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1 Introduction

In the group theory, there exist two notions for each inclusion of groups H C G
—the normality and the commensurability. We say that H is normal in G if gH gt
coincides with H for each g € G, and H is commensurable in G if the index [H :
H N gHg™] is finite for each g € G.

In this note, we apply these notions to ergodic discrete measured equivalence
relations with corresponding von Neumann algebras. '

The notion of the normality for discrete measured equivalence relations is intro-
duced in [6]. But it was unknown to characterize this property in terms of operator
algebras. So, as a characterization of the normality, we will give a definition of
the normalizing groupoid for each inclusion of von Neumann algebras. Namely, we
will show that, for each inclusion of ergodic discrete measured equivalence relations
S C R, S is normal in R if the corresponding factor W*(R) is generated by the
normalizing groupoid of the subfactor W*(S).

Moreover, we shall give a notion of the commensurability for each inclusion of
ergodic discrete measured equivalence relations. We will show that the commensu-
rability characterizes the discreteness of the corresponding inclusion of factors.

This note is a brief survey of [4] with some new examples. '



13

2 Preparation

In this section, we summarize basic facts about measured groupoids and von Neu-
mann algebras associated to them. Further details regarding these objects can be
found in (3], [5], [6], 8]
We assume that all von Neumann algebras in this note have separable preduals,
and
(X, p) : standard Borel space,
R : discrete measured equivalence relation on (X, u),
v : left counting measure on R,
w : normalized 2-cocycle on R,
R(z) ={y€X : (z,y) €R},
[R]+ := {¢ : bimeasurable nonsingular transformations
from Dom(¢) to Im(i) such that o(z) is in R(z) for a.e. z in X},
I(¢) :=={(z,¢(z)) : € Dom(p)} (p € [R].).

Definition 1. (1) We define a von Neumann algebra W*(R,w) and a von Neumann
subalgebra W*(X) which act on L?(R,v) by the following:

W*(R,w) := {L“(f) : f is a left finite function on R}”,

WH(X) = {L°(d) : d € L*(X, W)}, |
where we regard L®(X, u) as functions on the diagonal of R, and L¥(f) is defined
by

{L()E}(=,2) =D _ f(z, v)EW, 2wz, 9, 2).

y~z
(2) Let A be a von Neumann algebra and D be a subalgebra of A. We call D is a
Cartan subalgebra of A if D satisfies the following:

(i) D is maximal abelian in A,

(ii) D is regular in A, i.e., the normalizer N4 (D) generates A, where
N4(D) :={u € A : u is unitary and uDu* = D},

(iii) there exists a faithful normal conditional expectation Ep from A onto D.

It is known that, for each such a pair (D C A), there exists a discrete mea-
sured equivalence relation R with a 2-cocycle w such that (D C A) = (W*(X) C
W*(R,w)) ([5, Theorem 1]).
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2.1 Borel 1-cocycles with coactions

Let R be a discrete measured equivalence relation. A Borel map ¢ from R to a
locally compact group K is called a 1-cocycle if ¢ satisfies the following equations
up to null sets:

c(z,y)e(y, 2) = c(z, 2), c(z,z)=1k.

It is known that there exists a bijective correspondence between the set of Borel

1-cocycles from R to a locally compact group K and the set of coactions of K on
W*(R,w) which fix each element in W*(X) ([3, Theorem 5.8]):

c:R—K— ac(Lw(f))é(k’x’ z) = Z f(x,y)f(c'l(:z:, y)k7 Y, z)’

y~z

W*(X) C W*(R,w)* — a=a, (3c: R — K).

We further suppose that R is ergodic. For each measured equivalence subrelation
S of R, there exist countable functions {¢;}ic; on X such that R(z) is equal to a
disjoint union of {S(p:(z))}ier up to a null set. We call {(;}:er choice functions for
(SCR).

For each choice functions {i;}ics, we define a 1-cocycle o from R to the full
permutation group on I by the following rule:

o(z,y)(i) =3 <= (py),pi(2)) €S.

We call o the index cocycle.

A subrelation S of R is called normal in R if the index cocycle cobounds up to
a null set. It is known that S is normal in R if there exists a 1-cocycle ¢ from R to
a discrete group K such that Ker(c) := ¢™}(1x) coincides with S up to a null set([6,
Theorem 2.2]).

2.2 Basic extension and the discreetness

Let B C A be an inclusion of factors with a conditional expectation Ep : A — B,
the modular conjugation J and the Jones projection ep. Put A := JB'J = AV{es}
and Ep := Ad(J)o Eg'oAd(J), the operator valued weight from A; — A. We note
that, if B contains a Cartan subalgebra of A, then the conditional expectation Ep
always exists uniquely ([1, Theorem 1}).

By [8], the relative commutant A; N B’ is decomposed as follows:

ANB =A®B ©B,&C,
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where A @ B; is the semlﬁmte part of EB| Ang and JB1J = B,;. The inclusion

B C A is called discrete if EB is semifinite on A; N B’. It is known that the B C A
is discrete if and only if there exist minimal partitions { fn}n>1 in A; N B’ such that

3 A characterization of the normality

In the rest of this note, we fix an inclusion of the ergodic discrete measured equiv-
alence relations S C R on (X, u) with a 2-cocycle w and the corresponding factors
with a Cartan subalgebra (D C B C A) := (W*(X) C W*(S,w) C W*(R,w)).

We have the following

Theorem 2. Let S be an ergodic Borel subrelation of R, and B := W*(S,w) be the
assoctated subfactor of A. Then the following are equivalent:

(1) The subrelation S is normal in R.
(2) The normalizing groupoid GN 4(B) of B in A generates A, where

GN a(B) := {v € A: v : partial isometry, v*v,w* € B, vBv* = vv*Buv*}.

Proof. (1)=(2): If S is normal in R, then there exists a 1-cocycle ¢ from R to a
discrete group K such that Ker(c) is equal to S up to a null set. Set a = ..
It is easy to check that A* = B and the subspace of A generated by the spectral
subspaces {A%(k)}rek is o-strongly* dense in A. A direct computation shows that
A%(k) N GN 4(D) is contained in GN 4(B) for each k € K. For each element v €
GN 4(D), there exist projections {ex}rex in D which satisfy D ,cxer = v*v and
veg € A%(k) NGN 4(D) for each k € K. So we obtain GN 4(B)"” 2 GN 4(D)" = A.
(2)=>(1): By using the same arguments as in the proof of [1, Lemma 3.1}, for each v €
GN 4(B) and w € GN 4(D), we have Ad(wEp(w*v))B C DvBv*D C B. It follows
that GN 4(B)" coincides with (GN 4(B) N GN 4(D))". So there exists countable
elements {p;}ier in [R]. such that R is equal to a disjoint union of {I'(p;)}ier and
S(pi(z)) = S(pi(y)) for each (z,y) € S and i € I up to null sets. Since S is
ergodic, there exists 7; € [S]. such that Dom(n;) = X and Im(n:) = Dom(p;) and
7i|Dom(ps) = i@Dom(ps)- S€t @i := p; o 7; for each 4 € I. By construction, we have that .
R(z) = U,c; S(pi(z)) and S(pi(z)) = S(wi(y)) hold for each (z,y) € Sandi € [
up to null sets.
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Now we claim that there exists a subset J of I such that {¢;}ics are choice
functions for S € R. Indeed, for any pair (3,j) € I x I, define a Borel subset X; ;
of X by

X,',j = {:v €X: (cp,-(a:),cpj(:c)) € S}
Since ¢; “normalizes” S, X;; is S-invariant, so that it is either null or conull. Now
we define the subset J by the following:

J={0}U{jerI\{0}:X,;isnull for all 7 < j}.

By definition, each {S(y;(z))}jes are mutually disjoint for a.e. z € X. We will
show that, for a.e. z € X, R(z) is equal to the disjoint union of {S(y;(x))};es-
Indeed, if there exists a Borel subset F' of X such that p(F) > 0 and the disjoint
union of {S(;(x))};es is not equal to R(x) for each z € F. Then there exists a
Borel function k : F —€ I'\ J such that @k (z) is not in U,¢; S(p;(z)). Since I is
countable, we can choose i € I\ J such that k~'(¢) is of positive measure. It follows
that (¢;(z), ¢i(z)) is not in S for all j € J and = € k™'(¢). In particular, the Borel
subset X ; is not conull for all 7 € J. So Xj; must be a null set. It follows that X,
is a null set for all j < 7. This contradicts the definition of J. So we conclude that
R(z) is a disjoint union of {S(p;(z))};es for a.e. € X. Hence {p;};es are choice
functions for § C R. |

Let o be the index cocycle for S C R determined by {®;};es. Since 0 € J
and o = idx, S contains o~!(e). On the other hands, for each j € J and for a.e.
(z,y) € S, (v;(z),;j(y)) is also in S. So we obtain o~*(e) = S. Moreover, since
the map X 3 z + o(yp;i(z),z) is S-invariant, we may assume that o is a 1-cocycle
to a countable group. Hence S is normal in R. O

By using this theorem, we have the following

Definition 3. For each inclusion of ergodic discrete measured equivalence relation-
subrelation S C R, there exists a intermediate subrelation Nz(S), which is the
largest, up to a null set, among the Borel subrelation of R containing S as a normal
subrelation. We call Nx(S) the normalizer of S in R. Indeed, N(S) corresponds

to the intermediate subfactor GN 4(B)".

4 The commensurability and the discreteness

As before, we fix an ergodic Borel subrelation S of R. Put A := W"‘(’R, w) and
B := W*(S,w). It follows that the relative commutant A; "B’ is abelian. Moreover,
we have the following:
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Lemma 4. (1) The relative commutant A; N B’ is contained in L®(R).
Let £ be a Borel subset of R,

(2) The projection x¢ € L>(R) on L*(R) is in B’ if and only if x¢ satisfies the
following:

xe(z,2) = xé(y, z) for a.e. (z,y) €S andVz € R(z).

(8) The projection xe € L®(R) on L*(R) is in Ay N B’ if and only if xe satisfies
the following: |

Xe(@,2) = Xe(y: 2), Xe(2,7) = Xe(2,y) for a.e. (z,y) € S and Vz € R(z).
Proof. (1) We have

ANB =JB'JNB cJD'JND =(JDJV D) =L®°R) = L*(R).

Thus (1) has been proven. :
(2) For any a = L¥(f) € A and ¢ € L*(R), we have -

{Xsaf}(x, z) = Z f(.’II, y)XS(m’ Z)E(:% z)w(x, Y, Z),

y~z

{axe€}(z,2) =Y f(z, v)xe(y, 2)E(y, 2)w(z,y, 2).

y~z

So we conclude that xg belongs to B’ if and only if xe(z,2) = xe(y,2) for a.e.
(z,y) € S and Vz € R(z), which implies (2).

(3) The projection Xg is in 4, if and only if JxeJ is in B’. Moreover, note that
JxeJ = Xg-1, where £~ = {(z,y) € R : (y,z) € £}. Now the conclusion follows
from (2). O

We set T := Ego E’,’\B, which is a faithful normal semifinite operator valued
weight from A; to B. Let & = yp € L?*(R), where D is the diagonal subset
{(z,z) : = € X}. So & is a cyclic and separating unit vector for A. We write §
for the vector state on A given by §. Note that Ai N B is ﬁontained in L®(R).
Since the modular automorphism o} of the weight 6 := 6 o Ep is implemented on
L*(R) by 8% € L®(R) (see [8]), the restriction of ¢® to A; N B’ is the identity. So,
in particular, (A; N B)r = A;NB'.
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For a nonzero a € A, consider the closed subspace [BaB¢&y]. It is clearly B-
invariant. Since Jx¢y = o?, 12(z*)é (z € A) and B is globally invariant under ¥,
we have, for any b,b, and b, € B:

JbJ (byaby€o) = braby JbJ &g = brabya?, 5 (b*)&o € [BaB&y).
This shows that [BaBé&,) is also JBJ-invariant. Hence the projection z, onto
[BaB¢&) belongs to B'N(JBJ) = AN B'.

Definition 5. We define CG(B) to be the set of all partial isometries v € A satisfying
the following two conditions:

(1) Both v*v and vv* belong to B.

(2) The projections z, and 2z, belong to mg;

We call CG(B) the commensurability groupoid of B in A.

It is easy to check that CG(B) is closed under the x-operation. Moreover, we
have the following: '

Lemma 6. Let the notations be as above.

(1) Each element in CG(B) belongs to (CG(B)NGN a(D))", i.e., (CG(B)NGN 4(D))"
coincides with CG(B)".

(2) CG(B)NGN a(D) is closed under the product operation.

Sketch of the proof. (1) A direct computation shows that, for each a € A and
w € GN 4(D), the inequality zg,(ww)w < 2v holds. So we have that each
element in CG(B)" N GN 4(D) belongs to (CG(B) N GN 4(D))" and get the
conclusion.

(2) It suffices to show that, for each vy, v, € CG(B) N GN a(B), v1v2 also belongs
to CG(B). We may and do assume that v;v; # 0. By using the maximal
arguments, for ¢ = 1,2, there exist unitaries {w;n}n>1 in GN (D) such that
2y, = ) .5 WinVi€BY Wi ,. S0 we have the following inequality:

* * * *
2y vg < E W1,nV1W2,mU2€BV Wy V1 W) -
n,m2>1
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Hence we get

—~ o~ - -
EB (vag) < E W1,n EB (wZ,mv2er2w2,m)v;w;,n
n,m2>1

—_ E *, %
= ) _ win1 Ep(zu)viwi,
n21

-
— ., ®
= Ep(zy,) 2 Wyt VW,
n21

= Ep(2,)E(2,) < 0

Thus we get the conclusion.
O

So we get the following

Theorem 7. Let S be an ergodic Borel subrelation of R, and B := W*(S,w) be the
associated subfactor of A. Then the following are equivalent:

(1) The commensurability groupoid of B in A generates A.
(2) The inclusion B C A is discrete.

Sketch of the proof. (1)=>(2): There exist countable elements {wn}a>1 of CG(B) N
GN 4(D) such that V,>1zy, is equal to 1. It follows that the relative commutant
A; N B’ is discrete.

(2)=>(1): Since A;NB’ is discrete, there exist minimal projections {fa}nz1in AiNB’
such that E‘;( f») is finite for all n > 1. Since A; N B’ is contained in L*®(R), there
exists a Borel partition {Fp}n>1 of R such that f, is equal to xr, for each n > 1.
Since each F, is not a null set, there exists p, € [R]. such that F,, contains I'(p,).
It follows that for each v € G 4(D), there exist countable projections {en}n>1 such
that 3 5, €x = v*v and z., = fa, i.e., ven € CG(B). So we conclude that A is
generated by CG(B). O

By using this theorem, we have the following

Definition 8. For each inclusion of ergodic discrete measured equivalence relation—
subrelation S C R, there exists a intermediate subrelation Commx(S), which is the
largest, up to a null set, among the Borel subrelation of R such that the inclusion
B C A is discrete. We call Comms (S) the commensurability subrelation of Sin R.
Indeed, Commg(S) corresponds to the intermediate subfactor CG (B)".
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5 Examples

We conclude this note with some concrete examples. These examples justify the
terminologies “normality” and “commensurability” for equivalence relations and
corresponding von Neumann algebras.

Firstly, we consider that the inclusion § C R comes from the crossed product of
a discrete measured equivalence relation by an inclusion of countable groups.

Proposition 9. Suppose that (S C R) is equal to crossed products (Px H C PxG),
where P is a discrete measured equivalence relation with an outer action of G and
a subgroup H. Then the following equations hold up to null sets:

Nz(S) =P x Ng(H), Commgz(S) =P x Comme(H).

Proof. By assumption, there exist canonical choice functions {¢g}gec for P C R.
A direct computation shows that I'(p,) belongs to Ne(S) if g € Ng(H). So Nz(S)
contains P x Ng(H). Conversely, for each p € [Nz(S)]., there exists a partition
{E,}sec of Dom(p) such that p|g,(z) € S(p,(z)) for each g € G up to null sets. On
the other hands, it is easy to check that Duy N GN 4(B) = {0} if g € Ne(H). So
we conclude that E, is null if g € Ng(H) and Nz(S) is equal to P x Ng(H) up to
a null set.

The second half assertion follows from the same arguments. O

We note that the above proposition treats the case that W*(S) is regular in
W*(Nz(S)), i.e., GN 4(B)" coincides with N4(B)". The next example shows that
there exists a normal subrelation such that the corresponding subfactor is not regular
in A.

Example 1. Let R be an ergodic type III, equivalence relation with a II, subrelation
S with regard to an admissible measure (0 < A < 1). Then, by [9], B is singular,
i.e., Na(B) is equal to the set of unitaries in B. But S is normal in R because S is
equal to the kernel of the Radon-Nikodym derivative. So we have GN 4(B)" = A.

Finally, we will treat the case which can not be expressed as the group measure
space constructions.

Example 2. For n > 3 and A € R\ Q, consider actions (H € G) := (SL.(Q) C
(SLn(Q) VTy)) on X = R"/Z", where T\(z,) := (zn + A). It is known that
H C G act freely and ergodically on X. Moreover, a direct computation shows that
[H : HNT_,HT)] is infinite. It follows that the equation Commgg|, (Rely) = Rauly
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holds for each non-null Borel subset Y of X, where Rg := {(9z,z) : z € X, g € G}
and Rgly := RegNY x Y. We note that Ry|y does not come from the group
measure space construction if u(Y)/u(X) € Q ([7]).

Remark . Our definition of the commensurability for equivalence relations depends
on the theory of operator algebras. In the recent work of the author, he succeeds in
characterizing this property in terms of measure theoretical arguments ([2]).
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