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Discontinuity of straightening maps

Hiroyuki Inou*
December 10, 2007

1 Introduction

The straightening theorem for polynomial-like mappings by Douady and Hubbard [DH]
naturally induces a map between a family of renormalizable polynomials and the connected-
ness locus of polynomials, which we call the straightening map. It is known such a map is
always continuous if it is of degree two and this implies the self-similarity of the boundary of
the Mandelbrot set. However, Douady and Hubbard also showed that straightening maps for
analytic families of polynomial-like mappings of degree greater than two are not continuous
in general. In [In3], we gave a much more detailed description how a straightening map be-
comes discontinuous and gave an example of a discontinuous straightening map for a family
of polynomial-like restrictions of polynomials (of greater degree).

Here we show that it is not continuous or at least not a homeomorphism in general and
show how generally such a discontinuity occurs. To see this, we study parabolic and Mis-
iurewicz bifurcation to find perturbations which satisfies the assumption of the theorem in
[In3] and use Prado-Przytycki-Urbanski theorem [Pr] to show that if the straightening map is
continuous (or homeomorphism), then we have local analytic conjugacy between a renormal-
izable polynomial and the straightening of the renormalization. However, we also show that
such a local analytic conjugacy implies global correspondence [In4], which is impossible for
renormalizable polynomials.

2 Polynomial-like mappings

A polynomial-like mapping is a proper holomorphic map f : U’ — U such that U’ and U
are topological disks in C and U’ &€ U. We denote the filled Julia setby K(f) = K(f;U’,U) =
Nnzo f*(U) and the Julia set by J(f) = J(f; U’, U) = 9K({).

For a periodic point x € C of period » for a polynomial-like map (or a polynomial) f, let
us denote its multiplier by mult,(x), i.e.,

mult;(x) = (/") (%).
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Definition. Let f: U’ — U and g : V' — V are polynomial-like mappings and ¢ : U — V
be a hybrid conjugacy. We say that ¢ preserves multipliers if for any periodic point x for f,
we have

| mult;(x)] = | multy(e(x))]-

The following theorem is proved by Prado [Pr] for “off-critically hyperbolic” polynomial-
like mappings, and extended to tame rational maps by Przytycki and Urbanski [PU].

Theorem 2.1 (Prado-Przytycki-Urbanski)., Let f : U’ —» Uandg : V' — V are tame
polynomial-like mappings hybrid equivalent. If there exists a hybrid conjugacy between f
and g preserving multipliers, then they are analytically conjugate on neighborhoods of the
filled Julia sets.

We do not give the precise definition of tame polynomial-like mappings here, because we
need only the fact that polynomial-like mappings hybrid equivalent to z + z2 are tame, which
is guaranteed by the following. (See [Ur1], [Ur2] and [PU] for details on tame maps.)

Theorem 2.2. Every polynomial-like mapping with no recurrent critical points in its Julia
set (abbr. NCP) is tame.

Furthermore, when a given polynomial-like mappings are restrictions of rational maps, we
can say more (see [In4] for more details).

Theorem 2.3. Let fi and f, be two rational maps. Assume they have polynomial-like restric-
tions f; : U} — U,, i = 1,2 analytically conjugate. Then there exist rational maps g, ¢, and
@2 such that ¢; o g = f; o ¢; and g has a polynomial-like restriction g : V' — V analytically
conjugate to f; : U] — U,. In particular, f| and f, have the same degree.

Furthermore, if fi and f, are polynomials, then g, ¢, and ¢, are also polynomials.

Outline of proof. By shrinking U; if necessary, we may assume that there exists an analytic
conjugacy ¢ : U; — U, between f; and f,. Let [y = ((z, ¢(2)); z € U3} € €2 be the graph of
¢. Define F : €2 — ¢2 by F(z1,22) = (fi(z1), /2(z2)) and let I, = F*(Tp) for n > 1. Then it
is easy to see that I', € I',;. Therefore, I' = | J,»o I'x is a connected invariant set under F.

Furthermore, we can “desingularize” I'; namely, there exists a Riemann surface X and
holomorphic maps g: X - X and ® : X — C? such that ®(X) =T, F o ® = ® o g, and there
exists an open set {7 such that ®|y : U — I is a conformal isomorphism and g : J’ — U is
a polynomial-like map analytically conjugate to f; : U; — U; by m; o ®, where 7(z1,22) = %
be the natural projection and U’ = (, o ®lp)~!(U?).

Since g has a chaotic dynamics (e.g., g has a repelling periodic point), X cannot be hyper-
bolic. Therefore X is isomorphic to either €, C, C* = C \ {0} or a torus (and we can show
that the case X is a torus cannot happen). Since the degree of F is finite, the degree of g
is also finite, thus g is a rational map. It is not difficult to show that ¢; = m; o ® is also a
rational map. (It is trivial when X = €. For other cases, see, e.g., [BE]. Note that ¢; can be
transcendental when f; : U] — U; is a polynomial-like mappings of degree one, i.e., U] and
U; are neighborhoods of a repelling fixed point and ¢; is a linearizing coordinate forit) O

Definition. We say two polynomials f; and f, are polynomially semiconjugate up to finite
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cover if the conclusion of Theorem 2.3 holds.
Combining the theorems above, we have the following.

Theorem 2.4. Let f, and f, be polynomials. Assume they have polynomial-like restrictions
fi : U} = U, i = 1,2 which are hybrid conjugate via a conjugacy preserving multipliers.
Then f, and f, are polynomially semiconjugate up to finite cover.

3 Analytic families of polynomial-like mappings and
straightening maps

In [In3], we have proved a theorem which relates continuity of straightening maps and
multipliers of periodic points. Before stating the theorem, we introduce some notations and
definitions. Let Poly, be the set of affine conjugacy classes of polynomials of degree d(> 2)
and C; = {f € Poly,; K(f) is connected}. By the straightening theorem [DH], for an analytic
family of polynomial-like mappings f = (fy : U} = Ua).ea) (in the sense of [DH]), we can
define the straightening map St : C¢ — C4 as follows Let Cr = {1 € A; K(f,) is connected}
and for A € Cy, there exists a unique g, € C; hybrid equivalent to f;. Let Sg(1) = g;.

We say f = (fy : U} = U, x2)aen is an analytic family of polynomial-like mappings with
a marked point if (f) : U} = U))aea is an analytic family of polynomial-like mappings, and
x:A—>Cisa holomorphic map such that x, € U,. Also for such a family f of degree d > 2,
let

CK = {2 € A; K(f) is connected and x, € K(f;)}

and we can similarly define the straightening map
St : CKe — CK,

as follows. Let CK; = {(f,2); f: polynomial of degree d, z € K(f)}/~, where (f,2) ~ (g, w)
if there exists an affine map A such that Ao g = f o A and A(w) = z. Foreach 1 € CKy, fi
is hybrid equivalent to some polynomial g, of degree d with a hybrid conjugacy ¢,. Let us
define Sp(2) = (g2, Ya(x1)) € CKy, then it is well-defined.

Now let us state the theorem:

Theorem 3.1. Let f = (f; : Uy, = Ui, x2)aen be an analytic family of polynomial-like
mappings of degree d 2 2 with a marked point. Assume

(i) for any A € A, O lies in U and it is a fixed point for f;
(ii) @, is a marked repelling periodic point and w, is a marked critical point for f,;
(iii) for A = Ag, O is a non-degenerate 1-parabolic fixed point, w,, lies in the basin of O for
fﬂo and X3 = Wiy

(iv) there exist sequences A, = Ag and Apm — A, such that
® AAnm € CKs;
® w, #xyforn21;
e 0 is a non-degenerate 1-parabolic fixed point for f,_;
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¢ fi,. geometrically converges to (f,,,8») as m — o for some Lavaurs map gn
such that g(w,,) = a,, and g'(w,,) # O (in particular, 0 is no more a parabolic
Jfixed point for f, ).
(V) St(Anm) = St(A,) as m — oo and Sg(4,) = Se(Ao) as n — oo

Then

where S(f)) = (g4, 22) and Y, is a hybrid conjugacy between f) and g..

4 Rational laminations

We briefly review the notion of rational laminations introduced by Thurston [Th] and
deeply studied by Kiwi [Kil]. Letd > 2 and denote by m, : R/Z — R/Z the d-fold covering
map ¢t — dt. A (d-invariant) rational lamination is an equivalence relation A on Q/Z such
that

(i) Aisclosed (in Q/Z x Q/Z).
(ii) Each A-class is finite.
(iii) A-classes are pairwise unlinked.
(iv) For a A-class A, my(A) is again a A-class.
(V) m4la : A = my(A) is consecutive-preserving, i.e., if (s, #) is a component of R/Z \ A,
then (ds, dt) is a component of R/Z \ my(A).

Here we say two sets A, B c R/Z are unlinked if A is contained in a component of R/Z \ B.

For a polynomial f € Cy, let A(f) be the rational lamination of f, i.e., s ~ t if the external
rays Ry(s) and R¢(¢) land at the same point. It is easy to see that A(f) is the rational lamination
in the above sense. Conversely, Kiwi [Kil] proved that for any rational lamination A, there
exists a polynomial f € Cy such that 2 = A(f). For a rational lamination A and a polynomial
f € Cq, we say f admits A if A C A(f).

We say two irrational angles s and ¢ are A-unlinked if any A-class A and (s, } are unlinked,
i.e., A is contained in a component of R/Z \ {s,t}. We state the basic properties of unlinked
relations here (see [Kil]. See also [In1] and [In2]).

Lemma 4.1. The A-unlinked relation is an equivalence relation. For each A-unlinked class
L, we have the following:

o For each A-unlinked class L, my(L) is 'again a A-unlinked class.

o A A-unlinked class L is finite if and only if it is wandering, i.e., my(L) # myj(L) if
n#m.

o If A is infinite, then L is a Cantor set and each component of R/Z \ L has the form
(s,0) _rfith s, t e_Q/Z and s ~, t. Furthermore, L/ is homeomorphic to R/Z and
mg : L/A = my(L)/2 is conjugate to ms : R/Z — R/Z for some 6 = 6(L) 2 1.

We call a A-unlinked class L is critical if 6(L) > 1.
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We say a polynomial f is subparabolic if each critical point is either eventually periodic or
attracted to an attracting or parabolic periodic point.

Lemma 4.2. Let f be a subparabolic polynomial, Then each infinite A(f)-unlinked class L
corresponds to some bounded Fatou component , i.e.,

L = {0 € R/Z; Ry(6) € Q).

Furthermore, my(L) corresponds to f(Q) and 6(L) is equal to the degree of f : Q — f(Q).

The lemma follows easily from the fact that the Julia set of f is locally connected in this
case, so it is homeomorphic to (R/Z)/A(f), where ﬁ(f) is the real lamination of f. Note that
when J(f) is locally connected, then A(f) is simply the landing relation on R/Z (see [Ki2]
for general case).

Definition. We say a rational lamination A is combinatorially renormalizable if there exist
a non-trivial rational sublamination A’, a critical infinite A’-unlinked class L and n > 1 such
that my(L) = L. We call (X', L) a combinatorial renormalization of A and the smallest such
n 2 1 is called the period of the renormalization. ‘

We say a combinatorial renormalization (', L) is of capture type if there exists a critical
A’-unlinked class L’ such that

(@ L’ is not in the forward orbit of L, i.e., L’ # mk(L) for every k > 0.
(ii) L’ is captured by L: There exists some N > O such that mg (L) =L.
(iii) 6(m’f,(L’)) =1forall0<k<N.

We call such a triple (', L, L") a capture renormalization of f.

Let f € C; and A be a rational sublamination A of A(f). For an infinite A-unlinked class
L, define a compact set K(f,L) C K(f) as follows. By Lemma 4.1, we can write R/Z \
L = Ugso(sk, i) for some sg, #r € Q/Z with sg ~up) #. In particular, the external rays
Ry(s), Re(#) lands at the same point for each k > 0. Let U, be the component of C \
(R r(sx) UR f(tk)) containing R f(t) for t € (sg, ). Let

K(f.L) = K(H)\ [U Uk].

k>0

Then we have K(f, mq(L)) = f(K,m4(L)) and f : K(f,L) — K(f,m4(L)) is a proper map of
degree 6(L). See [In2] for more details.

By Milnor’s thickened puzzle piece argument [Mi, Lemma 1.5], we can relate a combina-
torial renormalization of A(f) with an renormalization of f under some assumption.

Lemma 4.3. Let f € C;. Assume there exists a combinatorial renormalization A, L) of
period n such that for each component (s, t) of R/Z \ L, the common landing point x of R¢(s)
and R¢(t) is not (pre-)parabolic or if it is (pre-)parabolic, all the basin whose closure contains
x is contained in Ky(L). Then there exists a polynomial-like restriction f* : U’ — U of f*
such that K(f*; U’,U) = K(f, L).
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5 Perturbation

5.1 Definition and statements

We want to use Theorem 2.4 and Theorem 3.1 together to show that a straightening map
is discontinuous or not a homeomorphism. To do that, we need to find nice perturbations
(satisfying the assumption of Theorem 3.1) for each periodic point of the polynomial-like
restriction.

Definition. We say a polynomial f of degree d > 3 satisfies (C1) if the following hold;

(i) O0is a non-degenerate 1-parabolic periodic point of f;
(ii) there exists a quadratic-like restriction f¥ : V’ — V of f" hybrid equivalent to z + z;
(iii) w, ' are critical points for f such that w € V', and f¥(w’) = w for some N > 0.

Furthermore, we say f satisfies (C2) if f satisfies (i)—(iii) and

(iv) every other critical point is eventually periodic and its forward orbit does not intersect
K(f¥; V', V). (In particular, f is subparabolic.)

Definition. We say f satisfies the condition (C3) if f satisfies the condition (C1) and for any
periodic point @ of f¥ : V/ - V, there exist convergent sequences

Jam = fo = f
in Cy4 such that the following hold; in the following, we denote the continuations of x =
w,w’,a for f, and f,,, by x, and x, .

(i) O is a periodic point of period N for f, and f,. It is a non-degenerate 1-parabolic
periodic point for f,;

(i) f¥(w)) # w, (hence we may assume f () ,,) # Wnm);

(iii) the other critical orbit relations of f are preserved for f,, (hence also for f).
More precisely, for any critical point ¢ € Crit(f), there exists the continuation
cam € Crit(f,m) for any n,m (i.e., critical points do not bifurcate for this per-
turbations) such that if c,c’ € Crit(f) \ {w,w’} satisfy f¥(c) = f¥(c¢’), then
f;tm(cn,m) = f,,":,,,(c:,',,,)

@) fY : V., - Vyand fN, : V., — V,,, are quadratic-like restrictions near 0; In
particular, f¥ : V! — V, are hybrid equivalent to z + 22;

(V) fam geometrically converges to (fy, g») as m — oo such that g,(w,) = @, and g;(w,) #
0.

The main difficulty to find such perturbations f;, », is that f, , must be in the connectedness
locus. To do this, we start the following polynomial and construct f;,,, combinatorially and
show the convergence. See § 5.2.

Theorem 5.1. If any polynomial f of degree d > 3 satisfy (C2) then f satisfies (C3) such that
A(fn) = A(f) and fo m admits A(f) for any n and m.
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The proof is given in § 5.2.
We call a polynomial f Misiurewicz if all critical points are preperiodic.

Theorem 5.2. If a polynomial fo of degree d > 3 is Misiurewicz, then there exists a polyno-
mial f arbitrarily close to fy satisfying (C2).

We prove this theorem in § 5.3.
Therefore, we have the following corollary.

Corollary 5.3. If a polynomial fy of degree d > 3 is Misiurewicz, then there exists a polyno-
mial f arbitrarily close to fy satisfying (C3).

5.2 Combinatorial construction

Here we give a proof of Theorem 5.1. We first consider perturbations of a quadratic poly-
nomial Q(z) = z? + 1/4 (which is affinely conjugate to z + z2), and construct f, m by “tuning”
the given polynomial f and them.

Take a repelling periodic point @(Q) of Q and let 8 # 0 be the landing angle for a(Q). Let
cm be the landing point of the external ray of angle 6/2™. Then c,, — 1/4 and the critical point
0 is preperiodic for Qm(z) = 2% + ¢ for sufficiently large m. The point &(Qn) = Q™(cn) =
Qr+1(0) is a landing point for the external ray Ry, (6), hence it is a repelling periodic point for
Qm and &(Qn) — a(Q) as m — oco. Furthermore, Q™*! converges to some g on the interior

of K(Q) (the parabolic basin) such that g(0) = a(Q), i.e., Om —> (Q, g) and it is easy to see
that g’(0) # 0. Let 4, = Ag, be the rational lamination for Q,,. For later use, we also fix a
sequence 6, € Q/Z of periodic angles by the doubling map m; : t — 2t such that 4, — 6. Let
@n(Qm) be the landing point of the external ray Rg_(6,). Since Qy, is subhyperbolic, J(Q,,) is
locally connected and hence @,(Qn) — @(Qn) as n = oo,

We construct a rational lamination 4,,, by “combinatorial tuning” [In2], which has a certain
desired properties for the rational lamination of f;,,,. Namely, we construct a lamination
Anm O A(f) such that the following hold;

e let L be the A-unlinked class such that K(f, L) is the closure of the immediate parabolic
basin of 0, and let ¢ : L/A— S'bea homeomorphism such that ¢(mf}(2)) = ma(#(2)).
Then ¢u(Apmlp) = AQm).

e let L’ be the A-unlinked class such that the interior of K(f,L) contains w’, and let
¢’ : L’/A — S! be a homeomorphism such that ¢(m () = my(¢'()). (Note that
mY(L’y = Land m) : L’ — L is 2-to-1.) Then the equivalence relation ¢/,(,, mlz?) is a
“lift” of A(Qm) by m; such that there exists a unique critical equivalence class A (i.e.,
mgl4 is not one-to-one) with #A = 2 and my(A) = {6,}.

Then by the theorem of Kiwi [Kil], there exists a postcritically finite polynomial f,,, € Cs
such that A(f,n) = Anm. Then it has a polynomial-like restriction f;,, : V;,, = V,m hybrid
equivalent to Q,, by Lemma 4.3. Let w,» and w;, ,, be the critical points which correspond
to the critical A, ,,-class intersecting L and L’ respectively. Then a(fum) = fym(@Wnm) and

N+n

Bam = fam (wnm) are repelling periodic point corresponding to a(Qn,) and a,(Qm) by a
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hybrid conjugacy.
By taking a subsequence, we may assume that fon == fn and f, = f for some f;,
and f. Let us denote w, = liMpy—o0 Wym, @ = liMyyoo Wy, &(fy) = liMp—e0 @(frm) and so

on. Then fom 7> (fr &) With gn(wn) = a(fs) and gu(f3(w})) = By are repelling periodic

points with 8, — @(f,) = 0 as n — oo, This implies that f¥(&") — & = limy—yeo f¥(W),) - w, =
0. Thus, f and f are subparabolic maps with the same critical relation and combinatorics.
Furthermore, since all critical points of f other than w and «’ are eventually periodic and
f¥(w’) = w, f is combinatorially rigid, so f must equal to f. This proves the Theorem.

5.3 Misiurewicz bifurcations

The proof of Theorem 5.2 is based on a classical normality argument. We first perturb it to
make a critical relation between critical points w and w’ and make a quadratic-like restriction
by use of the result of McMullen [Mc]. Before the proof, we introduce the notion of passive
and active critical points: For a family (f3, c1)ea of polynomials with marked critical points,
we say c, is passive at A9 € A if {A — f7(ca); n 2 0} forms a normal family, and c, is active
otherwise.

In the following, we assume that all of the critical points of f; are simple just for simplicity.
Choose critical points w and w’ of fp so that no other critical point lies in the backward orbits
of them. Let us consider a family

(.f,b_w,b 0):1, ClLAs -+ cd—3,/1)

of polynomials with all critical points marked. We consider a subfamily where all the critical
orbit relations of f except on w and «’ are preserved. Then since f is Misiurewicz, fj is in
the bifurcation locus of the family and c;, is passive at 0. This implies that {2 = f}(w)}n>0
is not a normal family because the family is two-dimensional. Therefore, there exists some
N > 0 and A, arbitrarily close to 0 such that

f@),) = wy. (1)

Now consider a further subfamily with the relation (1). Then it is one-parameter family and
{2 = fl(wa)}n>o is not a normal family. Therefore, by [Mc], we can find A, arbitrarily close
to 4, such that w,, lies in the immediate basin of a non-degenerate 1-parabolic periodic point.
Therefore, we have proved Theorem 5.2.

6 Discontinuity

In this section, we apply all the results above to a family of renormalizable polynomials to
show straightening maps are discontinuous, or at least not homeomorphic. Note that all the
results in this section are local properties, so A should be understood as a small neighborhood
of a given parameter (which we denote by 0 in the following) in the original parameter space.

Theorem 6.1. Letf = (f; : U} — Ua)aea be an analytic family of polynomial-like mappings
of degree d > 3. Assume
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® fo is a restriction of some polynomial of degree d’ 2 d,

* 8o = St(fo) satisfies (C3);

o the straightening map Sy : Ct — Sf(Ct) C C4 is a homeomorphism into its image,
which is a neighborhood of g¢ in Cy. ' '

Then fy and gg are affinely conjugate.

It is an easy consequence of Theorem 2.4 and Theorem 3.1.
Furthermore, by Corollary 5.3, we have the following.

Corollary 6.2. Letd < d’ and let { fa}aer C Poly, be a neighborhood of f € Cy4. Assume

e for each A € A, f, has a polynomial-like restriction f) : Uy — U, of degree d,
o fo is Misiurewicz.

Then the straightening map Sy : Ct — Sf(Ct) € Cq is not a homeomorphism into its image,
or the image does not form a neighborhood of go = S(f).

Let us state another version of discontinuity of straightening maps:
Theorem 6.3. Letd < d’ and let {f3}ea C Poly, be a neighborhood of fy € C4. Assume

e for each A € A, f, has a polynomial-like restriction f; : U} — U, of degree d. Let K,
be the filled Julia set of the polynomial-like restriction;

e fo satisfy the condition (C2) such that the filled Julia set the quadratic-like restriction
hybrid equivalent to z + 22 is contained in Ko; Let w), be the analytic continuation of
w and &' in the definition of (C3);

o £ =(fy: U} > Uy, f¥(w))) is an analytic family of polynomial-like mappings with a
marked critical point.

Then the straightening map S¢ : Ct — S(Ct) ¢ CK 4 is not continuous.

This is also an easy consequence of Theorem 2.4, Theorem 3.1 and Theorem 5.1.
We can similarly prove the following:

Example. Let us consider capture renormalizations of cubic polynomials. The parameter set
of renormalizable polynomials for a given combinatorics of capture type can be considered
as the connectedness locus of an analytic family of polynomial-like mappings with marked
point, which is given by the forward orbit of the captured critical point. In [In2], we proved
that for a given combinatorics of a primitive renormalization of capture type for cubic polyno-
mials, the straightening map is bijective. Therefore, the straightening map is not continuous
in any neighborhood of any Misiurewicz map.

Note that in the case of disjoint renormalizations of cubic polynomials, straightening maps
are always continuous because they only consists of straightening maps for quadratic-like
families.
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