{\lambda}$ . Let us
define $S_{f}(\lambda)=(g_{\lambda}, \psi_{\lambda}(x_{\lambda}))\in CK_{d}$, then it is well-defined.

Now let us state the theorem:

Theorem 3.1. Let $f=$ $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda},x_{\lambda})_{\lambda\epsilon A}$ be an analytic family ofpolynomial-like
mappings ofdegree $d\geq 2$ with a markedpoint. Assume

(i) for any $\lambda\in A0$ lies in $U_{\lambda}’$ and it is afixedpointfor $f_{\lambda}$ ;
(ii) $\alpha_{\lambda}$ is a marked repelling periodic point and $\omega_{\lambda}$ is a marked critical pointfor $f_{\lambda}$ ;
(iii) for $\lambda=\lambda_{0},0$ is a non-degenerate l-parabolicfixedpoint, $\omega_{\lambda_{0}}$ lies in the basin of$0$ for

$f_{\lambda_{0}}$ and $x_{\lambda_{0}}=\omega_{\lambda_{0}}$ ;
(iv) there exist sequences $\lambda_{n}arrow\lambda_{0}$ and $\lambda_{n,m}arrow\lambda_{n}$ such that

$\bullet\lambda_{n},\lambda_{n.m}\in M_{i}$ ;
$\bullet\omega_{\lambda_{n}}\neq x_{\lambda_{n}}$ for $n\geq 1$ ;
$\bullet$ $0$ is a non-degenerate l-parabolicfixedpointfor $f_{\lambda_{n}}$ ;
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$\bullet$ $f_{\lambda_{nm}}$ geometrically converges to $(f_{\lambda_{n}},g_{n})$ as $marrow\infty$ for some Lavaurs map $g_{n}$

such that $g(\omega_{\lambda_{n}})=\alpha_{\lambda_{n}}$ and $g’(\omega_{\lambda_{n}})\neq 0$ (in pamcular, $0$ is no more a parabolic
fixedpointfor $f_{\lambda_{\hslash l\prime}}$ ).

(v) $S_{i}(\lambda_{n,m})arrow S_{f}(\lambda_{n})$ as $marrow\infty$ and $S_{i}(\lambda_{n})arrow S_{f}(\lambda_{0})$ as $narrow\infty$.
Then

$|mult_{f\tau_{0}}(\alpha_{\lambda_{0}})|=|mult_{g_{l_{0}}}(\psi_{\lambda_{0}}(\alpha_{4}))|$ ,

where $S(f_{\lambda})=(g_{\lambda},z_{\lambda})$ and $\psi_{\lambda}$ is a hybrid conjugacy between $f_{\lambda}$ and $g_{\lambda}$ .

4 Rational laminations
We briefly review the notion of rational laminations inffoduced by Thurston [Th] and

deeply studied by Kiwi [Kil]. Let $d\geq 2$ and denote by $m_{d}$ : $R/Zarrow R/Z$ the d-fold covering
map $tarrow\prime dt$. A (d-invariant) rational lamination is an equivalence relation $\lambda$ on $Q/Z$ such
that

(i) $\lambda$ is closed (in $Q/ZxQ/Z$).
(ii) Each $\lambda$-class is finite.
(iii) $\lambda$-classes are pairwise unhnked.
(iv) For a $\lambda$-class $A,$ $m_{d}(A)$ is again a $\lambda$-class.
(v) $m_{d}|_{A}$ : $Aarrow m_{d}(A)$ is consecutive-preserving, i.e., if $(s.t)$ is a component of $R/Z\backslash A$ .

then $(ds,dt)$ is a component of $R/Z\backslash m_{d}(A)$ .
Here we say two sets $A,B\subset R/Z$ are unlinked if $A$ is contained in a component of $R/Z\backslash B$ .

For a polynomial $f\in C_{d}$, let $\lambda(f)$ be the rational lamination of$f$. i.e., $s\sim t$ if the external
rays $R_{f}(s)$ and $R_{f}(t)$ land at the same point. It is easy to see that $\lambda(- f)$ is the rational lamination
in the above sense. Conversely, Kiwi [Kil] proved that for any rational lamination $\lambda$ , there
exists a polynomial $f\in C_{d}$ such that $\lambda=\lambda(f)$ . For a rational lamination $\lambda$ and a polynomial
$f\in C_{d}$ , we say $f$ admits $\lambda$ if $\lambda\subset\lambda(J)$ .

We say two irrational angles $s$ and $t$ are $\lambda$-unlinked if any $\lambda$-classA and $\{s.t\}$ are unlinked,
i.e., $A$ is contained in a component of $R/Z\backslash \{s,t\}$ . We state the basic properties of unlinked
relations here (see [Kil]. See also [Inl] and [In2]).

Lemma 4.1. The $\lambda$-unlinked relation is an equivalence relation. For each $\lambda$-unlinked ckss
$L$ we have thefollowing:

$\bullet$ For each $\lambda$-unlinked class $Lm_{d}(L)$ is again a $\lambda$-unlinked class.
$\bullet$ A $\lambda$-unlinked class $L$ is finite if and only if it is wandering, $i.e.,$ $m_{d}^{n}(L)\neq m_{d}^{m}(L)$ if

$n\neq m$.
$\bullet$ If $\lambda$ is infinite, then $\overline{L}$ is a Cantor set and each component of $R/Z\backslash L$ has the $fom$

$(s,t)$ with $s,t\in Q/Z$ and $s\sim\lambda t$. Furthermore, $\overline{L}/\lambda$ is homeomorphic to $R/Z$ and
$m_{d}$ : $\overline{L}/\lambdaarrow m_{d}(L)/\lambda$ is conjugate to $m_{\delta}$ : $R/Zarrow R/Zfor$ some $\delta=\delta(L)\geq 1$ .

We call a $\lambda$-unlinked clas$sL$ is critical if $\delta(L)\succ 1$ .
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We say a polynomial $f$ is subparabolic if each critical point is either eventually periodic or
attracted to an $amaC\mathfrak{a}ng$ or parabolic periodic point.

Lemma 4.2. Let $f$ be a subparabolic polynomial. Then each infinite $\lambda(f)$-unlinked class $L$

corresponds to some bounded Fatou component $\Omega$, i.e.,

$\overline{L}=\{\theta\in R/Z:R_{f}(\theta)\in\partial\Omega\}$ .
$Funhemo\prime e,$ $m_{d}(L)$ corresponds to $f(\Omega)$ and $\delta(L)$ is equal to the degree of$f$ : $\Omegaarrow f(\Omega)$ .

The lemma follows easily from the fact that the Julia set of $f$ is locally connected in this
case, so it is homeomorphic to $(R/Z)/\lambda(f)$, where $\lambda(f)$ is the real lamination of $f$. Note that
when $J(f)$ is locally connected, then $\lambda(f)$ is simply the landing relation on $R/Z$ (see [Ki2]
for general case).

Definition. We say a rational lamination $\lambda$ is combinatorially renomalizable if there exist
a non-trivial rational sublamination $\lambda’$ , a critical infinite $\lambda’$-unlinked class $L$ and $n\geq 1$ such
that $m_{d}^{n}(L)=L$. We call $(\lambda’,L)$ a combinatorial renomalization of $\lambda$ and the smallest such
$n\geq 1$ is called the period of the renormalization.

We say a combinatorial renormalization $(\lambda’,L)$ is of capture type if there exists a cntical
$\lambda’$-unlmked class $L’$ such that

(i) $L’$ is not in the forward orbit of $L$, i.e., $L’\neq m_{d}^{k}(L)$ for every $k\geq 0$.
(ii) $L’$ is captured by $L$ : There exists some $N>0$ such that $m_{d}^{N}(L’)=L$.
(iii) $\delta(m_{d}^{k}(L’))=1$ for all $0<k<N$ .

We call such a triple $(\lambda’,L,L^{j})$ a capture renonnalization of $f$.
Let $f\in C_{d}$ and $\lambda$ be a rational sublamination $\lambda$ of $\lambda(\sim f)$ . For an infinite $\lambda$-unlinked class

$L$, deflne a compact set $K(f,L)\subset K\wp)$ as follows. By Lemma 4.1, we can write $R/Z\backslash$

$L=U_{k>0}(s_{k}, t_{k})$ for some $s_{k},t_{k}\in Q/Z$ with $s_{I}\sim\lambda(f)t_{k}$ . In particular, the external rays
$R_{f}(s_{k}),R_{f}(t_{k})$ lands at the same point for each $k>0$. Let $U_{k}$ be the component of $C\backslash$

$\overline{(R_{[}(s_{k})UR_{f}(t_{k}))}$ containing $R_{f}(t)$ for $t\in(s_{k},t_{k})$ . Let

$K(J,L)=K(f) \backslash (\bigcup_{k>0}U_{k})$ .

Then we have $K(J.m_{d}(L))=f(K,m_{d}(L))$ and $f$ : $K(f,L)arrow K(f,m_{d}(L))$ is a proper map of
degree $\delta(L)$ . See [In2] for more details.

By Milnor’s thickened puzzle piece argument [Mi, Lemma 1.5], we can relate a combina-
torial renormalization of $\lambda\omega$ with an renormalization of $f$ under some assumption.
Lemma 4.3. Let $f\in C_{d}$ Assume there exists a combinatorial renomalizanon $(\lambda,L)$ of
period $n$ such thatfor each component $(s,t)ofR/Z\backslash L$ the common landing point $xofR_{f}(s)$

$andR_{f}(t)$ is not (pre-)parabolic or $lf$ it is (pre-)parabolic, all the basin whose closure contains
$x$ is contained in $K_{f}(L)$. $n_{en}$ there exists a polynomial-like restriction $f^{n}$ : $U’arrow U$ of $f^{n}$

such that $K\wp;U’,$ $U$) $=K(f,L)$.
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5 Perturbation
5.1 Definition and statements

We want to use Theorem 2.4 and Theorem 3.1 together to show that a straightening map
is discontinuous or not a homeomorphism. To do that, we need to find nice perturbations
(satisfying the assumption of Theorem 3.1) for each periodic point of the polynomial-like
resmction.

Deflnition. We say a polynomial $f$ of degree $d\geq 3$ satisfies (C1) if the following hold;

(i) $0$ is a non-degenerate l-parabolic periodic point of $f$;
(ii) there exists a quadratic-like restriction $f^{N}$ : $V’arrow V$ of $f^{N}$ hybrid equivalent to $z+z^{2}$ ;
(iii) $\omega,$

$\omega’$ are critical points for $f$ such that $\omega\in V’$ , and $f^{N}(\omega’)=\omega$ for some $N>0$.
Furthermore, we say $f$ satisfies (C2) if $f$ satisfies $(i)-(i\ddot{u})$ and

(iv) every other critical point is eventually periodic and its forward orbit does not intersect
$K(f^{N};V’,$ $\eta$ . (In particular, $f$ is subparabolic.)

Definition. We say $f$ satisfies the condition (C3) if $f$ satisfies the condition (C1) and for any
periodic point $\alpha$ of $f^{N}$ : $V’arrow V$, there exist convergent sequences

$f_{nm}arrow f_{n}marrow\inftyarrow fnarrow\infty$

in $C_{d}$ such that the folowing hold; in the following, we denote the continuations of $x=$
$\omega,\omega’,\alpha$ for $f_{n}$ and $f_{nm}$ by $x_{n}$ and $x_{nm}$ .

(i) $0$ is a periodic point of period $N$ for $f_{n}$ and $f_{nm}$ . It is a non-degenerate l-parabolic
periodic point for $f_{n}$ ;

(ii) $f_{n}^{N}(\omega_{n}’)\neq\omega_{n}$ (hence we may assume $f_{n,m}^{N}(\omega_{n,m}’)\neq\omega_{n_{l}n}$);
(iii) the other critical orbit relations of $f$ are preserved for $f_{n.m}$ (hence also for $f_{n}$).

More precisely, for any critical point $c\in Crit(f)$, there exists the continuation
$c_{n,m}\in Crit(f_{n.m})$ for any $n,m$ (i.e., critical points do not bifUrcate for this per-
turbations) such that if $c,c’$ $\in Crit(f)\backslash \{\omega.\omega’\}$ satisfy $f^{k}(c)=f^{t}(c’)$, then
$f_{n’ n}^{k}(c_{n,m})=f_{n,m}’(c_{n_{l^{\hslash}}}’)$.

(iv) $f_{n}^{N}$ : $V_{n}’arrow V_{n}$ and $f_{n.m}^{N}$ : $V_{n,m}^{j}arrow V_{n;n}$ are quadratic-like restrictions near $0$; In
particular, $f_{n}^{N}$ : $V_{n}’arrow V_{n}$ are hybrid equivalent to $z+z^{2}$ ;

(v)
$f_{nm}0$.

geomebically converges to $(f_{n},g_{n})$ as $marrow\infty$ such that $g_{n}(\omega_{n})=a_{n}$ and $g_{n}’(\omega_{n})\neq$

The main difficulty to find such perturbations $f_{n;n}$ is that $f_{nm}$ must be in the connectedness
locus. To do this, we start the following polynomial and construct $f_{n,m}$ combinatorially and
show the convergence. See \S 5.2.

Theorem 5.1. Ifanypolynomial $f$ ofdegree $d\geq 3$ satisfy (C2) then $f$ satisfies (C3) such that
$\lambda(f_{n})=\lambda\omega$ and $f_{n,m}$ admits $\lambda(f)$ for any $n$ and $m$.
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The proof is given in \S 5.2.
We call a polynomial $f$ Misiurewicz if all critical points are preperiodic.

Theorem 5.2. Ifa polynomial $f_{0}$ ofdegree $d\geq 3$ is Misiurewicz, then there exists a polyno-
mial $f$ arbitrarily close to $f_{0}$ satisfying (C2).

We prove this theorem in \S 5.3.
Therefore, we have the following corollary.

CoroUary 5.3. Ifa polynomial $f_{0}$ ofdegree $d\geq 3$ is Misiurewicz, then there exists a polyno-
mial $f$ arbitrarily close to $f_{0}$ satisfying (C3).

5.2 Combinatorial construction
Here we give a proof of Theorem 5.1. We first consider perturbations of a quadratic poly-

nomial $Q(z)=z^{2}+1/4$ (which is affinely conjugate to $z+z^{2}$), and construct $f_{n,m}$ by “tuning”
the given polynomial $f$ and them.

Take a repelling periodic point $\alpha(Q)$ of $Q$ and let $\theta\neq 0$ be the landing angle for $\alpha(Q)$ . Let
$c_{m}$ be the landing point of the extemal ray of angle $\theta/2^{m}$ . Then $c_{m}arrow 1/4$ and the critical point
$0$ is preperiodic for $Q_{m}(z)=z^{2}+c_{m}$ for sufficiently large $m$ . The point $\alpha(Q_{m})=\Psi_{m}(c_{m})=$

$\Psi_{m}$
“ 1 (0) is a landing point for the external ray $R_{Q_{l*}}(\theta)$ , hence it is a repelling periodic point for

$Q_{m}$ and $\alpha(Q_{m})arrow\alpha(Q)$ as $marrow\infty$ . Furthermore, $\Psi_{m}^{+1}$ converges to some $g$ on the interior
of $K(Q)$ (the parabolic basin) such that $g(O)=\alpha(Q)$, i.e., $Q_{m}arrow^{gcom}(Q,g)$ and it is easy to see
that $g’(0)\neq 0$ . Let $\lambda_{m}=\lambda_{Q_{n}}$ be the rational lamination for $Q_{m}$ . For later use, we also fix a
sequence $\theta_{n}\in Q/Z$ of periodic angles by the doubling map $m_{2}$ \ddagger $t\ovalbox{\tt\small REJECT}\mapsto\rangle$ $2t$ such that $\theta_{n}arrow\theta$. Let
$\alpha_{n}(Q_{m})$ be the landing point of the extemal ray $R_{Q_{n}}(\theta_{n})$ . Since $Q_{m}$ is subhyperbolic, $J(Q_{m})$ is
locally connected and hence $a_{n}(Q_{m})arrow\alpha(Q_{m})$ as $narrow\infty$ .

We construct arational lamination $\lambda_{n,m}$ by combinatorial mning’ [In2], which has acertain
desired properties for the rational lamination of $f_{n.m}$ . Namely, we construct a lamination
$\lambda_{nm}\supset\lambda(f)$ such that the following hold;

$\bullet$ let $L$ be the $\lambda$-unlinked class such that $K(f,L)$ is the closure of the immediate parabolic
basin of $0$, and let $\phi:\overline{L}/\lambdaarrow S^{1}$ be a homeomorphism such that $\phi(m_{d}^{n}(t))=m_{2}(\phi(t))$ .
Then $\phi.(\lambda_{n,m}|_{\overline{L}})=\lambda(Q_{m})$ .

$\bullet$ let $L’$ be the $\lambda$-unlinked class such that the interior of $K(f,L)$ contains $\omega’$ , and let
$\phi’$ : $\overline{L’}/\lambdaarrow S^{1}$ be a homeomorphism such that $\phi(m_{d}^{N}(t))=m_{2}(\phi’(t))$ . (Note that
$m_{d}^{N}(L’)=L$ and $m_{d}^{N}$ : $L’arrow L$ is 2-to-l.) Then the equivalence relation $\phi’.(\lambda_{nm}|_{\overline{L}},)$ is a
“lift“ of $\lambda(Q_{m})$ by $m_{2}$ such that there exists a unique critical equivalence class $A$ (i.e.,
$m_{d}|_{A}$ is not one-to-one) with $\# A=2$ and $m_{2}(A)=(\theta_{n})$ .

Then by the theorem of Kiwi [Kil], there exists a postcritically finite polynomial $f_{\hslash ln}\in C_{d}$

such that $\lambda(f_{n})=\lambda_{nm}$ . Then it has a polynomial-like restriction $f_{nm}^{n}$ : $V_{nm}’arrow V_{n,m}$ hybrid
equivalent to $Q_{m}$ by Lemma 4.3. Let $\omega_{nm}$ and $\omega_{nm}’$ be the critical points which correspond
to the critical $\lambda_{nm}$ -class intersecting $\overline{L}\bm{t}d\overline{L’}$ respectively. Then $\alpha(f_{n.m})=f_{nm}^{n}(\omega_{nm})$ and
$\beta_{nm}=f_{nm}^{N+\hslash}(\omega_{nm})$ are $repe\mathbb{I}ing$ periodic point corresponding to $\alpha(Q_{m})$ and $\alpha_{n}(Q_{m})$ by a
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hybrid conjugacy.
By taking a subsequence, we may assume that $f_{nm}-marrow\infty f_{n}$ and $f_{n}arrow narrow\infty$ ; for some $f_{n}$

and $\tilde{f}$. Let us denote $\omega_{n}=\lim_{marrow\infty}\omega_{n,m},\tilde{\omega}=\lim_{marrow\infty}\omega_{n},$ $\alpha\zeta f_{n}$) $= \lim_{m\neg\infty}\alpha(\sim f_{nm})$ and so
on. Then $f_{n.m}arrow^{g\infty m}(f_{n},g_{n})$ with $g_{n}(\omega_{n})=\alpha(f_{n})$ and $g_{n}(f_{n}^{N}(\omega_{n}’))=\beta_{n}$ are repelling periodic

$marrow\infty$

points with $\beta_{n}-\alpha(f_{n})arrow 0$ as $narrow\infty$ . This implies that $\beta(\tilde{\omega}’)-\tilde{\omega}=\lim_{narrow\infty}f_{n}^{N}(\omega_{n}’)-\omega_{n}=$

$0$ . Thus, $f$ and $\tilde{f}$ are subparabolic maps with the same critical relation and combinatorics.
Furthermore, since all critical points of $f$ other than $\omega$ and $\omega’$ are eventually periodic and
$f^{N}(\omega’)=\omega,$ $f$ is combinatorially rigid, so $f$ must equal to $f$. This proves the Theorem.

5.3 Misiurewicz bifurcations
The proof of Theorem 5.2 is based on a classical normality argument. We first perturb it to

make a cnitical relation between critical points $\omega$ and $\omega’$ and make a quadratic-like restriction
by use of the result ofMcMulen [Mc]. Before the proof, we $in\alpha Muce$ the notion ofpassive
and active critical points: For a family $(f_{\lambda},c_{\lambda})_{\lambda\epsilon A}$ of polynomials with marked critical points,
we say $c_{\lambda}$ is passive at $\lambda_{0}\in\Lambda$ if { $\lambda\ovalbox{\tt\small REJECT}\mapsto f_{\lambda}^{n}(c_{\lambda});n\geq 0)$ forms a normal family, and $c_{\lambda}$ is active
otherwise.

In the following, we assume that all of the critical points of $f_{0}$ are simple just for simplicity.
Choose critical points $\omega$ and $\omega’$ of $f_{0}$ so that no other critical point lies in the backward orbits
of them. Let us con$s$ider a family

$(f_{\lambda},\omega_{\lambda},\omega_{\lambda}’,c_{1,\lambda}, \ldots,c_{d-3,\lambda})$

of polynomials with all critical points marked. We consider a subfamily where all the critical
orbit relations of $f_{0}$ except on $\omega$ and $\omega’$ are preserved. Then since $f_{0}$ is Misiurewicz, $f_{0}$ is in
the bifUrcation locus of the family and $c_{j,\lambda}$ is passive at $0$ . This implies that $\{\lambda\vdash\rangle f_{\lambda}^{n}(\omega_{\lambda}’)\}_{n>0}$

is not a normal fammily because the family is two-dimensional. Therefore, there exists some
$N>0$ and $\lambda_{1}$ arbitranily close to $0$ such that

$f_{\lambda_{1}}^{N}(\omega_{\lambda_{1}}’)=\omega_{\lambda_{1}}$ . (1)

Now consider a $fi_{1}rther$ subfamily with the relation (1). Then it is one-parameter family and
{ $\lambda\ovalbox{\tt\small REJECT}\mapsto f_{\lambda}^{n}(\omega_{\lambda}))_{n>0}$ is not a normal family. Therefore, by [Mc], we can find $\lambda_{2}$ arbitrarily close
to $\lambda_{1}$ such that $\omega_{\lambda_{2}}$ lies in the immediate basin of a non-degenerate l-parabolic periodic point.
Therefore, we have proved Theorem 5.2.

6 Discontinuity
In this section, we apply all the results above to a family of renormalizable polynomials to

show straightening maps are discontinuous, or at least not homeomorphic. Note that all the
results in this section are local properties, so $\Lambda$ should be understood as a small neighborhood
of a given parameter (which we denote by $0$ in the following) in the original parameter space.
Theorem 6.1. Let $f=$ $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda})_{\lambda\epsilon\Lambda}$ be an analyticfamily ofpolynomial-like mappings
ofdegree $d\geq 3$ . Assume
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$\bullet$ $f_{0}$ is a restriction ofsome polynomial ofdegree $d’\geq d$;
$\bullet$ $g_{0}=S_{f}(- f_{0})$ satisfies (C3);
$\bullet$ the straightening map $S_{f}$ : $C_{i}arrow S_{f}(C_{f})\subset C_{d}$ is a homeomorphism into its image,

which is a neighborhood of$g_{0}$ in $C_{d}$ .
Then $f_{0}$ and So are afnely conjugate.

It is an easy consequence of Theorem 2.4 and Theorem 3.1.
Furthermore, by Corolary 5.3, we have the foUowing.

Corolary 6.2. Let $d<d’$ and let {$f_{\lambda})_{\lambda\epsilon\Lambda}\subset Poly_{d}$ be a neighborhood of$f_{0}\in C_{d}$ . Assume
$\bullet$ for each $\lambda\in\Lambda,$ $f_{\lambda}$ has a polynomial-like restriction $f_{\lambda}$ : $U_{\lambda}’arrow U_{\lambda}$ ofdegree $d$;
$\bullet$ $f_{0}$ is Misiurewicz.

Then the straightening map $S_{i}$ : $C_{i}arrow S_{f}(C_{t})\subset C_{d}$ is not a homeomorphism into its image,
or the image does notform a neighborhood of$g_{0}=S(f_{0})$.

Let us state another version of discontinuity of $s\theta aigtening$ maps:
Theorem 6.3. Let $d<d’$ and let $\{f_{\lambda}\}_{\lambda\epsilon\Lambda}\subset Poly_{d}$ be a neighborhood of$f_{0}\in C_{d}$. Assume

$\bullet$ for each $\lambda.\in\Lambda.f_{\lambda}$ has a polynomial-like restriction $f_{\lambda}$ : $U_{\lambda}’arrow U_{\lambda}$ ofdegree $d$. Let $K_{\lambda}$

be thefilled Julia set ofthe polynomial-like restriction;
$\bullet$ $f_{0}$ sansff the condition (C2) such that thefilled Julia set the quadratic-like restriction

hybrid equivalent to $z+f$ is contained in $K_{0}$ ; Let $\omega_{\lambda}’$ be the analytic continuation of
$\omega$ and $\omega’$ in the definition of(C3);

$\bullet$ $f=Cf_{\lambda}$ : $U_{\lambda}’arrow U_{\lambda}.f_{\lambda}^{N}(\omega_{\lambda}’))$ is an analyticfamily ofpolynomial-like mappings with a
marked criticalpoint.

T&n the straightening map $S_{f}$ : $C\iotaarrow S(C_{i})\subset CK_{d}$ is not continuous.

This is also an easy consequence of Theorem 2.4, Thcorem 3.1 and Theorem 5.1.
We can sinilarly prove the following:

Example. Let us consider capture renormalizations of cubic polynomials. The parameter set
of renormahizable polynomials for a given combinatorics of capture type can be considered
as the connectedness locus of an analytic family of polynomial-like mappings with marked
point, which is given by the forward orbit of the captured critical point. In [In2], we proved
that for a given combinatorics of a primitive renormalization of capture type for cubic polyno-
mials, the straightening map is bijective. Therefore, the straightening map is not continuous
in any neighborhood of any Misiurewicz map.

Note that in the case of disjoint $renor\iota nahzations$ of cubic polynomials, straightening maps
are always continuous because they only consists of straightening maps for quadratic-like
families.
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