
Equivalence relations on measure spaces and von
Neumann algebras

–the normality and the commensurability–

山梨英和大学・人間文化学部 青井久 (Hisashi AOI)
Faculty of Humanities,

Yamanashi Eiwa College

1 Introduction
In the group theory, there exist two notions for each inclusion of groups $H\subseteq G$

-the normality $andthecommens$urability.WesaythatHisnormalin$GifgHg^{-1}coincideswithHforeachg\in G,$andHiscommensurableinGifthe $indexlH$ :
$H\cap gHg^{-1}]$ is finite for each $g\in G$ .

In this note, we apply these notions to ergodic discrete measured equivalence
relations with corresponding von Neumann algebras.

The notion of the normality for discrete measured equivalence relations is intro-
duced in [6]. But it was unknown to characterize this property in terms of operator
algebras. So, ae a characterization of the normality, we will give a definition of
the $normalizinggroupoidforeachinclusionofvonNeumannalgebras.Namely,we$
will $showthat,foreachinclusionofergodicdiscretemeasuredequivalencerelations$
$S\subseteq \mathcal{R},$ $S$ is normal in $\mathcal{R}$ if the corresponding factor $W^{*}(\mathcal{R})$ is generated by the
normalizing groupold of the subfactor $W^{*}(S)$ .

Moreover, we shall give a notion of the commensurability for each inclusion of
ergodic discrete measured equivalence relations. We will show that the commensu-
rability characterizes the discreteness of the corresponding inclusion of factors.

This note is a brief survey of [4] with some new examples.
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2 Preparation
In this section, we summarize basic facts about measured groupoids and von Neu-
mann algebras associated to them. IFhrrther details regarding these objects can be
found in [3], [5], [6], [8].

We assume that all von Neumann algebras in this note have separable preduals,
and

(X, $\mu$) : standard Borel space,
$\mathcal{R}$ : discrete measured equivalence relation on (X, $\mu$),

$\nu$ : left counting measure on $\mathcal{R}$ ,
$\omega$ : normalized 2-cocycle on $\mathcal{R}$ ,

$\mathcal{R}(x)$ $:=\{y\in X : (x,y)\in \mathcal{R}\})$

$[\mathcal{R}]_{*}:=\{\varphi$ : bimeasurable nonsingular transformations
from $Dom(\varphi)$ to ${\rm Im}(\varphi)$ such that $\varphi(x)$ is in $\mathcal{R}(x)$ for a.e. $x$ in $X$ },

$\Gamma(\varphi):=\{(x, \varphi(x)):x\in Dom(\varphi)\}$ $(\varphi\in[\mathcal{R}]_{*})$ .
Definition 1. (1) We define a von Neumann algebra $W^{*}(\mathcal{R}, \omega)$ and a von Neumann
subalgebra $W$ “ (X) which act on $L^{2}(\mathcal{R}, \nu)$ by the following:

$W^{*}(\mathcal{R},\omega)$ $:=\{L^{\omega}(f)$ : $f$ is a left finite function on $\mathcal{R}\}’’$ ,
$W^{*}(X)$ $:=\{L^{w}(d) : d\in L^{\infty}(X, \mu)\}$ ,

where we regard $L^{\infty}(X, \mu)$ as functions on the diagonal of $\mathcal{R},$ $\cdot andL^{w}(f)$ is defined
by

$\{L^{w}(f)\xi\}(x, z)$
$:= \sum_{y\sim x}f(x, y)\xi(y, z)\omega(x, y, z)$

.

(2) Let $A$ be a von Neumann algebra and $D$ be a subalgebra of $A$ . We call $D$ is a
Cartan subalgebra of $A$ if $D$ satisfies the following:

(i) $D$ is maximal abelian in $A$ ,

(ii) $D$ is regular in $A$ , i.e., the normalizer $N_{A}(D)$ generates $A$ , where
$\dot{N}_{A}(D):=$ {$u\in A:u$ is unitary and $uDu^{*}=D$ },

(iii) there exists a faithful normal conditional expectation $E_{D}$ from $A$ onto $D$ .
It is known that, for each such a pair $(D\subseteq A)$ , there exists a discrete mea-

sured equivalence relation $\mathcal{R}$ with a 2-cocycle $w$ such that $(D\subseteq A)\cong(W^{*}(X)\subseteq$

$W^{*}(\mathcal{R},\omega))$ ( $[5$ , Theorem 1]).
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2.1 Borel l-cocycles with coactions
Let $\mathcal{R}$ be a discrete measured equivalence relation. A Borel map $c$ from $\mathcal{R}$ to a
locally compact group $K$ is called a l-cocycle if $c$ satisfies the following equations
up to null sets:

$c(x,y)c(y, z)=c(x, z)$ , $c(x,x)=1_{K}$ .

It is known that there exists a bijective correspondence between the set of Borel
l-cocycles from $\mathcal{R}$ to a locally compact group $K$ and the set of coactions of $K$ on
$W^{*}(\mathcal{R},\omega)$ which fix each element in $W^{*}(X)$ ( $[3$ , Theorem 5.8]):

$c$ : $\mathcal{R}arrow Karrow\alpha_{c}(L^{\omega}(f))\xi(k, x, z)$
$:= \sum_{y\sim x}f(x,y)\xi(c^{-1}(x,y)k,$

$y,$ $z$ ),

$W^{*}(X)\subseteq W^{*}(\mathcal{R},\omega)^{\alpha}arrow\alpha=\alpha_{c}(\exists c : \mathcal{R}arrow K)$.

We further suppose that $\mathcal{R}$ is ergodic. For each measured equivalence subrelation
$S$ of $\mathcal{R}$ , there exist countable functions $\{\varphi_{i}\}_{i\in I}$ on $X$ such that $\mathcal{R}(x)$ is equal to a
disjoint union of $\{S(\varphi_{i}(x))\}_{i\in I}$ up to a null set. We call $\{\varphi_{i}\}_{i\in I}$ choice functions for
$(S\subseteq \mathcal{R})$ .

For each choice functions $\{\varphi_{i}\}_{i\in I}$ , we define a l-cocycle $\sigma$ from $\mathcal{R}$ to the full
permutation group on $I$ by the following rule:

$\sigma(x,y)(i)=j$ $\Leftrightarrow$ $(\varphi_{i}(y), \varphi_{j}(x))\in S$ .

We call $\sigma$ the index.cocycle.
A subrelation $S$ of $\mathcal{R}$ is called normal in $\mathcal{R}$ if the index cocycle cobounds up to

a null set. It is known that $S$ is normal in $\mathcal{R}$ if there exists a l-cocycle $c$ from $\mathcal{R}$ to
a discrete group $K$ such that Ker(c) $:=c^{-1}(1_{K})$ coincides with $S$ up to a null set $([6$ ,
Theorem 2.2]).

2.2 Basic extension and the discreetness

Let B C $A$ be an inclusion of factors with a conditional expectation $E_{B}$ ; $Aarrow B$ ,

the modular conjugation $J$ and the Jones projection $e_{B}$ . Put $A_{1}$ $:=JB’J=A\vee\{e_{B}\}$

and $\overline{E_{B}}$ $:=Ad(J)oE_{B}^{-1}oAd(J)$ , the operator valued weight from $A_{1}arrow A$ . We note
that, if $B$ contains a Cartan subalgebra of $A$ , then the conditional expectation $E_{B}$

always exists uniquely ([1, Theorem 1]).
By [8], the relative commutant $A_{1}\cap B’$ is decomposed as follows:

$A_{1}\cap B’=\mathcal{A}\oplus \mathcal{B}_{1}\oplus \mathcal{B}_{2}\oplus C$ ,
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where $\mathcal{A}\oplus \mathcal{B}_{1}$ is the semifinite part of $\overline{E_{B}}|_{A_{1}\cap B’}$ and $J\mathcal{B}_{1}J=\mathcal{B}_{2}$ . The inclusion
$B\subseteq A$ is called discrete if $E_{B}\wedge$ is semifinite on $A_{1}\cap B’$ . It is known that the B C $A$

is discrete if and only if there exist minimal partitions $\{f_{n}\}_{n\geq 1}$ in $A_{1}\cap B’$ such that
$\sum_{n\geq 1}f_{n}=1$ and $\overline{E_{B}}(f_{n})<\infty$ .

3 A characterization of the normality
In the rest of this note, we fix an inclusion of the ergodic discrete measured equiv-
alence relations S $C\mathcal{R}$ on (X, $\mu$) with a 2-cocycle $\omega$ and the corresponding factors
with a Cartan subalgebra $(DCB\subseteq A):=$ ( $W$‘ (X) C $W$“

$(S,\omega)\subseteq W^{\cdot}(\mathcal{R},$ $\omega)$ ).
We have the following

Theorem 2. Let $S$ be an ergodi $c$ Borel subrelation of $\mathcal{R}_{f}$ and $B$ $:=W^{*}(S,\omega)$ be the
associated subfactor of A. Then the following are equivalent:

(1) The subrelation $S$ is normal in $\mathcal{R}$ .

(2) The normalizing groupoid $\mathcal{G}\mathcal{N}_{A}(B)$ of $B$ in A generates $A$ , where

$\mathcal{G}\mathcal{N}_{A}(B):=$ {$v\in A:v$ : partial isometry, $v^{*}v,$ $vv^{*}\in B,$ $vBv^{*}=vv^{*}Bvv$ }.

Proof. (1) $\Rightarrow(2)$ : If $S$ is normal in $\mathcal{R}$ , then there exists a l-cocycle $c$ from $\mathcal{R}$ to a
discrete group. $K$ such that $Ker(c)$ is equal to $S$ up to a null set. Set $\alpha:=\alpha_{c}$ .
It is easy to check that $A^{\alpha}=B$ and the subspace of $A$ generated by the spectral
subspaces $\{A^{\alpha}(k)\}_{k\in K}$ is $\sigma- strongly^{*}$ dense in $A$ . A direct computation shows that
$A^{\alpha}(k)\cap \mathcal{G}\mathcal{N}_{A}(D)$ is contained in $\mathcal{G}\mathcal{N}_{A}(B)$ for each $k\in K$ . For each element $v\in$

$\mathcal{G}\mathcal{N}_{A}(D)$ , there exist projections $\{e_{k}\}_{k\in K}$ in $D$ which $satis\mathfrak{h}^{\gamma}\sum_{k\in K}e_{k}=v^{*}v$ and
$ve_{k}\in A^{\alpha}(k)\cap \mathcal{G}\mathcal{N}_{A}(D)$ for each $k\in K$ . So we obtain $\mathcal{G}N_{A}(B)’’\supseteq \mathcal{G}\mathcal{N}_{A}(D)’’=A$ .
(2) $\Rightarrow(1)$ : By using the same arguments as in the proof of [1, Lemma 3.1], for each $v\in$

$\mathcal{G}\mathcal{N}_{A}(B)$ and $w\in \mathcal{G}\mathcal{N}_{A}(D)$ , we have $Ad(wE_{D}(w^{*}v))B\subseteq DvBv^{*}D\subseteq B$ . It follows
that $\mathcal{G}\mathcal{N}_{A}(B)’’$ coincides with $(\mathcal{G}\mathcal{N}_{A}(B)\cap \mathcal{G}\mathcal{N}_{A}(D))’’$. So there exists countable
elements $\{\rho_{i}\}_{i\in I}$ in $[\mathcal{R}]_{*}$ such that $\mathcal{R}$ is equal to a disjoint union of $\{\Gamma(\rho_{i})\}_{i\in I}$ and
$S(\rho_{i}(x))=S(\rho_{i}(y))$ for each $(x,y)\in S$ and $i\in I$ uP to null sets. Since $S$ is
ergodic, there exists $\eta_{i}\in[S]_{*}$ such that $Dom(\eta_{i})=X$ and ${\rm Im}(\eta_{i})=Dom(\rho_{i})$ and
$\eta_{i}|_{Dom(\rho_{1})}=id_{Dom(\rho_{j})}$ . Set $\varphi_{t}$ $:=\rho_{i}0\eta_{i}$ for each $i\in I$ . By construction, we have that
$\mathcal{R}(x)=\bigcup_{i\in I}S(\varphi_{i}(x))$ and $S(\varphi_{i}(x))=S(\varphi_{i}(y))$ hold for each $(x, y)\in S$ and $i\in I$

up to null sets.
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Now we claim that there exists a subset $J$ of $I$ such that $\{\varphi_{i}\}_{i\in J}$ are choice
functions for $S\subseteq \mathcal{R}$ . Indeed, for any pair $(i,j)\in I\cross I$ , define a Borel subset $X_{i,j}$

of $X$ by
$X_{i,j}$ $:=\{x\in X : (\varphi_{i}(x), \varphi_{j}(x))\in S\}$ .

Since $\varphi_{i}normali_{ZeS}’$
)

$S,$ $X_{i,j}$ is S-invariant, so that it is either null or conull. Now
we define the subset $J$ by the following:

$J$ $:=\{0\}\cup$ {$j\in I\backslash \{0\}$ : $X_{;,j}$ is null for all $i<j$ }.

By definltion, each $\{S(\varphi_{j}(x))\}_{j\in J}$ are mutually disjoint for $a.e$ . $x\in X.$ We will
show that, for $a.e$ . $x\in X,$ $\mathcal{R}(x)$ is equal to the disjoint union of $\{S(\varphi_{j}(x))\}_{j\in J}$ .
Indeed, if there exists aBorel subset $F$ of $X$ such that $\mu(F)>0$ and the disjoint
union of $\{S(\varphi_{j}(x))\}_{j\in J}$ is not $equa\backslash to\mathcal{R}(x)$ for each $x\in F.$ Then there exists a
Borel function $k:Frightarrow\in I\backslash J$ such that $\varphi_{k(x)}(x)$ is not in $\bigcup_{j\in J}S(\varphi_{j}(x))$ . Since $I$ is
countable, we can choose $i\in I\backslash J$ such that $k^{-1}(i)$ is of positive measure. It follows
that $(\varphi_{j}(x), \varphi_{i}(x))$ is not in $S$ for a1I $j\in J$ and $x\in k^{-1}(i)$ . In particular, the Borel
subset $X_{j,i}$ is not conull for all $j\in J$ . So $X_{j,i}$ must be anull set. It follows that $X_{j,i}$

is anull set for all $j<i$ . This contradicts the definition of J. So we conclude that
$\mathcal{R}(x)$ is adisjoint union of $\{S(\varphi_{j}(x))\}_{j\in J}$ for $a.e$ . $x\in X$ . Hence $\{\varphi_{j}\}_{j\in J}$ are cholce
functions for $S\subseteq \mathcal{R}$ .

Let $\sigma$ be the index cocycle for $S\subseteq \mathcal{R}$ determined by $\{\varphi_{j}\}_{j\in J}$ . Since $0\in J$

and $\varphi_{0}=id_{X},$ $S$ contains $\sigma^{-1}(e)$ . On the other hands, for each $j\in J$ and for $a.e$ .
$(x, y)\in S,$ $(\varphi_{j}(x), \varphi_{j}(y))$ is also in S. So we obtain $\sigma^{-1}(e)=S$ . Moreover, since
the maP $X\ni x\vdasharrow\sigma(\varphi_{i}(x), x)$ is $S$-invariant, we may assume that $\sigma$ is al-cocycle
to acountable group. Hence $S$ is normal in $\mathcal{R}$ . $\square$

By using this theorem, we have the following

Definition 3. For each inclusion of ergodic discrete measured equivalence relation-
subrelation $S\subseteq \mathcal{R}$ , there exists a intermediate subrelation $N_{\mathcal{R}}(S)$ , which is the
largest, up to a null set, among the Borel subrelation of $\mathcal{R}$ containing $S$ as a normal
subrelation. We call $N_{\mathcal{R}}(S)$ the normalizer of $S$ in $\mathcal{R}$ . Indeed, $N_{\mathcal{R}}(S)$ corresponds
to the intermediate subfactor $\mathcal{G}\mathcal{N}_{A}(B)’’$ .

4 The commensurability and the discreteness
As before, we fix an ergodic Borel subrelation $S$ of $\mathcal{R}$ . Put $A$ $:=W^{*}(\mathcal{R}, \omega)$ and
$B$ $:=W^{*}(S,\omega)$ . It follows that the relative commutant $A_{1}\cap B’$ is abelian. Moreover,
we have the following:
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Lemma 4. (1) The relative commutant $A_{1}\cap B’$ is contained in $L^{\infty}(\mathcal{R})$ .
Let $\mathcal{E}$ be a Borel subset of $\mathcal{R}$ ,

(2) The projection $\chi_{\mathcal{E}}\in L^{\infty}(\mathcal{R})$ on $L^{2}(\mathcal{R})$ is in $B’$ if and only if $\chi\epsilon$ satisfies the
folloning:

$\chi_{\mathcal{E}}(x, z)=\chi_{\mathcal{E}}(y, z)$ for $a.e$ . $(x, y)\in S$ and $\forall z\in \mathcal{R}(x)$ .

$(S)$ The projection $\chi_{\mathcal{E}}\in L^{\infty}(\mathcal{R})$ on $L^{2}(\mathcal{R})$ is in $A_{1}\cap B’$ if and only if $\chi_{\mathcal{E}}$ satisfies
the following:

$\chi_{\mathcal{E}}(x, z)=\chi_{\mathcal{E}}(y, z),$ $\chi_{\mathcal{E}}(z,x)=\chi_{\mathcal{E}}(z,y)$ for $a.e$ . $(x, y)\in S$ and $\forall z\in \mathcal{R}(x)$ .

Proof. (1) We have

$A_{1}\cap B’=JB’J\cap B’\subseteq JD’J\cap D’=(JDJ\vee D)’=L^{\infty}(\mathcal{R})’=L^{\infty}(\mathcal{R})$ .

Thus (1) has been proven.
(2) For any $a=L^{w}(f)\in A$ and $\xi\in L^{2}(\mathcal{R})$ , we have .

$\{\chi_{\mathcal{E}}a\xi\}(x, z)=\sum_{y\sim x}f(x, y)\chi_{\mathcal{E}}(x, z)\xi(y, z)\omega(x,y, z)$
,

$\{a\chi_{\mathcal{E}}\xi\}(x, z)=\sum_{y\sim x}f(x, y)\chi_{\mathcal{E}}(y, z)\xi(y, z)w(x,y, z)$
.

So we conclude that $\chi_{\mathcal{E}}$ belongs to $B’$ if and only if $\chi_{\mathcal{E}}(x, z)=\chi_{\mathcal{E}}(y, z)$ for a.e.
$(x, y)\in S$ and $\forall z\in \mathcal{R}(x)$ , which implies (2).

(3) The projection $\chi_{\mathcal{E}}$ is in $A_{1}$ if and only if $J\chi_{\mathcal{E}}J$ is in $B’$ . Moreover, note that
$J\chi_{\mathcal{E}}J=\chi_{\mathcal{E}^{-1}}$ , where $\mathcal{E}^{-1}=\{(x, y)\in \mathcal{R} : (y, x)\in \mathcal{E}\}$ . Now the conclusion follows
from (2). $\square$

We set $T$ $:=E_{B}\circ\overline{E_{B}}$ , which is a faithful normal semifinite operator valued
weight from $A_{1}$ to $B$ . Let $\xi_{0}$ $:=\chi_{\mathcal{D}}\in L^{2}(\mathcal{R})$ , where $\mathcal{D}$ is the diagonal subset
$\{(x, x) : x\in X\}$ . So $\xi_{0}$ is a cyclic and separating unit vector for $A$ . We write $\theta$

for the vector state on $A$ given by $\xi_{0}$ . Note that $A_{1}\cap B’$ is contained in $L^{\infty}(\mathcal{R})$ .
Since the modular automorphism $\sigma_{t}^{\theta}\wedge$ of the weight $\theta:=\wedge\theta 0\overline{E_{B}}$ is implemented on
$L^{2}(\mathcal{R})$ by $\delta^{it}\in L^{\infty}(\mathcal{R})$ (see [8]), the restriction of $\sigma^{\theta}\wedge$ to $A_{1}\cap B’$ is the identity. So,
in particular, $(A_{1}\cap B’)_{T}=A_{1}\cap B’$ .
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For a nonzero $a\in A$ , consider the closed subspace $[BaB\xi_{0}]$ . It is clearly B-
invariant. Since $Jx\xi_{0}=\sigma_{-i/2}^{\theta}(x^{*})\xi_{0}(x\in A)$ and $B$ is globally invariant under $\sigma^{\theta}$ ,
we have, for any $b,$ $b_{1}$ and $b_{2}\in B$ :

$JbJ(b_{1}ab_{2}\xi_{0})=b_{1}ab_{2}JbJ\xi_{0}=b_{1}ab_{2}\sigma_{-t/2}^{\theta}(b^{*})\xi_{0}\in[BaB\xi_{0}]$ .

This shows that $[BaB\xi_{0}]$ is also JBJ-invariant. Hence the projection $z_{a}$ onto
$[BaB\xi_{0}]$ belongs to $B’\cap(JBJ)’=A_{1}\cap B’$ .
Definition 5. We define $C\mathcal{G}(B)$ to be the set of all partial isometries $v\in A$ satisfying
the following two conditions:

(1) Both $v^{*}v$ and $vv^{*}$ belong to $B$ .

(2) The projections $z_{v}$ and $z_{v}*belong$ to $m_{E_{B}}\pm$ .

We call $C\mathcal{G}(B)$ the commensumbility groupoid of $B$ in $A$ .

It is easy to check that $C\mathcal{G}(B)$ is closed under the $*-operation$ . Moreover, we
have the following:

Lemma 6. Let the notations be as above.

(1) Each element in $C\mathcal{G}(B)$ belongs to $(C\mathcal{G}(B)\cap \mathcal{G}\mathcal{N}_{A}(D))’’,$ $i.e.,$ $(C\mathcal{G}(B)\cap \mathcal{G}\mathcal{N}_{A}(D))’’$

coincides with $C\mathcal{G}(B)’’$ .

(2) $C\mathcal{G}(B)\cap \mathcal{G}\mathcal{N}_{A}(D)$ is closed under the product operation.

Sketch of the proof. (1) A direct computation shows that, for each $a\in A$ and
$w\in \mathcal{G}\mathcal{N}_{A}(D)$ , the inequality $Z_{E_{D}(vw)w}\leq z_{v}$ holds. So we have that each
element in $C\mathcal{G}(B)’’\cap \mathcal{G}\mathcal{N}_{A}(D)$ belongs to $(C\mathcal{G}(B)\cap \mathcal{G}\mathcal{N}_{A}(D))’’$ and get the
conclusion.

(2) It suffices to show that, for each $v_{1},$ $v_{2}\in C\mathcal{G}(B)\cap \mathcal{G}N_{A}(B),$ $v_{1}v_{2}$ also belongs
to $C\mathcal{G}(B)$ . We may and do assume that $v_{1}v_{2}\neq 0$ . By using the maximal
arguments, for $i=1,2$ , there exist unitaries $\{w_{i,n}\}_{n\geq 1}$ in $\mathcal{G}\mathcal{N}_{B}(D)$ such that
$z_{v}:= \sum_{n\geq 1}w_{i,n}v_{i}e_{B}v_{i}^{*}w_{in}^{*})$ So we have the following inequality:

$z_{v_{1}v_{2}} \leq\sum_{n,m\geq 1}w_{1,n}v_{1}w_{2,m}v_{2}e_{B}v_{2}^{*}w_{2,m}^{*}v_{1}^{*}w_{1,n}^{*}$
.
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Hence we get

$\overline{E_{B}}(z_{v_{1}v_{2}})\leq\sum_{n,m\geq 1}w_{1,n}v_{1}\overline{E_{B}}(w_{2,m}v_{2}e\epsilon v_{2}w_{2,m}^{*})v_{1}^{*}w_{1,n}^{*}$

$= \sum_{n\geq 1}w_{1,n}v_{1}\overline{E_{B}}(z_{v_{2}})v_{1}^{*}w_{1,n}^{*}$

$= \overline{E_{B}}(z_{v_{2}})\sum_{n\geq 1}w_{1,n}v_{1}v_{1}^{*}w_{1,n}^{*}$

$=\overline{E_{B}}(z_{v_{1}})\overline{E_{B}}(z_{vz})<\infty$

Thus we get the conclusion.
口

So we get the following

Theorem 7. Let $S$ be an ergodic Borel subrelation of $\mathcal{R}$ , and $B$ $:=W$“ $(S, \omega)$ be the
associated subfactor of A. Then the following are equivalent:

(1) The commensumbility groupoid of $B$ in A generates $A$ .

(2) The inclusion $B\subseteq A$ is discrete.

Sketch of the proof. (1) $\Rightarrow(2)$ : There exist countable elements $\{w_{n}\}_{n\geq 1}$ of $C\mathcal{G}(B)\cap$

$\mathcal{G}\mathcal{N}_{A}(D)$ such that $_{n\geq 1}z_{w_{\mathfrak{n}}}$ is equal to 1. It follows that the relative commutant
$A_{1}\cap B’$ is discrete.
(2) $\Rightarrow(1)$ : Since $A_{1}\cap B’$ is discrete, there exist minimal projections $\{f_{n}\}_{n\geq 1}$ in $A_{1}\cap B’$

such that $\overline{E_{B}}(f_{n})$ is finite for all $n\geq 1$ . Since $A_{1}\cap B’$ is contained in $L^{\infty}(\mathcal{R})$ , there
exists a Borel partition $\{F_{n}\}_{n\geq 1}$ of $\mathcal{R}$ such that $f_{n}$ is equal to $\chi_{F_{\mathfrak{n}}}$ for each $n\geq 1$ .
Since each $F_{n}$ is not a null set, there exists $\rho_{n}\in[\mathcal{R}]_{*}$ such that $F_{n}$ contains $\Gamma(\rho_{\mathfrak{n}})$ .
It follows that for each $v\in \mathcal{G}\mathcal{N}_{A}(D)$ , there exist countable projections $\{e_{n}\}_{n\geq 1}$ such
that $\sum_{n>1}e_{n}=v^{*}v$ and $z_{ve}$. $=f_{n}$ , i.e., $ve_{n}\in C\mathcal{G}(B)$ . So we conclude that $A$ is
generated by $C\mathcal{G}(B)$ . $\square$

By using this theorem, we have the following

Definition 8. For each inclusion of ergodic discrete measured equivalence relation-
subrelation $S\subseteq \mathcal{R}$ , there exists a intermediate subrelation $Comm_{\mathcal{R}}(S)$ , which is the
largest, up to a null set, among the Borel subrelation of $\mathcal{R}$ such that the inclusion
B C $A$ is discrete. We call $Comm_{\mathcal{R}}(S)$ the commensurability subrelation of $S$ in $\mathcal{R}$ .
Indeed, $Comm_{\mathcal{R}}(S)$ corresponds to the intermediate subfactor $C\mathcal{G}(B)’’$ .
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5 Examples
We conclude this note with some concrete examples. These examples justify the
terminologies “normality” and “commensurability” for equivalence relations and
corresponding von Neumann algebras.

Firstly, we consider that the inclusion $S\subseteq \mathcal{R}$ comes from the crossed product of
a discrete measured equivalence relation by an inclusion of countable groups.

Proposition 9. SuPpose that $(S\subseteq \mathcal{R})$ is equal to crossed Products (Px $H\subseteq \mathcal{P}\ltimes G$),
where $\mathcal{P}$ is a discrete measured equivalence relation with an outer action of $G$ and
a subgroup H. Then the following equations hold up to null sets:

$N_{\mathcal{R}}(S)=\mathcal{P}\ltimes N_{G}(H)$ , $Comm_{\mathcal{R}}(S)=\mathcal{P}\ltimes Comm_{G}(H)$ .

Proof. By assumption, there exist canonical choice functions $\{\varphi_{9}\}_{g\in G}$ for $\mathcal{P}\subseteq \mathcal{R}$ .
A direct computation shows that $\Gamma(\varphi_{9})$ belongs to $N_{\mathcal{R}}(S)$ if $g\in N_{G}(H)$ . So $N_{\mathcal{R}}(S)$

contains $\mathcal{P}\ltimes N_{G}(H)$ . Conversely, for each $\rho\in[N_{\mathcal{R}}(S)]_{*}$ , there exists a partition
$\{E_{g}\}_{g\in G}$ of $Dom(\rho)$ such that $\rho|_{E_{9}}(x)\in S(\varphi_{g}(x))$ for each $g\in G$ up to null sets. On
the other hands, it is easy to check that $Du_{9}\cap \mathcal{G}\mathcal{N}_{A}(B)=\{0\}$ if $g\not\in N_{G}(H)$ . So
we conclude that $E_{g}$ is null if $g\not\in N_{G}(H)$ and $N_{\mathcal{R}}(S)$ is equal to $\mathcal{P}\ltimes N_{G}(H)$ up to
a null set.

The second half assertion follows from the same arguments. $\square$

We note that the above proposition treats the case that $W^{*}(S)$ is regular in
$W^{*}(N_{\mathcal{R}}(S))$ , i.e., $\mathcal{G}\mathcal{N}_{A}(B)’’$ coincides with $N_{A}(B)’’$ . The next example shows that
there exists a normal subrelation such that the corresponding subfactor is not regular
in $A$ .

Example 1. Let $\mathcal{R}$ be an ergodic type $III_{\lambda}$ equivalence relation with a $II_{1}$ subrelation
$S$ with regard to an admissible measure $(0<\lambda<1)$ . Then, by [9], $B$ is singular,
i.e., $N_{A}(B)$ is equal to the set of unitaries in $B$ . But $S$ is normal in $\mathcal{R}$ because $S$ is
equal to the kernel of the Radon-Nikodym derivative. So we have $\mathcal{G}\mathcal{N}_{A}(B)’’=A$ .

Finally, we will treat the case which can not be expressed as the group measure
space constructions.

Example 2. For $n\geq 3$ and $\lambda\in R\backslash Q$ , consider actions $(H\subseteq G)$ $:=(SL_{n}(Q)C$

$(SL_{n}(Q)\vee T_{\lambda}))$ on $X:=R^{n}/Z^{n}$ , where $T_{\lambda}(x_{n})$ $:=(x_{n}+\lambda)$ . It is known that
$H\subseteq G$ act freely and ergodically on $X$ . Moreover, a direct computation shows that
$[H : H\cap T_{-\lambda}HT_{\lambda}]$ is infinite. It follows that the equation $Comm_{\mathcal{R}_{G}1\gamma}(\mathcal{R}_{H}|_{Y})=\mathcal{R}_{H}|_{Y}$
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holds for each non-null Borel subset $Y$ of $X$ , where $\mathcal{R}_{G}$ $:=\{(gx, x) : x\in X, g\in G\}$

and $\mathcal{R}_{G}|_{Y}$ $:=\mathcal{R}_{G}\cap Y\cross Y$ . We note that $\mathcal{R}_{H}|_{Y}$ does not come from the group
measure space construction if $\mu(Y)/\mu(X)\not\in Q$ ([7]).

Remark. Our definition of the commensurability for equivalence relations depends
on the theory of operator algebras. In the recent work of the author, he succeeds in
characterizing this property in terms of measure theoretical arguments ([2]).
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