goooboooogn
O 15870 2008 0 27-72 27

NONCOMMUTATIVE TORI AND MIRROR SYMMETRY
HIROSHIGE KAJIURA

ABSTRACT. This article is a survey on homological mirror symmetry (HMS) of noncommutative
tori which includes updated statements obtained by combining some results appeared so far.
We include brief reviews of relevant theories in noncommutative geometry, differential geometry,

algebraic topology and algebraic geometry so that this article becomes readable for readers in
these different fields.
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1. INTRODUCTION

Categories of vector bundles and the associated Grothendieck groups provide a way of
classifying topological spaces. One can further consider higher K-groups. These further give a way
of generalizing the notion of spaces. The C*-algebra Ky-group Ko(C(M)) of the C*-algebra of C-
valued continuous functions C(M) on a compact space M coincides with the topological Ky-group
Ko(M), and in general one can consider Ko(A) and then K;(A), i > 1, for any noncommutative
C*-algebra A, where the Bott periodicity holds as in the case of topological K-theory. The algebra
A is regarded as the space of functions on a noncommutative space, which is the starting point
of noncommutative geometry by Connes [6)].

- A natural category associated to a complex manifold M is the category coh(M) of coherent
sheaves on M. A coherent sheaf is a generalization of a holomorphic vector bundle. This category
coh(M) forms an abelian category, so one has the derived category D%(coh(M)). A derived
category is an example of triangulated categories, where one can define Grothendieck groups [23].
Actually, the derived category D?(coh(M)) does depend on the complex structure of M. Then,
the associated Grothendieck group also depends on it.

- For a symplectic manifold M , there is an interesting geometric construction of a category
called. a Fukaya category [14]. This should be defined as an A ~Category, a generalization of a
differéntial graded (DG) category, though the complete constructxon is still under development
because of a technical problem (see [18]).

A mirror symmetry is a duality between a complex manifold M and a symplectic manifold
M. In{49], Kontsevich asked a homological algebraic realization of mirror symmetry and proposed
a conjecture called homological mirror symmetry (HMS); for a given mirror pair of a complex
manifold M and a symplectic manifold M, the derived category D?(coh(M)) of coherent sheaves
is equivalent to the derived category D*(Fuk(M)) of the Fukaya category on M. A definition of
the derived category of an As-category is also given there [49] so that D?(Fuk(M)) makes sense
(see subsection 5.1).

The Fukaya categories are defined in a geometric way, whxch means it is not easy to formu-
late the deformation of Fukaya categories directly. On the other hand, the complex side is more
algebraic, which makes it possible to formulate noncommutative analog of the derived category
D®(coh(M)) of coherent sheaves. Actually, any holomorphic vector bundle on a smooth compact
complex manifold M is given by a vector bundle with a Dolbeault connection (Grothendieck, Mal-
grange). By Swan [78], a vector bundle E over M is equivalent to a finitely generated projective
C(M)-module. The equivalence is given by considering the space of sections I'(E) of E, which
forms a finitely generated projective module over C(M). Now, the noncommutative formulation
can be available; one may start from a noncommutative algebra instead of C(M)!

This article is a survey on HMS of noncommutative tori from the author’s viewpoint, as
an attempt toward formulating new kinds of geometry in interactions between noncommutative
geometry, symplectic geometry and complex geometry via homological algebras and homotopy
algebras. Thus, we intend to make this article readable for all readers in these different fields.
We include brief review of relevant theory in each field with some of standard references. In
section 2, we start from an overview of the theory of noncommutative tori and projective modules
over them due to Rieffel, etc. In section 3, we discuss mirror symmetry of tori in a modern
setting, generalized geometry. In section 4, we define the (curved) DG-categories of modules
over noncommutative complex tori based on projective modules in subsection 2.4. There, we
discuss higher dimensional complex tori in general and after that we state what happens in the

case of noncommutative two-tori with complex structures. In section 5, we start from a brief
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introduction of HMS in subsection 5.1. In subsection 5.2 we discuss HMS of noncommutative
two-tori, an example of noncommutative generalization of HMS. The Theorem 5.20 there states
the HMS of noncommutative tori in the most updated form in a sense. In section 5.3, we mention
partial results toward HMS of higher dimensional noncommutative tori.

Notation: Throughout this paper, we treat any (graded) vector space as the one over field
k = C. A category C by definition consists of a class Ob(C) of objects, a space Hom¢(X,Y) for each
X,Y € Ob(C) with the associative composition m : Hom¢(Y, Z)®@Home(X,Y) — Home (X, Z) for
any X,Y,Z € Ob(C) regarded as the composition of morphisms from X to Y and those from Y to
Z. In particular, C has the identity morphism 1x € Hom¢(X, X) for any X € Ob(C). Following
the usual category theory, we often denote simply by C the class Ob(C) of objects in a category
C, so X € C indicates X is an object. We also treat categories with additional structures or
generalizations of the usual categories such as (curved) DG(=differential graded)-categories and
(weak) Ao-categories. In those cases, we do not assume that they have the identity morphisms
for each objects. If they have the identity morphisms, they are called unital.

For a category C, one may prefer to express the space Home(X,Y) of morphisms from
X eCtoY €CasC(Y,X) := Home(X,Y) so that the composition is described asm : C(Z,Y) ®
C(Y,X) — €(Z,X). We do not do it for categories in the usual sense, but do sd for (weak)
Ao-categories, then the higher compositions in an A-category are described as m,, C(a1,a2)®
C(a2,a3)® - -®C(anan+1) — C(a1,as). For a (curved) DG-category C, we use both notations since
we sometimes need to treat it as a (weak) Aqo-category, where morphisms are sometimes denoted
®va € C(b,a) = Home(a,b) for a,b € C. Since these are just the problems of notations, we hope
the readers are not confused by them. In the case of categories of modules over noncommutative
algebras, the naturality of the notations as above is related to whether we consider right modules
or left modules.

For any category C (in the usual sense, DG, Aq,... ), by a full subcategory C’ C C of C we

mean a category C’ such that Ob(C’) ¢ Ob(C), Hom¢(a,d) = Home(a,b) for a,b € Ob(C’), with
all additional structures in C’ induced from those in C if it has.
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2. NONCOMMUTATIVE TORI

In noncommutative geometry in the sense of Connes [6], one usually starts from a C*-
algebra. A C-algebra A is called a *-algebra if A is equipped with a C-anti-linear involution
* : A — A called a *-involution. A Banach algebra A is a normed algebra which is complete
with respect to the norm || - ||. A Banach x-algebra A by definition satisfies the compatibility
||z*|| = ||jz|| for any z € A. A Banach x-algebra A satisfying ||zz*|| = ||z||? for any z € A is
called a C*-algebra. For a compact space M, the space C(M) of continuous functions on M forms
a (commutative) C*-algebra. The converse is also true in the sense that any unital commutative
C*-algebra is isomorphic to C(M) with an appropriate compact space.

On the other hand, we prefer a noncommutative analog of the space C*®°(M) of smooth
functions on a smooth compact space M. Thus, in the context of noncommutative differential
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geometry [6], one often considers an appropriate dense subalgebra of a C*-algebra called a pre-
C*-algebra. First, any Banach algebra A we shall treat in this article is unital, with unit 1, where,
to any element z € A is associated the spectrum o(z) := {A € C | (A~ 1 —z) is not invertible}.
A subalgebra algebra A C A is then said to be stable under holomorphic functional calculus iff
f(z) € Afor any z € A C A and any analytic function f on a neighborhood of o(z). A pre-C*-
‘algebra A is an algebra which is isomorphic to a x-subalgebra stable under holomorphic functional
calculus in a C*-algebra A (see [6, p285, Definition 1]). For a pre-C*-algebra A, a C*-algebra A
such that A C A is stable under holomorphic functional calculus is unique, where A is dense in
A. ! Then, the inclusion A — A induces an isomorphism of K-theory (6, p298, Proposition 7)).

For a C-algebra A, a trace map Tr : A — C is a C-linear map such that Tr(aa’) = Tr(a’a) for
any a,a’ € A. When A is a *-algebra, the trace Tr is further assumed to satisfy Tr(a*) = (Tr(a))*,
where (Tr(a))* is the complex conjugation of Tr(a) € C.

2.1. Noncommutative tori A3 and AJ. For a fixed § € R, consider the C-algebra C[U;, Us]
generated by two unitary elements U;, Uz with relation

Uiz = e" 20,0, (1)
Any element u € C[U;,Us] is represented‘{las
u= Y Unm O (U2)™,  tngn, = u(ni,m) € C. (2)

(n1,n3)€2?

Thus, u is regarded as a C-valued function on Z2. We call the subalgebra of C[U;, U;] consisting
of elements u € S(Z?) a noncommutative two-torus A3. Here, S(Z?) is the Schwartz space, that
i8, Unyng 1= u(n1,7n3), u € S(Z2), tends to zero faster than any power of In1| + |n2|. This is a
noncommutative analog of the algebra of smooth functions; one has A%_, ~ C*(T2). On the
other hand, the universal C*-algebra (see [9]) of the algebra C[Uy,Us] is traditionally called a
noncommutative (two-)torus, which we denote by A3. This is the noncommutative analog of the
space of continuous functions; one has A2_, ~ C(Tz) In fact, A2 is a dense subalgebra of A2
stable under holomorphic calculus, i.e., A3 is a pre C*-algebra of A2 Then, .A is often called the
smooth version of noncommutative torus to distinguish it from Ag. However, the smooth version
is our main tool, so we just call A% & noncommutative two-torus. In any case, those algebras
theirselves are called noncommutative tori, not algebras over the ones.

Similarly, for a fixed skew-symmetric d by d matrix  := {#7*} € Matq(R), consider an
algebra C[Uy,...,Uy] generated by unitary elements U, i = 1,...,d, with relations

UjUk = e "y, Gk=1,...,d (3)
 We describe elements of C[Uy, ..., Uy] in a slightly different way from those in the two-dimensional
case (2). Let
Up = UMU? .. UpHe™ Tjck mybitmp
where M = (my,...,mg) € Z% Then, any element u of C[Uy,...,U,] is a C-linear combinations
of Uy, m € Z%:
U= Z uaUs, us € C.
mezs
In this description, the relation between Uz and U becomes
UaUgp = e™ ik m"ojkm;‘Um+mr. (4)

1The norm ||lz|| in A is given by the square root of supyeq(z=z+)|A|, the spectral radius of zz* in A.
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For any element u represented as above, the *-involution is defined by

ut = Z uzU_s,,

mezd
where U is the complex conjugate of u;z. Thus, C[Uy,...,Uy] is a *-algebra. As in the previous
two-dimensional case, we regard an element u € C[U,,...,Uy) as a C-valued function on Z3 by

u:Z% > uy € C. We call the subalgebra AZ of C[Uy,...,Uy] consisting of elements
u € S(Z%) the (smooth version of) noncommautative d-torus A3. On the other hand, the universal
C*-algebra of C[Uy,...,Uy] is denoted A (see [69, 47, 13]). Then, A% C A{ is a pre C*-algebra.

The noncommutativity @ is called irrational if there exists at least one element 6;; which
is irrational.

There is a canonical normalized trace on A specified by the rule

Tr(u) =tm=0, u=) uala. (5)
m

Let 6 : A — A4, j =1,...,d, be derivations defined by
0;(Um) = 2mim,Us.. (6)
For the generators U; the above relation reads as ;U = 2mid;xUi. These derivations span a
d-dimensional abelian Lie algebra (over C) that we denote L.
Geometrically, for § = 0, the isomorphism Ag ~ C*°(T?) is given by the identification of
" the generators U; = €™, z; € R, i = 1,...,d. The trace (5) corresponds to the integration
[dzy---dzg : C®°(T?) — C in Fourier expansion expression. The bases of L are then regarded

as 0; = d/dz;. Then, for 8 # 0, the relation (4) shows Ag is also described by C®(7T9) with a
Moyal *product (see [47]).

2.2. K theory and projective modules. For an algebra A, the algebraic Ko-group Ko(A) is
defined by the formal differences of isomorphism classes of finitely generated projective modules
over A, i.e., the Grothendieck group of the semigroup consisting of isomorphism classes of finitely
generated projective modules. A projective A-module is by definition a direct summand of a free
module. When A is the space C(M) of continuous functions on a compact space, this Ko-group
Ko(C(M)) corresponds to topological Ko-group Ko(M) due to Swan'’s theorem:

Theorem 2.1 (Swan [78]). Let M be a compact space. For a vector bundle E — M (with finite
dimensional fibers), the C(M)-module of the space T'(E) of continuous sections of E is finitely
generated and projective. Conversely, every finitely generated projective C(M)-module arises in
this way from a vector bundle over M. Furthermore, this correspondence induces the equivalence
of the category of vector bundles over M and the category of finitely generated projective C(M)-
modules, where bundle maps correspond to module homomorphisms.

Note that C(M) is unital since M is compact.

In the framework of C*-algebras, the Kp-group Ko(A) of a unital C*-algebra A is the
Grothendieck group of the semigroup consisting of isomorphism classes of projections in Mat,(A)
for some n € Zyo. By definition, a projection p € Mat,(A) satisfies p? = p = p*, hence defines
a finitely generated projective module pA®" (with an additional ‘Hermitian’ structure induced
from p = p*). Conversely, any finitely generated projective module over the unital C'*-algebra A
is isomorphic to pA®™ a projection p with n large enough (see {80]).

For a given trace Tr : A — C, a trace Tr : Mat,(A) — C is induced in the usual way. Since
p = p*, one obtains Tr(p) € Rx>q. Describe a finitely generated projective module E as E' =~ pA®™,
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Then, the induced trace on End4(F) is normalized as Tr(p) = Tr(1lgna,(z)). It is clear that this
value Tr(p) is the same for isomorphic projective modules and hence this Tr induces a map from
KO(A) to R. We denote it by tr : Ko(4) — R.

It is shown by the work of Pimsner-Voiculescu [60] that the K-groups of a noncommutative
torus AJ are the same as those of & commutative torus T9, Ko(49) ~ Z**™" ~ K;(49). On
the other hand, Rieffel studied the cancelation theorem for these finitely generated projective
modules for noncommutative two-tori (irrational rotation algebras) [67, 68] and then for higher
dimensional noncommutative two-tori [69]. The answer is positive if @ is irrational:

Theorem 2.2 (Rieffel [69, Theorem 7.1]). If E,F,G are finitely generated projective right A3-
modules such that E® G ~F &G, then E~ F'.

This implies that E =~ F if E and F represent the same element in Ko(A%). This is not true
if the cancelation theorem does not hold: [E] = [E @ G] — [G] = [F & G] — [G] = [F)] in Ko(T}).
Though the statement is given for C*-algebra A%, the result holds true even A is replaced by
the pre-C*-algebra AJ. Actually, for the proof of Theorem 2.2 and related Theorems, Rieffel [69]
employed the differential structure of A% and modules over it as we explain’ briefly below.

A connection on a right module E over A4 is a map V : L ® E — E'which is linear with
respect to the vector space L (6) and satisfies ‘

Vx(€-u)=Vx() u+é X(u)

forany { € F and u € Ag. In particular, a connection V is called a constant curvature connection

if the curvature of the connection is of the following form: for V; :=Vjy,,i=1,...,d,
Fy; Fy
Vi Vil = Fij - 1gna yg(B)» 27" = —-2-# €R. (7)

On a noncommutative torus Ag, one can construct a class of finitely generated projective modules
called Heisenberg modules (see [69, 47]). A Heisenberg module E over A% is the Schwartz space
S(M) on M :=RP x Z? x F for p,q > 0, 2p+ q = d, where F is a finite abelian group and hence
is a product of cyclic group Z, := Z/rZ. Let M := RP x T? x F and call this the dual space
of M. Here, any Heisenberg module is equipped with a constant curvature connection [69] (see
[47)). Its Chern character is defined as follows. Recall that L be the d-dimensional vector space
spanned by d1,...,d4. Here we switch the notation as e; := §;, i = 1,...,d. The basis of the dual

vector space L* is denoted e!,...,e4. The Chern character is defined as
F
ch(E) = Trexp (2 i) == ; Fijet Nél.

Let D C L and D" C L" be the lattices D ~ Z4, D* ~ Z", spanned by linear combinations of basis
e1,...,eqand el,...,e? with integer coefficients. Denote by A®V*"(L*) := @o<on<a A" (L*) (resp.
/\°dd(L*) = ®0<2n+1<d A27+1 (1*)) the even (resp. odd) part of the exterior algebra @%; A (L*)
over R. The corresponding integer part is denoted A®v*™(D*) (resp. A%%(D*)). Then, we have
the identifications:

Ko(A) = 227 > p%en (DY), Kq(AD) ~ 227 ~ n%%(DY), (8)
where recall that K;(A3) ~ K;(A9), i = 0,1, as we mentioned at the beginning of this section.
Therefore, we identify an element [E] € Ko(Ag%) with an even form u(E) € A®***(D*). The
following is the Elliott’s formula [11]:

ch([E]) = teou(E), (9)
8
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where © := } 1y7¢ j=107¢; Aej. This defines the Chern character map ch : Ko(A%2) — Aeyen(L*),
which is in particular injective for noncommutative tori [11]. Note that the leading part ch([E])| ro (L*)
coincides with the trace tr(E) € R. Rieffel showed that, for any image ch(Ko(A%)) with positive
trace, there exists a Heisenberg module. This, together with the cancelation theorem (Theorem
2.2), implies that:

Theorem 2.3. If the matriz 6% is irrational, then any projective module over A% is isomorphic
to a Heisenberg module.

Originally, in [69, Theorem 7.3, the parallel statement to Theorem 2.3 is given for Ad
instead of A7. The relation between the AJ version (Theorem 2.3) to the A% version ([69
Theorem 7. 3]) is given by [69 Proposition 3. 2] for any Heisenberg right .Ag-module E, one can
construct a right A%-module by the completion

Pmod-A > E— EQ® y A% € Pmod-Ad. (10)

2.3. Morita equivalence of noncommutative tori. Next, we discuss Morita equivalence of
noncommutative tori [70, 71], where Heisenberg modules played a key role.
Let Mod-A be the category of right modules over a (noncommutative) C-algebra .A For
E,F € Mod-A, elements in the space Hompjog.4(E, F) of morphisms from E to F are right A-
module maps. The space Hom 4(FE, F) has a right End 4(E) action and a left End 4(F) action; for
¢ € Hom4(E, F), e € End4(E), f € End4(F) and § € E, (4 0 €)(€) := ¢(e(£)) and (f 0 ¢)(£) :=
f(#(§)) in F. Thus, Hom4(F, F) forms a End 4(F)-End 4(E) bimodule. }
A (noncommutative) algebra A is called Morita equivalent to an algebra B iff Mod-A ~
Mod-B. The following conditions are equivalent [58]:
i) That A is Morita equivalent to B.
ii) There exists a .A-B bimodule P which is projective as both a left .A-module and a right
B-module such that

End4(P) ~ B, Endg(P) ~ A
iif) There exists an element E € Pmod-A such that End 4(E) ~ B
In particular, for a A-B bimodule P as in ii), the functors

(+)®4P:Mod-A — Mod-B, Homp( -, P) : Mod-B — Mod-A,

give the equivalence mod-.A ~ mod-B.
Rieffel introduced the notion of strongly Morita equivalence, which is a (pre-)C*-analog of
Condition ii) above.

Definition 2.4 ([66, Definition 2.8]). For a unital pre C*-algebra A, a right A-module F is called
a right A-rigged space if it is equipped with a map (, )4 : E® E — A such that
i) (@91 +y2)a = (&, 91)4 + (z,y2) 4 for any z,y1,y2 € E,
ii) (z,¥-a)a = (z,y)4a for any z,y € E and a € A,
iii) (z,y)4 = ({y,z)4)"* for any z,y € E,
iv) (z,z)4 > 0 for any z € E,
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and the linear span of (E, E) 4 € A, which forms an ideal of .4, is dense in 4. 2 A left A-rigged
space is also defined in a similar way.

Here, the inequality in iv) is defined for self adjoint elements a € A, a = a*; a < a’ for two
self-adjoint elements a,a’ € A iff a’ — a belongs to the positive cone, i.e., the spectrum of a’ — a
is contained in [0, c0) (see [9, p2 and p9],[80]). Note that the spectrum is real for any self-adjoint
elements in a Banach x-algebra A ([9, Corollary 1.3.4 (ii)].)

Definition 2.5 ([66, Definition 6.10]). For pre-C*-algebras A and B, an A-B bimodule P is called
a strongly Morita equivalence bimodule 3 if it is a left A-rigged and right B-rigged space satisfying
d (x,y)Az = I(y,Z)B for any x,y,2 € P,
o (a-z,a-2)4 < ||a]|?(z,z)4 for any z € F and a € A,
o (x-b,zb)g < ||b||*(z,z)s for any z € E and b € B.
Two pre-C*-algebras A and B are called strongly Morita equivalent iff there exists a strongly
Morita equivalence .A-B bimodule.

If P is a strongly Morita equivalence A-B bimodule of two unital C*-algebras A and B, then
P is finitely generated projective both as a left A-module and a right B-module with End 4(P) = B
and Endpg(P) = A [67, Proposition 2.1]. Thus, two strongly Morita equivalent unital C'*-algebras
A and B are always Morita equivalent as C-algebras. The converse is also true in the sense that
any Morita equivalence bimodule is equipped with a strongly Morita equivalence bimodule (see
[80, Theorem 15.4.2]). In this reason, hereafter we drop the term ‘strongly’.

Let O(d, d; Z) be the group defined by

0(d,d;Z) = {g € Matan(Z) | g'0g = J},  Ji= (0" 1"). (11)
1, O,

The group SO(d, d;Z) consists of elements g € O(d,d; Z) such that det(g) = 1. An SO(d,d;Z)
action on a generic skew-symmetric matrix 6 € Mat4(R) is defined by

R S
P Q

In fact, g(6) is again a skew-symmetric matrix in Mat4(R) due to the condition g € SO(d, d; Z),
and is well-defined iff P8 + R is invertible. One can define a dense subspace of the space of d
by d skew-symmetric matrices on which the SO(d, d; Z) action is well-defined, where it is shown
that a noncommutative torus A% is Morita equivalent to A%, if [70] and only if [71, 13] they are
related by 6’ = g(6), g € SO(d,d,Z).

In order to show that A4 and Ag(o) is equivalent for g € SO(d, d; Z), it is enough to show
it for each generator g € SO(d,d;Z) [70]. The following elements generate the group SO(d, d; Z)

9(6) == RO+ S)(PO+Q)™), g:= ( ) € SO(d, d, Z).

2For a C*-algebra A, a right A-module FE satisfying the conditions i)-iv) with the condition iv’), (z,z)4 = 0 iff
z = 0, is called a pre-Hilbert right A-module. A pre-Hilbert right A-module E is called a Hilbert right A-module if
the norm || - || : E — A defined by ||z]| := /[[{z, z)A||, z € E, is complete. A Hilbert right A-module E is called
full if it forms a right A-rigged space E (see [80]). '

3The term ‘Morita’ is omitted in the literatures [69], etc. Also, in (66, Definition 6.10], it was called an
imprimitivity bimodule.
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(25, 70}:
o(R) = (’j Rf,’_l), ReSL@Z) (12
u(3)=((1, 51’) Sh=_SieZ, ij=1,...,d (13)
(1] 1
%=, 1q 0 0, , k+q=d, 0<k<d, k:even. (14)
oq lq

To see'the Morita equivalence for elements p(R) and v(S) is easy. To see it for o (it is enough
to consider only the case k = 2), the corresponding Morita equivalence bimodule is constructed
explicitly in [70].

The converse, that A§ and .Ag, is Morita equivalent only if 8’ = g#, is first discussed in
[71] by introducing a stronger notion, gauge Morita equivalence, which employs constant curva-
ture connections on Morita equivalence bimodules (see also [47, 13]). This notion turns out to
be equivalent to the ordinary Morita equivalence for noncommutative tori [13] essentially since
there exists a constant curvature connection for any Morita equivalence bimodule due to Rieffel
(Theorem 2.3). If A% and A% are Morita equivalent to each other, then so are the C*-algebras
Ag and Ag. The strongly Morita equivalence A3-A% bimodule is obtained by the completion of
the strongly Morita equivalence A%-A4 bimodule via eq.(10). However, the converse is not true
for some special cases. See, [81, 54, 13, 12] and references therein, where more precise statements
on Morita equivalence of noncommutative tori are developed both for .Ag and Ag carefully.

2.4. Categories of projective modules over noncommutative tori. For a C-algebra A,

the full subcategory of Mod-.A consisting of finitely generated projective right modules is denoted
Pmod-A.

Definition 2.6. Let Modv-Ag be the category of finitely generated projective right modules
with connections. For two objects (Eq4, V,), (Eb, V) € Modv-.Ag, the space of morphisms is the
same as in Mod-Ag: HomModv_-Ag((Ea,Va),(Eb,Vb)) = Homyoq4 4d(Fa, Eb). The composition
in this category is the composition of Ag-bimodule maps.

The category Modv-.Ag is equipped with the following structure: for any X € L, { € F
and ¢ € HomModv-Ag((Ea’ Va))b(Ebs Vb))’

Via,x(8) 1= Vi, x (¢(£)) — ¢(Va,x(£))- (15)
Also, it is clear that
Lemma 2070 FOT (Ea, Va), (Eb’ Vb), (Ec, VC) (S MOdv-Ag aﬂd ¢ba G HomModv_.Ag((Ea, Va), (Eb, Vb)),
¢ch € HOmModV.Ag((Eth)’ (B¢, V), one has
Vea(beh © da) = (Veb(@eb)) © Bba + Deb © (Voa(Pba))-
O
For an element (E,V) € ModV-Ag and an isomorphism ¢ : E' — E in Mod-A%, a connec-
tion V' on E’ is induced as
V' = qb"l oVo¢. (16)
9
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On the other hand, as we saw in Theorem 2.3, any finitely generated projective module is isomor-
phic to a Heisenberg module, which is equipped with constant curvature connections. By eq.(16),
if V is a constant curvature connection, the induced connection V’ on E’ is also a constant cur-
vature connection. Thus, any finitely projective module E over Ag is equipped with a constant
curvature connection. Let us conclude this fact in terms of categories.

Definition 2.8. Denote by PmodV-Ag the full subcategory of Modv—Ag consisting of finitely
generated projective right modules with connections. The full subcategory of Pmodv-.Ag consist-
ing of modules with constant curvature connections is denoted Pmod®*-A4.

The upper script {’f stands for ‘standard’; the Heisenberg modules with constant curvature
connections are often called standard modules, see [63]. This full subcategory »Pmod’f-Ag plays a
key role in discussing homological mirror symmetry in section 5.

Corollary 2.9. There ezists a surjective map Ob(Pmod*-A%) — Ob(Pmod-A%) by forgetting
the structure of connections. O

For a given (constant curvature) connection V on E, any connection V' on E is described
of the form

V; = V; + ¢i, ¢; € EndAg(E).

We shall employ the following lemmas later for the case A = Ag, but the fact itself holds
true for any (noncommutative) algebra A.

Lemma 2.10 (See [67, Proposition 2.2)). For any E,, Ey € Pmod-A and ¢p, € Homppmog. A(Eq, Ep),
®ab € Homppmod.4(Es, E,), one has

Tr m(@aps Pba) = Tr m(Pba) Pab)-

Proof. Any finitely generated projective .A-module is by definition isomorphic to a module of
the form p(A®") for sufficiently large n, where p is a projection in Mat,(A). For E, ~ p,(A®"s)
and E} ~ p,(A®™), any element in Hompyod-4(Fs, Ep) is described as

pb¢pa’ ¢ € Matnbxf;“ (A)-

Similarly, any element in Hompmog-4(Eb, Eq) is described as p,ypp, ¥ € Matn,xn,(A). As the
trace Tr on Mat(A), one has

Tr m(padps, Pv¥Pa) = Tr m(Py¥Pa, Pa®Pb)
from which the lemma follows. 0O

Lemma 2.11. For E,, Ey, € Pmod-A$§, the map
Trm : Homppoq. 4 (Es, Eq) ® Homppyoq. 48 (Eas Bp) — .Agn
is nondegenerate.

Proof. This follows from the Morita equivalence of .A§ with A§ and the construction of Heisen-
berg modules in [69]. We shall see this explicitly in the case of noncommutative two-tori Ag in
the next subsection. a

10
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2.5. Explicit construction of Heisenberg modules over noncommutative (two-)tori.
In order to discuss homological mirror symmetry, we prefer an explicit description of the space
Hompmod.4(E, F') of morphisms in the category Pmod-A for A = A%. In this subsection, we
first explain that the space Hompmoq.4(E, F) is again described by a Heisenberg module over
a noncommutative torus A% which is Morita equivalent to Ag (Corollary 2.14). After that,
we shall concentrate on the case of two-dimensional tori, where the Heisenberg modules are
presented explicitly and the composition of morphisms, described again by Heisenberg modules,
are constructed explicitly.

Again, let us start from a general noncommutative algebra A. First, the following is a
standard fact (for instance, see (52, p489, 18.25]).

Lemma 2.12. For any finitely generated projective right A-module P € Pmod-A and E €
Mod-A, one has
Hompmod.4(P, E) >~ E ®4 (P*).
O

Lemma 2.13. For a Morita equivalence B-A bimodule P and a finitely generated projective right
A-module E, the tensor product E® 4(P*) is finitely generated and projective as a right B-module.

Proof. The tensor product of finitely generated modules is finitely generated. On the other
hand, ( - ) ®4 (P*) : Mod-A — Mod-B induces an equivalence of categories, so a projective
module E € Mod-A is sent to be a projective module in Mod-B, where recall that E € Mod-A
is projective iff any map f : E — F can have a lift f' : E — F/, f = so f' for any surjection
s: F/ - F. O

These lemmas together with Theorem 2.3 lead:

Corollary 2.14. For a Morita equivalence A3-A%, bimodule E and F € Pmod-A§, the space
Hompyoq.44 (E, F) is isomorphic to a Heisenbery module over Ag,. m]

Here, recall that for any element g € SO(d, d; Z) such that g(0) is well-defined, there exists
a Morita equivalence Ag—.Ag(g) bimodule and a Morita equivalence Ag(a)-Ag bimodule. Let us
label the Morita equivalence Heisenberg Ag(e)-Ag bimodule by Egg. (cf. By the discussion in
[71] we see that the constant curvature of E, 4 is given by P(Q + P§)~!. ) This labeling is
useful though it has some overcounting in the sense that E,g ~ Ey ¢ can happen even if g # g.
We shall see this fact in two-tori case later below. Since End Ad (Eq,) =~ Aj is not decomposed
into a direct sum of smaller algebras, E g is not decomposed into a direct sum of smaller right
Ag-modules. Such a Heisenberg module is called basic in [47]. The Morita equivalence theorems
in the previous subsection guarantee that any basic Heisenberg A% module is of the form. On the
other hand, since any Heisenberg module becomes a Morita equivalence bimodule, any finitely
projective right .49 module is isomorphic to a direct sum of basic Heisenberg right .Ag modules
E, 4. Thus, to understand the structure of Pmod-.Ag, it is enough to discuss it for these basic
modules Eg 4.

Lemma 2.15. For two Heisenberg modules Eg, ¢, Eg, ¢ € Pmod-A$, one has

Hom(Ey,, Eg,) 2 Eg, ® gd (Eg,)* = By -1 o -

Proof. For a given g € SO(d,d;Z), the Chern character of E,¢ determines the isomorphism
class, which leads this lemma. O

1
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Next, we would like to construct a bilinear map

m: Eycgb' Lao @ Egay&‘ 1946 Egcga" 1,908 (17)

so that the following diagram commutes:

m: Hompmog. ag(Egy Ege) ® Homppoy 4¢(Egas Hgy) —» Hompyog 4g(Ega, Bg.)
m: Egesit 00 ® Egygit a0 > Bygs ga’

. Here, the vertical arrows are isomorphisms. The map (17) is given by constructing the tensor
product Egcg;".gae ® Ady B 0:1.900 = By g1 4.0 explicitly so that the above diagram commutes.
When it is defined, an isomorphism E, -1 o, — Homp,,,4. Ad (Egq, Ey,) is given by

Ega = ¢ba ® 4 | Eg, C Ey, (18)
for ¢pa € Egbg;‘, 746" Then, the linear map

Vab : By o1 0.0 = Egygrigad

‘s induced from V5 on Hompp,og 4d(Eq, 0) B, 0) in €q.(15).,

For higher dimensional noncommutative tori, a class of Heisenberg modules (corresponding
to line bundles) and the product (17) are constructed explicitly in [34].

Now, let us concentrate on two-dimensional noncommutative tori [63, 32]. We follow the
arguments and notation in [32] (but see Remark 2.18). For d = 2, the group SO(d, d; Z) reduces
to SO(2,2;Z) ~ SL(2,Z) x SL(2,Z). Clearly, the generators (12) form one side of SL(2,Z). The
other generators (13) and (14) then commute with the generator (12) and form another SL(2,Z).
More explicitly, the embedding SL(2,Z) — SO(2,2;Z) is given by

(r s)H(r-lg s-J) J-=(0 1>
P q -p-J ¢q-13)° T \-1 0/

This SL(2,Z) acts on 6 := ( % §) by

90=;g:;, g=(; ;) ES.L(Z,Z) (19)

and the SL(2,Z) consisting of (12) acts freely on 6. Thus, we concentrate on this SL(2,Z) of
this side and denote by g an element in SL(2,Z).

The Heisenberg modules over a noncommutative two-torus A3 are given as follows. For
each g = (}¢) € SL(2,Z), if p = 0 we just set Egg := A2. If p # 0, the Heisenberg module Eg g
over A2 is given by the Schwartz space S(R x (Z/pZ)). The right action of A2 is defined by

(fU1)(2,5) = f(z,§)e™ETD),  (fU)(z,5) = f (m - g — 8,5 - 1) (20)

for f € E44, where z € R and j € Z/pZ. One can check directly that U and U; in fact satisfy the
noncommutativity relation (1). Note that the Heisenberg module E, ¢ depend only on p and ¢ and
is independent of r and s. If (p,q) = (¢',¢’) for two elements g = (}3),9" = (;: ;:) € SL(2,Z),
then there exists an integer m € Z such that (',s') = m(p,q). The endomorphism algebra
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End 42 E g is isomorphic to the noncommutative two-torus Ago. One can find generators Z;, Z;
of its right action as

, z_ 4 . , 1 .
(Zlf)(xh?) = 32"'(:”_"’ P)f(.’L‘,J), (sz)(:l:,]) = f (z - ;:-7 - 7‘) . (21)
These generators satisfy the following relation
212y = e~ 20 7,7, (22)

where one sees that the replacement of (r,s) by (r’,s’) = (r,s) + m(p, q) leads to g0 = g0 + m
and gives isomorphic algebras .42 28 = Azo These E, g complete the list of all basic Heisenberg
A% modules.

The Heisenberg module E ¢ is equipped with the following constant curvature connection:
0 2mig 27rip 2mio

= — g =
g+p0.  q+pd’

579 a,B €R, (23)

where the curvature is [V, V] = 27ip/(q + pf). In eq.(23), @ and 3 parameterlze the moduli
of constant curvature connections [8, 47]. By gauge transformation V; — (Z;)'V,;Z;, we have
a~a+1and §~ 8+ 1. The Chern character turns out to be '

: V1, Valdzi A dz +
‘ch(Eg.o)='I‘rexp([ 1, Valday 2)=Iq+p0|+|%+—;,lp,

27
that is, rank(E, ) = 'I‘r(lEndT2 (Eg0)) = g+ pb] and first Chern class is (Jg+p8]/(q+ p8))p. This
implies that u(E,s) = +(q + pda:l A dz3) € Ko(AZ2) by the Elliott’s formula (9), where the sign
is determined as + = |q + pf|/(g + pb).
Next, we would like to define the space of morphisms Hom(E, g, Eg, 6) between two Heisen-
berg modules By, ¢ and E, 9, where g,, g € SL(2,Z). Denote

- -1 . Ty Sp qa —8a - Tha Sba ) 24
Jba = 9% (Pb Qb) (—pa ra) (pba qba) (24)

If ppo = 0, we define Hom(Ega,g, Eg,0) = -Aa , where 8, := g.0. If psp # 0, we define
Hom(Eg, 9, Eg, 6) ~ Eg, 0, 88 A},-A} bimodules. Here, Egbmgo = S(R x (Z/ppaZ)), where
the left .Azb action and the right A action are defined by eq.(20) and eq.(21) with the replace-
ment of g and 6 by gy, and 6,, respectively. However, we prefer to rescale elements ¢y, € E,,_ o,
such as
¢£a(z’.7) = Pba (I-_:_Z-J;?’j) . (25)

We denote by Eg(gs, ga) the Agb-Aga bimodule obtained by the rescaling of Eg,, ¢,. Elements in
®ha € Fo(gs, ga) are again denoted ¢pq, etc.

The bilinear map (17) is then constructed as follows. If pp, = pep = 0, this tensor product is
just the usual product in A3 . If ppa = 0 and pe # 0, it is given by the right action of A ~ A .
In the case py, # 0 and p.p, = 0, it is given by the left action of Azc o~ .Agb. In the case pcppoa # 0,
if peg = 0, the product ma : E¢(gc, 95) ® Eo(gp,9a) — Eo(ge, 9a) is given by

ma(Bess dba) = —— PERUARIZEDY / dzder(®, —qens)(Boa (2, 5) (U2) ™™ (U1) ™),

6
%atPa (n1,n3)€2? i€y

(26)
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where Eg(gc,9a) ~ Aj ~ A} . Then, for the remaining generic case pppapes # 0, it is given by

m2(¢cb;¢ba.)(z’j)

6 6
=Z¢cb(£+%—pc_ (u_%j) ,u) '¢ba (m_gg.j:_gg__ (u_.p_cQJ) ’—Tbau+j>. (27)

weZ be ca Dba Dca

One sees that this is essentially the pointwise product in S(R), with a summation which runs
over u € Z corresponding to translations on R.

The linear map Vi : Eg(gs,9a) — Eo(gb, ga) corresponding to eq.(15) can also be given
explicitly [32].

Remark 2.16. For any gq,9p,... with fixed (pg,qs), (Pv, @), ..., the bimodule structure of
Eo(gb, 9a) and their composites do not depend on the choices of (r4,35), (b, 3p), .... First; for
9a, gp with fixed (Pa,4a), (Pb, @), Pra is unique, and gy, and ry, are unique up to Z/py.Z (see
eq.(24)). This, together with the formula gps + Peafa = (g + Ps9)/(da + Pab), shows that the
bimodule structure is independent of the choices. One can check similar facts for the formula of
products (26) (27).

Remark 2.17. The Heisenberg module Fg(gy, g,) in fact defines a strongly Morita equivalence
bimodule in the sense of Definition 2.5. First, for any gq,gs € SL(2,Z), there exists a canonical
isomorphism ' : Eg(gs,9a) — Fo(9b:9a). If Pbe = 0, then Eg(gs, ga) =~ A} = A}, and ul = u*,
u € A} , the star conjugation. If py, # 0, it is given by

(@1a)(®,5) = ($a) (@ —TabJ) A (28)
for any ¢y, € Eg(gp,gs). Using this operation, for ¢, ¢’ € Eg(gs, ga), define the inner products by
¢\ a =ma(@)9),  (#. 0 =ma(d,8").

One can check that these inner products satisfy the conditions in Definitions 2.4 and 2.5. Lemma
2.11 is also checked directly, which implies that (¢, ¢) A= 0 iff ¢ = 0, etc. See also [68, section
1.3]. '

Remark 2.18. In [32], the structure of the categories of Heisenberg left modules is discussed
instead of right modules here in order to compare it to the corresponding Fukaya category as in
subsection 5.2. The relation between the notations here and those in [32] is obtained by 6§ <~ —6
and p & —p.

3. MIRROR SYMMETRY OF TORI

Mirror symmetry is now interpreted in various ways. We define mirror symmetry of flat
tori in a modern framework called generalized geometry [24].

3.1. Generalized geometry. Let M be a real 2d-dimensional manifold. If M is equipped with
a linear map I : I'(TM) — I'(T'M) on the space of smooth sections I'(T'M) of the tangent bundle
TM such that I? = —1, (M,I) is called an almost complex manifold, where I is the almost
complex structure. If the almost complex structure I is integrable, i.e., the +i eigenspace of I
in I'(T'M) ® C is closed with respect to the Lie bracket [, | in I'(T'M) ® C, then (M, I) forms a
. complex manifold.

On the other hand, given a two form w € Q2(M) := D(A?T*M), (M, w) is called a symplectic
manifold iff the two-form w is nondegenerate, i.e., (w)% € Q29(M) is a nowhere vanishing 2d-form,
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and is closed. Note that w can be regarded as a linear map w : T(TM) — I'(T*M) by X — 1x(w),
where ¢ x is the inner derivation of X € I'(TM).

Now, in order to treat complex manifolds and symplectic manifolds in a uniform way, extend
the canonical pairing between I'(TM) and I'(T*M) to a quadratic form

() :T(TM & TM*) @ T(TM & TM*) — C®(M) (29)

defined by (X + o, Y + 8) := a(Y) + B(X) for any X,Y € I'(TM) and o, 8 € I(T*M).
For an almost complex manifold (M, I), if we consider the adjoint maps I* : T(T*M) —
M),
(I"e)(X) := a(I(X)),
of the almost complex structure I : I'(TM) — T'(TM), then one sees that Z; := I & ( -I*):
I'(TM &TM*) — T'(TM & TM*) preserves the quadratic form (29):

Z(X+a)I(Y+08) = (X +a,Y +0).

(cf. —(I*a)(I(X)) = —a(I%(X)) = a(X). ) On the other hand, for a nondegenerate two-form
w € 0%(M) and the associated linear map w : I'(T'M) — ['(T*M), we can define w* : I(T* M) —
I'(TM) by

(@) (w* (@) = a(Y)
for any @ € I(T*M) and Y € I'(TM). Then, I, := —~w ~w* : I(TM & TM*) - I(TM & TM*)
again preserves the quadratic form (29), where the natural lifts of w : I'(TM) — I'(T*M) and
w* : I(T*M) — I(TM) to those on I'(T'M) & I'(T*M) are denoted by the same letters w and
w*. * One sees that the condition that (Z;)? = —1 is equivalent to that I? = —1. Similarly, the
condition that (Z,,)2 = —1 is equivalent to that w : I(TM ® TM) — C®(M) is skew-symmetric.
Thus, we arrive at the following definition:

Definition 3.1 (Generalized almost complex manifold [24]). A generalized almost complex struc-
ture Z on a smooth manifold M is a linear map Z : I'(TM & T*M) — I(TM & T*M) which
preserves the quadratic form (29) and satisfies ()2 = —1.

We prepare terminologies of Lie algebroids (see [56]) to define integrability conditions.
Definition 3.2 (Courant bracket). A Courant bracket on (TM @ TM*") is a skew symmetric
bilinear map [, | : (TM & TM*)QI'(TM & TM*) — I'(TM & T M*) given by

X+a,Y+8]=[X,Y]+txdB — tyda+ %d(cya —ux0)
forany X + o, Y + e T(TM & TM*).

Note that this bracket does not satisfy the Jacobi identity, so I'(TM & TM*) does not form
a Lie algebra with respect to the Courant bracket. A systemization of I'(TM & T'M*) with the
Courant bracket leads to the axiom of Courant algebroids [55].

Definition 3.3 (Lie algebroid [65]). A vector bundle £ — M on a smooth manifold M is called
a Lie algebroid if L is equipped with a Lie bracket [, ] : T(£) @ I'(L£) — I'(£) and a bundle map
a:T'(L£) = (T M), called an anchor map, satisfying the following conditions:

e o is a Lie algebra homomorphism, i.e., a([X,Y]) = [a(X),a(Y)] for any X,Y € I'(L),

o [X,fY] = fIX,Y] + (a(X)f)Y for any X,Y € I'(£) and f € C®(M).

4The minus sign for w and w* is just for conventional reason. See the matrix expression in Example 3.6.
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Now, suppose we are given a generalized almost complex manifold (M,Z). Then, since
(Z)? = —1, we can consider the i eigenspace L4 of (TM & T*M) ® C, i.., the direct sum
decomposition £, & L_ = (TM &T*M)RC as vector bundles over M such that T(L4) = i L.
The Courant bracket in I'(T'M & T*M) is extended to that in I'(TM & T*M)Q C. I (L) is
closed with respect to the Courant bracket, then so is I'(£_), and vice versa, since I'(£4) are
complex conjugate to each other. In this case, Z is called integrable. The vector bundle £, — M
(or £ — M) then forms a Lie algebroid iff Z is integrable. '

Definition 8.4 (Generalized complex manifold [24]). A generalized complex manifold (M, I) is
a generalized almost complex manifold (M, Z) such that T is integrable.

Orie can see that, for an almost complex manifold (M, I), the condition that I is integrable
is equivalent to that Z; is integrable. Similarly, a nondegenerate two form w € Q2%(M) is a closed
two form iff Z, is integrable. Hence, complex manifolds and symplectic manifolds actually give
typical examples of generalized complex manifolds.

We discuss tori with flat background, so the integrability of any almost generalized complex
structure is automatically satisfied. ‘

For later convenience, let us discuss a local expression of these structures in terms of basis.
We choose a basis (ey,...,eq;€e!,...,e%) of I'(TM & T* M), where €ayia = 1,...,d, are bases of
I(TM) and €%, a = 1,...,d, are bases of I'(TM*) such that e®(ey) = 65. The condition that
I:7(TM&TM*) - I(TM & TM*) is an almost generalized complex manifold structure is
expressed as '

I = -1, I'¢I =gq, q:= (g; (1)3).
We give some examples of generalized complex manifolds.

Example 3.5 (A complex manifold (M, I)). Express I(e,) = epI%,, where I, is locally a function
in C°(M). The corresponding matrix is also denoted I := {I%}q. By definition, it satisfies

I? = —1 &s a matrix. On the other hand, express I*(e®) = €’I*,® and I* := {I*’}a. By
definition, I% = e*(I(ep)) = I*(e®)(ep) = I*,* and hence
I* = It

as matrices, where ¢ indicates the transpose. The corresponding generalized complex structure
Zr is expressed as
I O
n= (1 2).

Example 3.6 (Symplectic manifold (M,w)). Similerly, for w(eq, ep) =: wab, by w(eq,w*(€?)) =
e®(eq) = 68 one obtains

7..=(0© —w1

YT \-et 0 )7

One sees that the condition (Z,,)? = —1 is equivalent to w* = —w.

Example 3.7 (B-field transformation). In local matrix expression, let us consider the following
transformation on (T'M & T*M):
14 04
(B ld) ’

16



43

This means that the matrix B defines a two-form B € I'(A?T*M). One sees that this transfor-
mation is invertible, where the inverse transformation is (_15 ‘1’;), and preserves the quadratic
form q. Thus, for a given generalized almost complex manifold (M, I),

_ (1a 0Oq4 1; 04
1(B) = (B 14) * (—B 14)
defines a new generalized almost complex manifold structure. In particular, Z(B) is integrable
and (M, Z(B)) forms a generalized complex manifold iff B is a closed two-form [24]. In this case,

I(B) is called a B-field transform of Z. Given a complex manifold (M, I), the B-field transform
of Z; is of the form

14 ON(I 0\ (14 O\ [ I 0 (30)
B 14/\0 -1')\-B 1,/ \BI+I'B -It)°
On the other hand, given a symplectic manifold (M,w), the B-field transform of Z,, is of the form
g 0\/0 -w\(1 0\ ([ w!B ~w™t (31)
B 13/\w 0 -B 1,/ \w+Bw'lB -Bwl)’ .

Remark 3.8. The equa.tic};n (30) implies that the B-transformation preserves the oomp}ex struc-
ture I, I;(B) = I, iff B isa (1,1)-form, see Lemma 3.11 iii) in the next subsection. If B is not
a (1,1)-form, then the Z;(B) no more defines a complex structyre. This Z;(B) is believed to
correspond to gerby deformation of the complex structure I [1].

Next, we discuss a generalization of Kéhler manifolds in this framework. Recall that
(M, I,w) is called a Kdhler manifold iff (M,I) is a complex manifold, (M,w) is a symplectic
manifold, and G := w(I ® 1) : I'(TM) @ I'(TM) — C®°(M) defines a Riemannian metric, i.e., G
is symmetric and 'positive definite. In the expression where we regard the symplectic two form as
a linear map w : ['(T'M) — ['(T*M), the metric is given by

G(&m) = ((wo I)(£))(n)-

In local matrix expression I(es) = eI, w = {wap = w(€a,es)}a» and G’ = {Gap = G(eq,€p)}abs
the condxtlon that the metric G is symmetric is

G=I'w=-wl. (32)

This implies that the Kéhler form w is a (1,1)-form with respect to the complex structure I, see
Lemma 3.11 iii).

Definition 3.9 (Generalized Kahler manifold [24]). For a smooth manifold M with two given
generalized complex manifold structures (M,Z..) and (M,Z_), (M,Z4,Z_) is called a generalized
Kaibhler manifold if Z, and Z_. commute with each other, Z,Z_=ZI_7,,and

Gi=—(-,I3I_(+ )} : TTMT*'M) @T(TM & T* M) — C*(M) (33)
defines a positive definite bilinear map on I'(TM & TM*).

For a Kihler manifold (M, I,w), Zr and Z,, commute with each other since w is a (1,1)-
form (32). Thus, a Kahler manifold (M, I,w) is an example of a generalized Kéhler manifold
(M,I;,1,).
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A general expression of a generalized Kéhler manifold structure (M,Z,,Z_) is known [39,
40, 24]. For a given smooth manifold M, any generalized Kéhler manifold structure Z. is described
in the local matrix expression as

_1/1 0\ (I . —(i'Fw)\/1 o
n=3(p 1) Gl I (B 9) 2
where (M, I1,w4) and (M, I_,w_) are two Kéhler manifold structures and B € Q2(M) is a closed
two form called the B-field. ,
The case I = I, = I_ and B = 0 corresponds to that (M, I,w) is a Kéhler manifold,
where w = w4 = w-~. The condition that Z, commutes with Z_ correspond to that the bilinear
form G = w(I ® 1) is symmetric, i.e., w is'a (1,1)-form. For the case I = I, = I_, let us turn
on B # 0. If B satisfies BI + I'B = 0, i.e,, B is a (1,1)-form (see Lemma 3.11), then I is
preserved as we saw in eq.(30), though w is changed as in eq.(31). Then, we may think of the
(1,1)-form w — iB as a complexified Kéhler form (see Definition 3.13). If B is not a (1,1)-form,
the deformation Zj(B) of the complex structure I is expected to describe a gerby deformation
in the sense, for instance, of Barannikov-Kontsevich [1]. On the other hand, the I  I_ is
expected to describe noncommutative deformation of a complex manifold [39]. An attempt to
understand these deformation should be to:consider some category associated to a generalized
complex manifold.

3.2. Local calculation for complex and Kéhler manifolds. In this subsection, we discuss
some details on local structures of complex and Kéhler manifolds.

For a given complex structure I, one can consider the +i-eigenspace L4 of I in TM®C which
is described locally by Ly € Matogxqg(C™®(M)) such that L = (L4,L-) € Matygxe4(C™®(M))

satisfies i1 0

IL=LJ,, J0:=(0 —i-1>.
As above, we denote by the same notation L. the matrices and the corresponding vector spaces.
We prefer another convention; since I2 = —1, the transpose I'* also satisfies (I*)2 = —1 and hence

has its +i-eigenspace L%.. Thus,

I'L* = L*Jy.
Namely, (e!,...,e?3)L3 defines the +i eigenvector space with respect to I, which implies L* =
L%, the complex conjugate of L%.. Then I = L*Jo(L*)™!, and (I*)? = —1, which implies that
L* is at least nondegenerate. These facts lead that, by an appropriate choice of basis (e!,...,e%),
one can express L} locally as

where 7 € Matnxn(C®(M)) and 7 is the complex conjugate. Denote Im(7) := 77, Re(r) := 7g,

then
(L,)_l _ —(2ir) "7 (2irp)? _ (2irr)™? 0 -7 1
T\l + (2im) Y - 0 i)\ -1
(T YL (2 (Y e
—TRT; TR—TI TRT] TR 1 -1 O -mr 1

The transpose of I above then gives the local expression of I. Now, the space 2}(M) ® C of
smooth sections of T* M @ C, spanned locally by €!,...,ed over C>®(M)®C, has a decomposition

and

18
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Q1(M)®C = QLO(M) & QO1(M), where Q19(M) and Q%!(M) are the space of smooth sections
of LY and that of L%, respectively. More generally, for a given almost complex manifold (M, I),
one has the decomposition

QO"(M) ® C = @pyq=rWPI(M),
where OP(M) := T'((AP(L3)) A (A(LY))) is the space of smooth sections of (AP(L3.)) A(AY(LL)).
Definition 3.10. An element in QP(M) is called a (p, g)-form.
The following fact is used frequently in this article.

Lemma 3.11. For an almost complex manifold (M, I), consider the local expression as in eq.(35).
‘For any two form f € Q%(M) and its local expression

d
~ 1 o
f=3 Z Fijet nél, F = {F;}i j=1,..,2n € Matn(C*(M)),
4,Jj=1
the following statements are equivalent:
i) f is a (1,1)-form.
t
ii) The matriz F satisfies (1 —1,) F, ( Tl ) =0.
~—dn

iii) The matriz F satisfies I'F + FI =0,
iv) The matriz F is expressed as

po(l O\ (1 O\ (A f)(1 0)(1 T}tz)
TR 1 0 =1 ~fa fi 0 T} 0 1
for a skew-symmetric matriz f; € Mat,(C°°(M)) and a symmetric matriz f, € Mat,(C*®(M)).

Proof. These equivalences are obvious when we describe (with loss of generality) the matrix F
corresponding to the two-form f € Q2(M) locally as

po (1 O\ (1 O\ (£ £\(1 0) (1 T}tt)
“\mr )\O 7/ \~ff f3)\0 7)\0 1
for skew-symmetric matrices f1, f3 € Mat,(C™(M)) and f; € Mat,(C*°(M)). One sees that the

condition that F is of (1,1)-form is equivalent to that f; = f3 and f = f§. O

Recall that, for a given Kéhler manifold (M, I,w), as 2n by 2n matrices, one has the relation
G = I'w = —wI and hence the constant two-form w € Q2(M) is a Kéhler form only if it is a
(1,1)-form by Lemma 3.11.

Corollary 3.12. Given a Kdhler manifold (M, I,w), the Kéhler structure is ezpressed locally as
. T € Matp,(C®(M)) such that Im(r) is positive definite and

1 0\(/1 0\[/w w) (1 0)/1 74 -
= Mat, (C*(M
v (m 1) (o 1-,) (—wz w1> (o r;> (0 1) € Matan(C%(M))

with wy,ws € Mat,(C®(M)) skew-symmetric and symmetric, respectively, such that (92 7w1) is
positive definite.

Proof. We see that the corresponding metric G is written as

G_lO 1 0\ (w2 -wn1\(1 O 17}1)
“\7r 1/\0 7/ \w1 wy/\O T5/\O0 1/
Thus, these data define a Kéhler structure iff the matrix (2 74!) is positive definite. 0
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Definition 3.13. A symplectic manifold (M,w) with a two-form B is called a complezified sym-
plectic manifold if there exists an almost complex structure I on M such that w and B are
(1,1)-form with respect to I. Furthermore, when (M, I,w) is a Kahler manifold, (M,I,w,B) is
called a complezified Kdhler manifold.

A statement similar to Corollary 3.12 applies to complexified Kéhler manifolds.

3.3. T-duality and mirror symmetry for tori. For a generalized Kihler manifold (M,Z.),
where Z: are given by eq.(33), let us describe the quadratic form G in terms of G and B. One
has .
- BC-1 -1

~mz= (°1 257 A ). (36)
This matrix is the one which is familiar to people in string theory. In string theory, there is one
of the most important duality called T-duality. There are various generalizations, but mainly flat
tori are discussed for the T-duality. A flat torus is by definition a torus with a metric described by
a constant matrix G and a constant two form B called the B-field globally with respect to a basis
(e1,...,€q4). So, let us consider this situation, where the above matrix (36) is just a real valued
matrix in Maty(R). This matrix (36) in Maty(R) defines a quadratic form H,g, : (Z¢ ®Z% - R

% G-BG'B BG™\ (w
“emip” o) ()

for (w,m) € (Z4®Z4%). This H,.r, is just the zero mode part of the Hamiltonian of a closed string
on the flat torus ("%, G, B) (up to a constant). Here w* = (wy,...,wq) is called the winding mode;
w; € Z corresponds to the degree of the map from S (closed string state) to the cycle in i-th
direction of the torus 7¢. The number m! = (mi,...,mq) then corresponds to the momentum of
the closed string; they take the value in Z4 up to constant since the target space T is compact (in
the sense in Physics). The lift of these data to N = 2 superstring setting by Kapustin-Orlov [40]
became an origin of generalized geometry. However, we first give definitions of T-duality group
and mirror symmetry in our restricted case of flat tori. Some relevant background in physics will
be mentioned in order at the end of this subsection. Providing full details on the background of
mirror symmetry needs 1000 pages and is out of our purpose, see [28].

The group g : Z% @ Z* — Z% @ Z* preserving the lattice (Z¢ ® Z4,q) is O(d, d; Z) (eq.(11)).
For any g € O(d,d;Z), there exists a transformation (G, B) — (9(G), g(B)) which preserves the
quadratic form (see [22, 40])

Hzero(9(G), 9(B))(wym) = Hiero(G, B)(g(w,m)). (38)
Thus, the group O(d,d;Z} is called the T-duality group, where (T%, G, B) and (T, 9(G), g(B))
are said T-dual to each other.

Next, we discuss a lift of this symmetry on flat tori to generalized Kéhler flat tori. Here, we
say a generalized flat Kdhler manifold M is flat if TM — M and then T*M — M are trivial vector
bundles and the matrices (34) describing a generalized Kahler structure are constant globally with
a suitable basis of TM & T*M. So, now, M = T?", First, for a given generalized complex flat
torus (T2, ), so T € Mata,(R), a constant matrix, consider the transformation

9(T):=g"'Tg, g€ O(2n,2n|Z).

Since O(2n, 2n; Z) preserves the inner product g, g(Z) again defines a generalized flat torus. Sim-
ilarly, for a given generalized Kéhler flat torus (T2",I..), (T?", g(Z+)) again defines a generalized
Kihler flat torus. Since a generalized Kahler flat torus (72", T,.) is determined by the constant

20
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matrices (G, B, I+,1.), g(T4) gives a transformation ¢(G, B, I, I -). Thus, we obtained the lift
of the T-duality to N = 2 superstring setting.

Now, we are interested in the special transformation given by o, € O(2n,2n;Z):

Definition 8.14. For a 2n-dimensional flat generalized Kahler torus (T'2",Z..), its mérror trans-
form (T?", 1) is defined by

1000 1000
R 0001 0001
=lo0010|/™|loo0 10| (39)
0100 0100

where 1 := 1, 0 := 0, thé n by n matrices.
We define the mirror transform I of a flat generalized complex torus T by the same formula
as in eq.(39). '

It is clear that this gives a Z; symmetry (involution) on the set of flat generalized complex
or Kébhler tori. The mirror-transformation (39) means we fixed the base torus T™ corresponding
to the first n entries and take T-duality for the remaining T™ regarded as a fiber over the base
T™, see at the end of this sn%bsection.

Let us observe this mirror symmetry explicitly in an example. In order to do that, we first
study the moduli of flat Kahler tori. Recall that a flat Kahler torus is described by constant
matrices I and w and then the metric G := w(I ® 1) is also described by a constant matrix.
All the arguments in the previous subsection apply here by regarding the matrix elements as
constants. In particular, by Corollary 3.12, one iminediately obtains the followings.

Proposition 3.15. The space of flat Kdhler structures on a torus of real dimension 2n is a
manifold of dimension 3n2. A complez structure I is described by T € Mat,(C) such that Im(7)
is positive definite as in eq.(35). Then, the Kihler metric w € Mat,(R) is then of the form

o= 1 0\/1 0 w1 we) /1 0\ /1 ‘r}z)
"\ 1J\0 1) \~wy wi/\O ) \0 1
with wy € Mat,(R) and is wy € Mat,(R) a skew-symmetric matriz and a symmetric matriz,

respectively, such that (42 741) is nondegenerate.

Proof. The dimension of the space of constant complex structures I = {7y, TR} is 2. n? and the
dimension of the space {wy,ws} is n?. O

Coroilary 3.16. The space of flat complezified Kihler tori of real dimension 2n is a manifold of
dimension 4n2.

Proof. The space of constant B-fields is also of dimension n? since they are (1,1)-forms. (]

Now, we observe the mirror dual for a complex torus (72", I) (as is done for instance in
[46]). Using eq.(35), the corresponding generalized complex structure Z; is

—rhrbt —rhrbTlet 0 0
I; = ! rhlrh (1) 0—1
0 0 T TR —T7
0 0 TRTFITR +7T1 —TRT[ !

for any 7 and any positive definite 7;.
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On the other hand, consider a symplectic torus (T%*,w, B) of the following form:

0 at 0 b
o=(%0) 2=(50)

The corresponding generalized complex structure Z,,(B) is (see eq.(31))

a1l 0 0 a!
0 ab—1pt —ab—1 0
Iw(B) = 0 at + btab—1pt —ptgt—1 0
—a—ba"1b 0 0 —ba™!
and its mirror dual Z,,(B) is .
a"1b a-t 0 0
—a—ba"lb —bal! 0 (1]
0 0 —btat—1 ql + btab—1pt
0 0 —at! ab~1pt

Thus, Z, (B) defines a complex structure. In fact, one sees that there is a bijection between the
space {(71,7r)} defining Z; and the space {(a,b)} defining Z,(B). The bijection relating them is
given by the T-duality. Consider g(Z;) in the case g = o2n. The generalized complex structure
oan(Zr) again defines a complex structure:

_ (0 1\(I o 01\ (-I'o =Tkt ~T§T}"IT§~T}
"2”(1’)“(1 o) (o —I‘) (1 o) "('o I)’ I ‘“( ! o~ lrh ’

that is, 025, (I) = —I*. This o2, corresponds to T-dualizing 7%" for all directions. Then, one sees
that the correspondence between (77, 7r) and (a, b) is given by

(a,b) = oan(71,7R). (40)
To summarize, for a flat complex torus (I'%",T;), where I is determined by 7, the mirror dual
symplectic torus (72", ;) is given by Z,,(B) = Z; with (w, B) determined from (a,b) by eq.(40).
Thus, the mirror transformation (Definition 3.14) exchange a complex structure with a symplectic
structure and vice versa, as expected, see remarks below. (However, one sees in this example that
the mirror transformation does not preserve the subset consisting of flat (complexified) Kihler
tori. )
For two tori, this mirror symmetry between a complex one-torus (T'2,7) and a symplectic
torus (T2, p), p+ (% §) :=iw + B, has the following expression also:
1

We use this mirror relation in subsection 5.2. :

We end with some remarks on T-duality, mirror symmetry, and generalized geometry from
the viewpoints of string theory. When we consider N = 1 superstring theory on a manifold M,
5 the supersymmetry is enhanced to N = 2 supersymmetry if M is a Kihler manifold. More
precisely, the condition the symmetry is enhanced to N = 2 supersymmetry was given in [19].
The condition is that M is equipped with a generalized Kéhler structure twisted by a three form
H = dB, which is now called a twisted generalized Kéhler structure [24].

5More precisely, N = 1 supersymmetric nonlinear sigma model [28].
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Mirror symmetry is discovered as a duality of some good class of these N = 2 superstring
theories [28]. For instance, two target Calabi-Yau manifolds ¢ M and M are called mirror dual
to each other if they define equivalent N = 2 superstring theories. In fact, they form N = 2
superconformal field theory since these target spaces are Ricci flat. This mirror symmetry in
general transforms the symplectic structure defined by the Kéhler form w of M to the complex
structure I of M and vice versa. For instance, for a N = 2 superconformal field theory on
M, one can define two topological field theories called A-model and B-model via A-twist and
B-twist. Here, the A-model (resp. B-model) depends on the symplectic structure w (resp. the
complex structure I) only. For mirror dual Calabi-Yau manifolds M and M, the A-model on M is
equivalent to the B-model on M and vice versa. This turns out to become various mathematical
statements. For tree closed strings, the mirror symmetry between A-model on M and the B-model
on M is formulated in terms of the equivalence of Frobenius manifolds. For tree open strings, it
is formulated as HMS, see subsection 5.1. String theory suggests that such a duality should exist
for the full quantum open-closed string setting.

On the other hand, T-duality has been discussed as the duality of bosonic (closed) strings
mainly for flat tori; two flat tori are T-dual to each other iff the Hamiltonians of bosonic closed
strings on the flat tori are equivalent (see [22]). This leads the definition of the T-duality around
eq. (38) In particular, the duality given by o4 € O(d,d;Z) is called the T-duality in a narrow
sense (see eq.(40)). For instance, for d = 1, B = 0 and G is a positive definite one by one matrix,
i.e., a positive real number. Then, one obtain ¢;(G) = G~!. Namely, the S! with radius vG
is T-dual to the S* with radius (v/G)~!. This happens because as follows. Now, the zero mode
Hamiltonian (37) reduces to

Hjero = Guw? + G™1m?, (w,m) € v/

where the first term corresponds to the mass of closed string winding w times in S!, and the
second term corresponds to the mass (= energy!) of closed strings of momentum m. In the case
of a point particle, instead of a closed string, the first term is absent. However, one sees, in the
case of (closed) string, the role of the winding number w and the momentum m via the T-duality.
Thus, the T-duality is a duality coming from nonlocality of strings.

' Strominger-Yau-Zaslow [77] proposed a way of understanding mirror symmetry via T-
duality. They proposed regarding a Calabi-Yau n-fold as a torus fibration of fiber T'* which
is in general singular at some points in the base space. For the case of flat Kihler tori 72",
it is clear that they are trivial torus fibration with fiber T™ and the base T™. It is discussed
that the mirror symmetry follows from the T-duality of the fiber T™. Thus, the mirror of T?" is
T?" topologically. The torus T?" has larger symmetry as the T-duality group O(d, d; Z) (bosonic
string setting) is lifted to generalized Kahler tori (superstring theory setting) by Kapustin-Orlov
[40]. For the mirror duality of semi-flat torus fibrations in the framework of generalized geometry,
see [2].

One may notice the similarity of the T-duality group O(d, d; Z) for flat tori with the Morita
equivalence of noncommutative tori in subsection 2.3. Actually, the similarity is first focused by
Connes-Douglas-Schwarz (7] in noncommutative two-tori case (in the context of Matrix theory),
which is then extended by Rieffel and Schwarz [70, 71] for higher dimensional case. However,
noncommutative tori are interpreted in terms of open strings (modules and bimodules correspond

6A Calabi-Yau manifold in general indicates a Ricci flat Kihler manifold, but it is often assumed that the
fundemental group is trivial, 71 = 0, in particular in discussing mirror symmetry of Calabi-Yau three manifolds.
By the former definition, flat Kéhler tori are Calabi-Yau, but the latter definition excludes flat Kéhler tori.
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to D-branes and open strings on them, respectively, see [74]), and the T-duality has been dis-
cussed in closed string setting. Thus, the relation should be realized by studying T-duality for
open strings [30]. The corresponding superstring setting (with topological twist) is to consider

appropriate categories (D-brane category; see [53]) associated to them, which is the main subject
of this article.

4. CURVED DG CATEGORY OF VECTOR BUNDLES OVER A"

In this section, we introduce complex structures on noncommutative tori Ad following
A. Schwarz [72] and lift the categories of modules with connections over noncommutative tori A%
to those over complex noncommutative tori (A$, 7) following [34]. See also (3, 8, 46).

4.1. Curved DG categories. A differential graded (DG) algebra (V,d, m) is a Z-graded vector
space V := @®,¢zV" equipped with a degree one differential d: V™ — V™*!, d2 = 0, and a degree
preserving associative product m : V™ ® V* — V" satisfying the Leibniz rule
dm(v,v') = m(d(v),v') + (~=1)"m(v, d(v")) (42)
for any degree homogeneous elements v,v’ € V, where |v| is the degree of v €'V. A familiar
example is the DG aIgebra (Q°*(M),d, A) of the space of smooth differential forms Q*(M) on'a
smooth manifold M with the exterior differential d and the wedge product A. Another example
which is more relevant to us is the DG algebra (Q%°(M,I),8,A) of smooth (0, e)-forms on a
complex manifold (M, I) (cf. Definition 3.10). Note that its cohomology is isomorphic to H*(Oyy).
The notions of curved DG algebras [64] (or Q-algebras [73]) and A.-algebras (J. Stasheff

[75, 76]) are generalizations of DG algebras in different ways, which can be uniformly described
as special cases of weak A.-algebras.

Definition 4.1 (Weak Aoo-algebra). A weak A-algebra (V,m) consists of a Z-graded vector
space V := @rezV" with a collection of multilinear maps m := {my, : V® — V},5¢ of degree
(2 — n) satisfying

Z Z(—-l)" Mk (W1 e ooy Wiy MU(Wig1y ooy Wiakd)y Wil « + + » W) (43)
k+l=n+1 j=0 .
for n > 0 with homogeneous elements w; € V¥, i = 1,...,n, where o = (j +1)(I +1) +1(jw1| +
-++|w;]). That the multilinear map my has degree (2— k) indicates the degree of my(wy,. .., w)
is Jwy| + <+« + Jw| + (2 — k).
Definition 4.2 ([75, 76]). A weak A-algebra (V,m) with mqo = 0 is called a (strongly) homotopy
associative algebra or an A -algebra.

Definition 4.3. A weak A,-algebra (V,m) with higher products all zero, mg =mgq=---=01is
a curved DG algebra (Positsel’skii [64]).

One sees that a curved DG algebra with mg = 0 is & DG algebra. Note that a (curved) DG
algebra (V,m) forms an associative algebra (V,mz). However, in general, a (weak) Aoo-algebra
does not form an associative algebra. Let us see the relations (43) in the case mg = 0, that is,
(V,m) is an Ay-algebra. Then, the relations (43) starts from n = 1. Let us write m; = d, mg = -.
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For z,y,z € V, the first three relations are:
i) d? =0,
#) d(z - y) = d(x) -y + (1) - d(y),
i) (z-y) z -z (y-2) =d(ms)(z,y,2),
where d(m3) := mimg +m3(mM1 ®1®1+18®m; ®1+1Q®1®m;). Thus, the Ay-relation
for n = 1 implies that (V,m,) is a complex. That for n = 2 is the the Leibniz rule (42) of the
differential m; with respect to the product ms. That for m = 3 implies the associativity of mg if
m3 = 0. Thus, in general mg is not strictly associative and it is said homotopy associative, where

mg is a homotopy between (z - y) - z and = - (¥ - 2). The remaining higher products mg4,ms,...-
then define higher homotopy.

There are the notions of weak Ao-modules over a weak A-algebra (see [42]), which include
curved DG modules and A.-modules as special cases.

Definition 4.4. A right curved DG module (€,,d,,m) over a curved DG algebra (V, - f,d, m)
is a Z-graded vector space &£, equipped with a degree one linear map d, : £, — &, and a right
action m : €, ® V — &, satisfying the following condition: for any v,v’ € V and v, € &,
(da)?(va) = m(va, f) ,
dam(vg,v) = m(da(va),v) + (_1)|Va|m(va,d(v)) )
m(ve, m(v,v’)) = m(m(vg,v),v’).
In particular, if f = 0, then (£,,d,,m) is called a DG-module over the DG algebra (V,d, m).
However, it is more natural for us to consider more general modules for a DG algebra.

Definition 4.5 (Module over a DG algebra). A right module (€4,ds,m) over a DG algebra
(V,d,m) is a Z-graded right module £, over (V,m) equipped with a degree one linear map
dg : € — &, satisfying the Leibniz rule

dam(va, v) = m(d(va),v) + (~1)*elm(vs, d(v))
for any homogeneous elements v, € £ and v € V.

Remark 4.8. If f of a curved DG algebra (V,—f,d,m) is a center in V, then (V,d,m) forms
a DG algebra. In this situation, let us compare Definition 4.5 with Definition 4.4. The third
condition in Definition 4.4 implies that &, is a right module over V, so is a module over the DG
algebra (V,d,m). The second condition in Definition 4.4 is the Leibniz rule in Definition 4.5.
Thus, dropping the first condition in Definition 4.4, one obtains Definition 4.5.

Remark 4.7. A module over a Q-algebra is introduced by Schwarz [73]. Definition 4.5 is obtained
as the special case of it where the Q-algebra is a DG algebra.

A curved DG category is a generalization of a curved DG algebra, where morphisms in a
curved DG-category correspond to elements of a curved DG algebra. It is defined as a special
case of weak A.-categories. We need the categorical version of these terminologies.

Definition 4.8 ((Weak) Ao-category [14]). A weak A-category C consists of a class of objects
Ob(C) = {a,b,...}, a Z-graded vector space C(a,b) =: Vg for each two objects a,b € C and a
collection of multilinear maps
m:= {My : Vaya, ® -+ ® Vapanss — Varann Inzo0
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of degree (2—n) satisfying the Aoo-relations (43). In particular, a weak Ao-category with mg =0
is an Ayo-category.

Definition 4.9. A weak A-category C with higher products all zero, m3 = mg = --- = 0, is
called a curved DG category. .

Remark 4.10. A weak Aq-category with only one object is a weak Aoo-algebra. Similar facts
apply to its special cases such as an A-category and a curved DG category.

For a curved DG category C, denote mo = f, : C — V2, my = dpg : Vi, = VZF!, and
mz = m. The defining relations for a curved DG-category turn out to be

d(fa) =0, (44)
(d) (vba) = M5, Vsa) — M(Vsa, fa), (45)
dm (vebs Vba) = M(d(Veh), Vba) + (—=1)"eblm(vep, d(vba)), (46)
- m(m(Vdc, Veb), Vba) = M(Vde, M(Vebs Vba))- (47)

Lemma 4.11. The category Mod-V of right modules over a DG algebra (V,d,m) forms a
curved DG category with the space C(b,a) = Vi, = Homaqoa.v(€s,E) of morphisms the space
Homy (€,£') of right V-module maps. ‘

Proof. By the Leibniz rule of d,, one has

(da)z(ma(vav v)) = ma((da)z(va), v)

which implies there exists an element f, € Hom3,, 4 \/(a,&,) such that (dg)?(vg) = fa(vs). Next,
for any &, & € Mod-V, the degree one linear map dy, : Vi, — Vb’a+1 is given by

dva(Voa) = dp(vbe) — (—1)|v°°|vbada.
Then, the square of dp, yields
(dba)? (vba) = (o, Uba) — M(Vbas fa), (48)
which is the condition (45). The remaining conditions are clear. 0

We also consider an additional structure, cyclicity, for curved DG categories and Ao-
categories.

Definition 4.12 (Cyclicity). A weak Ao-category C is called a cyclic weak Ao-category iff C is
equipped with a graded symmetric nondegenerate bilinear map

n: C*(a,b) ® C'(b,a) — C (49)
of a fixed degree |n| € Z for any a,b € C and it satisfies
n(mn('vm’ Ve )'vn(n+l))$ v(n+1)1) = (__1)ﬂ+(|’u23|+~-~+|v(n+1)1')Ivﬂ.n(mn(vza’ ey v(n-]-l)l): 'UIZ) , (50)

for each n > 0.

Here, 7 is of degree || means the inner product 7 in eq.(49) is nonzero only if k+1+|n| = 0.
That 7 is graded symmetric means it satisfies n(V%, Vi,) = (—1)kn(V},, VE) for VX = C¥(a,b),
ete.

Remark 4.13. The inner product defining cyclicity in an A..-category is related to the Serre
duality, see [44].
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In the case when C is a cyclic curved DG category, the conditions (50) turns out to be’

N(fas Yaa) = M(Vaa, fa), (51)
1(d(Vab), vba) + (—1)etln(vgy, d(vea)) = 0, (52)
n(m(ve ® Vba)) Vac) = ("‘1)Ivcbl(lv“lﬂu“l)n(m(”ba ® Yac), Veb)s (63)

where we wrote mg = f, € V2 and m; = d. In the case C with 7 is a cyclic DG category, since
fa = 0 for any a € C, we simply do not have the first condition above.

4.2. Curved DG category of modules over a DG algebra: a general construction. Let
us start from a unital (noncommutative) algebra A. We shall consider the case A = AJ in the
next subsection. Define a DG algebra which is as a Z-graded vector space Q0°(A) := @, Qo " (A)
for some positive integer n with QO 0(A) = A. Clearly, R%*(A) forms left and right A-modules.
Thus, one can consider the curved DG category Mod-2%°(A) of modules over the DG algebra
2%°(A) by Lemma 4.11.

We are interested in a full curved DG subcategory of Mod-2%*(.A) consisting of modules
over Q%°(A) of the form

E:=E®40%(A)

for any righi; A-module E € Mod-A. Here, the tensor product ® ,'1 is taken as that of a right
A-module E. with a left .A-module 2%°(A). We denote this curved DG category by

Q%*(Mod-A) ¢ Mod-Q%*(A). (54)

4.3. Curved DG categories Q7(Pmod-A3") of modules over Q7(A%"). Let us consider a
complex structure on the noncommutative torus A3" as introduced by A. Schwarz [72] and define
the DG-algebra Q%°(A) for A = A2". We take a different notation which fits our arguments,
though it is equivalent to the one in [72]. When we define a complex structure on a commutative
torus A%", we may take a C-valued n by n matrix 7 = {r{},4,5 =1,...,n, whose imaginary part
71 = Im(7) is positive definite. A commutative complex torus is then described by C"/(Z™ +
TtZ"), where 7t is the transpose of . The complex coordinates of C™ are given by (z1,...,2s),
t =gt 4 EJ yJ f i=1,...,n. The corresponding Dolbeault operator 8 i is given by

L0 9 1 _
-3 arl, 2 212(«7)1),6, (1) ),W)

i=1

where we denote Im(7) =: 7y which is by definition positive definite.
Based on these formula, for a noncommutative torus A%" and a fixed complex structure 7,
let us define §; € L,i=1,...,n, by

1 <& o Y
8= 5 3 () e = () ™ibnss)
ji=1

Also, for E, := (Ey, 6,Va) € PmodV-A2", a Heisenberg module Eg 6 over Az" with a constant
curvature connection V,, define a holomorphzc structure Va it Eg,0— Eg9t=1,...,n,by

_ 1 — 1w 1

Vai = 5 3 ()00 = ()™ Vans) - (55)
Let A be the Grassmann algebra (with unit) generated by dz?,...,dz" of degree one. Namely, they
satisfy dz*dz’ = —dzidz for any 4,5 =1,...,n, s0in partwular (dz‘)2 0. These generators are

thought of as a formal basis of the anti-holomorphic one forms on the complex noncommutative
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torus A3". By A* we denote the degree k graded piece of A. The graded vector space Q00 (A2 =
A%" ® A is then thought of as the space of smooth anti-holomorphic forms on the complex
noncommutative torus A2". It has the graded decomposition:
(A" = ST (AF), QO = AP B AL
Any element in V¥ := Q0%(A2") can be written as
v= )" D vages,Un - (A2 d™),
MEL™ i1,...,ix

where v, ..4, € C is skew-symmetric with respect to the indices i3 -+ -4, A product m : Vk @
V! — V¥+ i5 defined naturally by combining the product on A" with the one on the Grassmann
algebra A, and then (V,m) forms a graded algebra. One can define a differential d : V¥ — Vk+1

n
d:= Z di" . 5,',
i=1
which satisfies the Leibniz rule with respect to the product m. Thus, (2%°(A2"),d, m) is a DG
algebra. Note that this is isomorphic to the DG algebra (2%°(A2"),8,A) in the commautative
case § = 0. )
Consider the curved DG category Q%*(Mod-A3%") (defined in eq.(54)). In order to express
the 7 dependence explicitly, denote
Q7(AF") = (¥ (AF"),d,m),  Q"(Mod-AJ") := Q%°(Mod-A2"). (56)
Any object &, € 27(Mod-AZ") is of the form
Ea 1= Eq ® 30 W (AT") =EQ® A
for some E, € Mod-A2". Thus, it is clear that

Lemma 4.14. Any module £, € Q7(Mod-A3") over the DG algebra Q7(A3™) is the lift of an
element (E,,V,) € Modv-Ag", where dg : E; — &, 13 given by

n
dgi= dZ* Vg

i=1
with Vo4 the holomorphic structure (55), and one has
Homgr (Mod.a3m) (€a) €b) = Homyy v, An(Ea, Eb) @ A
for any £, = E, ® A, & = E, ® A € Q"(Mod-AJ"). O
In general, a module &€, € Q7 (Mod-A2") has its curvature:

@) = forver  form=r(@#7) (¢ 1) BT ) (rh05) €?

for any v, € &,, where dz* := (dz!---dz"). This d, defines a differential on &,, that is, f, =0
if and only if the curvature —27iF, of E, is a (1,1)-form with respect to the complex structure
defined by 7 by Lemma 3.11. In this case, (&,,ds,ms) forms a DG module over V. In the
commutative case (§ = 0), this implies that £, forms a holomorphic vector bundle. However, for
general 6, f, may not be zero even if it is zero when 6 is set to be zero [34] (see also [46]).

Now, we would like to discuss additional structures in full subcategories of 27(Mod-A2")
which are necessary to discuss homological mirror symmetry in the next section.
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Definition 4.15. The curved DG full subcategory of 27(Mod-A2") consisting of objects E ® A,
Ee Pmodv-.Agn, is denoted Q7 (Pmod—Ag"). The curved DG full subcategory of Q"(Pmod—.Ag") C
Q7 (Mod-A2") consisting of objects EQA, E € Pmod®-A2" (Definition 4.15), is denoted Q7 (Pmod*-A3").

Proposition 4.16. The curved DG category Q7 (Pmod-A2%") forms a cyclic curved DG category.
The inner product n : Hom(a, b) ® Hom(b,a) — C of degree —n is given by

=/.A2"m’ /Agn(u®/\)=’1¥(u)®/AA

for u € AJ® and A € A. Here [, : A — C is the linear map defined by

Jadzh - dZ*) =0 (k#n)
Jaldz - dz) =1 '

Proof. The cyclicity of the inner product 7 follows from Lemma 2.10. The nondegeneracy follows
from Lemma 2.11. 0O

f For £, € Q7 (Pmod*-A3"), the two form, f, € End?,,(l,mod.,_ Ag,.)(é'a) can be written of the
orm

fo=fa: 1End 4gn (£a): fa€ A2

We call f, the potential two-form of £, € Q7(Pmod®-.A2"*) and denote by Q"(Pmodf -A2") the

cyclic curved DG full subcategory of Q7(Pmod®-.42") consisting of objects with f € A? as their
potential two-form.

Proposition 4.17 ([34, Proposition 3.5]). For any f € A2, the cyclic curved DG full subcategory
Q7 (Pmod/ -A3") forms a cyclic DG category.

Proof. By looking at eq.(48), one sees (dq)% = 0 if £,,& € Q"(Pmodf -AZM). O

Remark 4.18. Since f € A2 is a center in V, ie., m(f,v) — m(v,f) = 0 for any v € V :=
Q%*(A3™). Thus, for any f € A2, one can regard the DG algebra Q7(A%") = (V,d,m) as & curved
DG algebra (V, f,d,m) by (d)2(v) =0 = m(f,v) — m(v, f), v € V. The curved DG category
Qr (Pmodf -A2") is then the category of curved DG modules over (V, f,d, m) [34, Proposition 3.5],
which by definition forms a DG-category.

In the case of a noncommutative two-torus, a complex structure is defined by 7 € H. For
any €, € 27(Mod-A32), the degree one linear map dg : €, — &, is given by

dg == (VOJ - -l-Va,z) dz,

where (dg)? = 0 holds automatically since (dz)? = 0. Thus, 27 (Mod-A32) and then 227 (Pmod-A3)
form DG-categories, before being restricted to Q7 (Pmod®-A%).

4.4. (Weak) A -categories and Functors between them. When we compare different DG-
categories and/or A.-categories, the fundamental tools are homotopy equivalence in the frame-
work of A.-categories, defined by functors between them satisfying appropriate conditions. In
this subsection, we briefly recall those notions. The reader can skip to the next section, where we
shall refer terminologies in this subsection and so then return to this subsection later if needed.

We start from the case of Aoo-algebras. See [57] for extensive background, [35] for direct

proofs of fundamental properties, and [42] for a review from the viewpoint of representation
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theory and homological algebras. The category extension is straightforward, which comes after
that.

First, for a given Ax-algebra (V,m), consider the degree shift
5: VT — (V[1))?
which is called the suspension. For the As-structure m,, n > 1, the induced multilinear map
smn(s71 ® --- ® 571) on V[1], which we again denote by my, turns out to be of degree one for

any n 2> 1. This simplifies the formulas we shall discuss below. In this suspended notation, the
defining equation (43) for an A-algebra (V[1],m) turns out to be

-1
Z z:(—].)"’IH""HO-’| m(01,-..,05,M1(0j41, ..+, 0j41), Oj+i41y - - - 1 On) (87)
k+i=n+1 j=0 :

with o0; := s(w;), ¢ = 1,...,n. One sees that the sign has been simplified (see [21]).

Definition 4.19 (A,-morphism). Given two Ay-algebras (V,m) and (V/,m’), a collection of
degree preserving (= degree zero) multilinear maps F := {fy : (V[l])®’° — V'[1]}&>1, is called an
Aso-morphism F : (V,m) — (V/,w’) iff it satisfies the following conditions

> mifku® - ®f)= Y me@ﬂ@mz@l@(’*-’—") e

ki+-+ki=n k+l=n+1j=0
forn2> 1.

Note that the condition (58) for n = 1 1mphes that mif; = - fymy, ie., fi (V[1],my) —
(V'[1},m]) forms a cochain map.

Definition 4.20. An Ax-morphism F : (V,m) — (V’/,m’) between two Ay-algebras (V,m) and
(V',m’) is called an Ae-quasi-isomorphism iff the cochain mep f; : (V[1],m;) — (V'[1),m}) is a
quasi-isomorphism of cochain complexes, i.e., f; induces an isomorphism on the cohomologies of
the cochain complexes. In particular, F is called an Ao-isomorphism iff f; : V[1] — V'[1] is an
isomorphism.

Remark 4.21. The suspension further enables us to deal with these tools define in terms of
coalgebras. Let T¢(V[1]) := ®r>1(V[1])®* be the tensor coalgebra of V[1]. The degree one
multilinear map Y, my € Hom(T¢(V'[1]), V[1]) is lifted to be a coderivation m satisfying (m)2 = 0
Thus, an Ax-algebra (V,m) is equivalent to a DG coalgebra (T°(V'[1}),m). For two A-algebras
(V,m), (V/,m), an Ax-morphism F : (V,m) — (V’,m') is a degree zero coalgebra homomorphism
F : T¢(V[1]) — T¢(V'[1]) such that m’ o F = F om. Though after the preparation of these
terminologies this coalgebra description can give the definitions clearer, in this article we do not
use it. See [35] and reference therein.

Definition 4.22. An Ay-algebra (V,m) is called minimal if m; = 0.
The following is a key theorem in homotopy algebra:

Theorem 4.23 (Minimal model theorem (Kadeishvili [29])). For any A-algebra (V,m), there
ezists a minimal Ao-algebra (H(V),m') and an A -quasi-isomorphism F : (H(V),m') — (V,m).

Such an Ax-algebra (H(V),m’) is called a minimal model of (V,m). The minimal model
of (V,m) is unique up to A-isomorphisms on H (V).
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Remark 4.24. Even the original A-algebra (V,m) is a DG-algebra, its minimal model are
equipped with higher A -products ms,my,... in general. When there exists a minimal model
with higher A-products all zero, the original DG algebra (V, m) is often called formal in algebraic
topology (see (10, 48]).

There exists a canonical way to construct a minimal model of (V, m) when a Hodge decom-
pusidion of (V,d :=m,) is given:

dh+hd=Idy — P, h:V" V™1

where P is an idempotent, P? = P, and h is a homotopy operator, a linear map of degree minus
one (see (35, subsection 5.4] and reference therein. )

Now, we turn to the category version. The suspension 8(C) of an Aoo-category C is defined
by the shift

s:C(a,b) — 8(C(a,b)) =: 5(C)(a,d) (59)

for any a,b € Ob(C) = Ob(s(C)), where the degree |my| of the Ax-products becomes one for all
n 2> 1 as-in the case of Axo-algebras.

Definition 4.25 (Aoo-functor) Given two Aoo-categories C, C’, an Ao functor}' = {f, fisf2s... }:
s(C) — s(C’) is a map f : Ob(s(C)) — Ob(s(C’)) of objects with degree preservihg multilinear
maps ‘
fi : 8(C)(a1,02) ® - - - ® 5(C)(a, ak+1) — 8(C')(f(a1), f(ak+1))

for k > 1 satisfying the defining relations of an A-morphism (58).

In particular, if f : Ob(s(C)) — Ob(s(C’)) is a bijection and f; : 8(C)(a,b) — s(C’ )(F(a), §(b))
induces an isomorphism between the cohomologies for any a,b € Ob(s(C)), we call the A -functor
a homotopy equivalence.

Definition 4.26 (Minimal A-category). An A -category C is called minimal if m; = 0.

One can see that, for a minimal A-category C, the A relations (43) for n = 3 reduces to
the associativity condition of the composition of morphisms mgy. Thus, (C,m2) forms a category
in a usual sense.

The minimal model theorem holds true for an A.-category as a straightforward general-
ization of the for an A,-algebra.

The Ax-categories we shall deal with are equipped with the additional structure, the cyclic-
ity (Definition 4.12). For a cyclic (weak) Ao -category C with an inner product n (49), after the
suspension s : C — §(C), the inner product s(n) =: w in s(C) is given by

w=n(s"t,s71),

where the cyclicity condition (50) turns out to be [32]

w(mn(012, iy on(n+1)), o(n+1)1) — (_1)('023|+"‘+lo(r.t+l)1')Ialﬂlw(mn(023’ cevy o(n+1)1), 012)
for homogeneous elements 0;(;1) € 5(C)(as,ai+1), ¢ = 1,...,n+1 (with the identification i+ (n+
1) =1).

Definition 4.27 (Cyclic A-functor). For two cyclic A-categories C and C’ with the inner
products n and 7/, respectively, we call an A-functor F : C — C’ cyclic when

w'(f1(0ab) 1(0ba)) = w(0abs Oa), (60)
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and, for fixed n 2> 3,

. W k012, Ok(hrr))s Fi(OE+1I(k42)s - - - » Onnt))) = O (61)
k21, kti=n

holds, where w = s(n) and o’ = s(7').

Definition 4.28 (Homotopy equivalence of cyclic Aq-categories). For two given cyclic Ago-
categories and a cyclic Ago-functor C — C’, we call the cyclic Aq-functor C — C’ a homotopy
equivalence if it is a homotopy equivalence of Ao-categories. Then, the two (cyclic) Aoo-categories
C and C’ are called homotopy equivalent to each other.

The minimal model theorem holds for any cyclic Ax-category C; there exists a minimal
cyclic Axo-category C’ which is homotepy equivalent to C. This is shown in [35, subsection 5.2, 5. 5]
for cyclic Aoc-algebras. As discussed there, an explicit construction of minimal cyclic A «-algebra
also exists ([35, subsection 5.5)). 7

The Aco-categories we shall deal with have the unit. We end this subsection with giving
the definition.

Definition 4.29 (Unital Aoo-categoify). An As-category C is called unital if there exists an
element 1 € V3, called the unit, for any a € C such that my(1,,w) = ma(w, 1p) = w for any
w € C(a,b) and mg(...,1,,...) =0 for any k > 3.

5. HOMOLOGICAL MIRROR SYMMETRY FOR NONCOMMUTATIVE TORI

5.1. Homological mirror symmetry (HMS). For a given complex manifold (M, I) and the
mirror dual symplectic manifold (M w), the homological mirror symmetry proposed by Kontse-
vich [49] states the following equivalence of triangulated categories:

Db(Fuk(M,w)) ~ D*(coh(M, I)). (62)

Here, we need to explain what are the Fukaya category Fuk(M yw). It should be defined as an Aoo-
category. For an Ax-category, there is a canonical way to construct a triangulated category due to
Bondal-Kapranov (the case of DG-categories [4]) and Kontsevich (the case of A -categories [49)]).
Then, the derived category D*(Fuk(M,w)) of the Fukaya category Fuk(M,w) is the triangulated
category obtained in this way. On the other hand, D®(coh(M, I)) is the derived category of the
abelian category coh(M,I) of coherent sheaves on (M,I). Then, the claim of HMS is that the
equivalence above holds as triangulated categories. Thus, the homological mirror symmetry, if
it exists, gives geometric mterpretatlon of the DG-category on (M, I) and also help constructing
the Fukaya category Fuk(M, w) fully. In particular, the Fukaya category Fuk(M,w) may be
obtained as a minimal model (or a 'smaller’ model) of the DG-category on (M, I).

In this subsection, we briefly recall these terminologies in order. We first define Fukaya
categories for symplectic manifolds, and give a brief introduction of homological algebra such
as derived categories, triangulated categories, and the Bondal-Kapranov-Kontsevich construction
together with references. The construction of DG-categories associated to complex manifolds is
algebraic and comparably easy. On the other hand, to define Fukaya categories on symplectic
manifolds is still under construction because of the difficulty on transversality. Finally, we would

"In [35], the arguments are concentrated on the case the inner product w defining cyclicity is of degree minus
one for an application to string field theory. However, it is clear that the arguments are valid for the case of inner
products with any degree (as mentioned in [32, 36, 37}, etc.)
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like to stress the problem to set-up the homological mirror symmetry conjecture as above, and
propose a resolution for it.

A rough definition of C := Fuk(M,w): There are some variation for Fukaya categories.
We first present a simpler Fukaya category which expresses the main idea, and then discuss its
possible generalization.

We fix a symplectic manifold (M,w) of dimension 2n. Let Ob(C), C := Fuk(M,w), be
the set of Lagrangian submanifolds L in M. A Lagrangian submanifold is by definition a n-
dimensional submanifold in M on which w vanishes. For L,, L, € C, when they intersect to each
other transversally, the intersection L, N Ly is a set of points since L, and L; are n-dimensional
submanifolds of the 2n-dimensional manifold M. In this case, the space C(Lg4, Ly) of morphisms
is defined by

C(Lm Lb) = ®UGL¢ﬂL5C['U]1 (63)
where [v] is the base of V,;, associated to an intersection point v € L, N Ly with its degree |[v]| € Z
being determined by the Maslov index of the intersection point v [14]. For Lg,,...,La,,, €

Fuk(M) such that L,, and L,,,, are transversal for each i € Z/(n + 1)Z, with the identification
La; ~ La,, (41y» & multilinear map m,, of degree (2 — n) is defined by

U (I RN ) ST S B a1 ) (64)
v€LayNlayy, ¢

where D is a disk with cyclic ordered points (212,- -, Zn(n+1), Zn+1)1) 00 (D), ¢: D+ M is a

pseudo holomorphic map s.t. ¢(8;(D)) C Lq;, ¢(zi(i+1))) = Ugiaqsy» ¢(z(n+1)1) = v, and fD P*w
is the symplectic area of the disk D (see Figure 1). There is a generalization of this Fukaya

LM

FIGURE 1. A pseudo'holomorphic map defining a higher prodﬁcts My

category due to Kontsevich [49]. Instead of Lagrangian submanifolds for objects, we consider
pairs of Lagrangian submanifolds L with unitary local systems (vector bundles) U equipped with
flat connections. For two objects (Ly,Uy), (L2,Us) such that Ly and L, intersects transversally,
the space C((L1,U1), (L2, Us3)) of morphisms is defined by

C((L1,Un), (L2, U3)) := @veL,nL,Home(Uz)y, Utly)-
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The formula of the multilinear map (64) is modified by adding a new factor to each term equal
to the trace of the composition of holonomy maps along the boundary of D2, Later we consider
line bundles only for the unitary local systems, so we skip giving the precise formula about it.

In any case, one sees that the space C(L, L’) of morphisms is defined only when L and L’ in-
tersect transversally. However, even if we consider some full subcategory consisting of Lagrangians
intersecting with each other transversally, a Lagrangian L can not intersect transversally with L
itself. Hence, C(L, L) is not defined and so A-products m,, including C(L, L) are not defined
yet. In this sense, at' present, Fukaya category is not defined completely as an A-category. 8 In
an original paper it is called a topological Ax-category [17], in [51] it is called a pre A -category.
We shall return to this problem later in discussing HMS in Problem 5.17.

We let eqs.(63) and (64) or their appropriate generalizations be the axiom of an Fukaya
category; when, on a subset Ob(C’) C Ob(C), there ezists an Aco-structure satisfying the aziom,
we just say C' is a Fukaya Ax-category, though C’ should be a full subcategory of the Fukaya
Aoo-category C when it will be defined.

The derived category D®(coh(M,I)): For a complex manifold (M, I), the derived category
Db(coh(M, I)) of coherent sheaves on (M, I) is already a well-established notion, so we do not
intend to give the complete definition. The standard references are [20, 41, 27], etc. Let Oy, is
the sheaf of holomorphic functions on the complex manifold (M, I). A coherent sheaf £ on (M I
is a sheaf of O)-modules which is obtained locally by an exact sequence

(Om)®™ = (OM)®" = €0

with some n,m € Zq, i.e., £ is obtamed as a quotient of a finitely generated locally free sheaf by a
finitely generated locally free sheaf. The case m = 0 corresponds to that £ is a finitely generated
locally free sheaf, i.e., a holomorphic vector bundle. A coherent sheaf is a generalization of a
holomorphic vector bundle so that its ‘rank’ is not necessarily constant on M.

Recall that a category C is called an additive category iff A has a zero object, the space
Home(X,Y') of morphisms from X € C to Y € C is an abelian group, the composition is bilinear,
and it has a structure of direct sums of objects. An additive category C is an abelian category iff,
for any morphism f : X — Y, X,Y € C, objects, usually denoted, Ker(f), Im(f), Coim(f), Coker(f) €
C are defined and Im(f) ~ Coim(f) holds for any morphism f (see [20, 41]). It is known that the
category coh(M, I) of coherent sheaves on (M, I') forms an abelian category (see [41, p443]). For
an additive category C, a complez in C is a pair

X = {Xivdi}iez
such that X; € C, d; € Home(X?, X*1) and d**! o d* = 0. Complexes in C form an additive
category Comp(C), where the space Homgompc)(X*®,Y*) is the space of cochain maps from
X® € Comp(C) to Y* € Comp(C). In particular, if C is abelian, so is Comp(C). The full
subcategory consisting of bounded complezes (resp. bounded below, bounded above) is denoted
Comp®(C) (resp. Comp*(C), Comp~(C)). The homotopy category Ho(Comp(C)) of Comp(C)
consists of the same objects as in Comp(C) but the space Hompyg(Comp(c))(X*, Y*) of morphisms
is Homgomgp(e)(X*®,Y*) modulo null-homotopic morphisms. The derived category D(C) of an
abelian category C is defined by the localization of the homotopy category Ho(Comp(C)) by
quasi-isomorphisms in Comp(C). The derived categories D*(C), D*(C) and D~(C) are defined

8In order to clear the essential difficulty of this problem, the complete construction of Asc-structure is under
development in [18] for the case of only one Lagrangian.
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in a similar way. These derived categories form triangulated categories (see [20, 41]). ° Thus,
sometimes the notation D (or D%, etc.) is used for a triangulated category. A triangulated
category 7 is by definition an additive category equipped with an automorphism 7 : 7 — T and

the structure of triangles defined by a certain axiom (due to Verdier, see [20, 41]). A triangle is
a sequence

1 X)) T T ) T ) T x By S 2 S 10 ™ T(v) W Tiz) T
(65)
for X,Y,Z € T and u € Hom7(X,Y), v € Hom7(Y, Z), w € Hom7(Z,T(X)). As is clear in the
description above, the axiom of triangles includes that (Y, Z,T(X),v,w,T(u)) forms a triangle
iff (X,Y, Z,u,v,w) forms a triangle as above (65). Another fundamental statement is that any
morphism u : X — Y is embedded in a triangle as above, i.e., the triangulated category 7T
includes Z. |
Instead of Comp(C), one can consider a DG-category DG(C) of complexes in C. The
objects in DG(C) are the same as that in Comp(C). For two objects X*,Y* € DG(C), the space
Hompg ) (X*®,Y*) consists of any collections ¢° := {¢* : X* — Y**"}icz, where the differential

d: Hompge) (X*,Y*) — Homgg(c) (X*,Y*)is dgﬁned by

d(¢') = &} 0 ¢* — ¢ o d.
Definition 5.1 (The zero-th cohomology category H%(C)). For a DG-category C, a category (in
a usual sense) H%(C) is defined by Ob(H?(C)) := Ob(C) and, for any X,Y € H°(C), the space of
morphisms is
Homyo(ey(X,Y) := H(Homd(X,Y)).

It is clear that Ho(C) = H%(DG(C)). Once we obtain a triangulated category 7, the
Grothendieck group Ko(T) of the triangulated category 7 is defined as the free abelian group of
isomorphism classes in 7 modulo relation [X] — [Y] + [Z] = 0 for any triangle (65) in T [23].

The Bondal-Kapranov-Kontsevich construction On the other hand, for any DG-category
C, there is a canonical way to construct a triangulated category due to Bondal-Kapranov [4]. It
is done in the following three steps.
(a) Construct a DG-category (C)® as an additive DG-category which has C as a full subcat-
egory and is equipped with an automorphism T : (C)® — (€)®.
(b) Construct a DG-category Tw(C) of one-sided twisted complezes in (é)@.~
(c) Define the category Tr(C) as the zero-th cohomology category H®(Tw(C)).

The precise definitions are in order.

Definition 5.2 (Additive completion C®). For a given DG-category C, let us add each finite
direct sum of objects in C and the zero object if they are not in C. The DG-category structure
on them is induced from that of C. We call the resulting DG-category the additive completion of
C and denote it by C®.

Definition 5.3 (Shift functor completion €). For a given DG-category C, the DG-category C as
follows. The objects are of the form X|[n], where X € C and n € Z. For X[n],Y[m] € C, the

9Before localizations, the homotopy categories already form triangulated _categories. A localization is then
defined as a quotient of a triangulated category by a triangulated full subcategory, see [41].

35



62

space Hom;(X([n], Y [m]) of morphisms is defined by
Homj(X[n], Y[m]) := Hom?'(m-") (X,Y),

where the differential and the composition in € is induced from C by the relation above. Then,
there exists an automorphism T : C — C such that T(X[n]) = X[n + 1].

Definition 5.4 (Twisted complex in a DG-category C®). For a given DG-category C, a twisted
complez (X, ®) in C® is a pair of an object X € C® and an element & € Hom} (X, X) satisfying
v d(®) + m(®,®) = 0.

A twisted complex (X, ®) is called one-sided if (X, ®) is of the form: X = ®}_, Xy, X; € C, and
® ={dji}ij=1,.,1» Pji € Homé(X,-,Xj), such that ¢j; = 0 for i > j.

Definition 5.5 (DG category Tw(C)). For a given DG-category C, the DG-category Tw(C) of
one-side twisted complexes is defined as follows. The objects are one-sided complexes (X, ®) in
C®. For any two one-sided complexes (X, ®), (Y, ¥) € Tw(C), the space of morphisms is given by

HomTw(C)((X! (I)), (Y1 ‘II)) := Homce (X:Y)
The differential d 7y (c) is given by

| dru(e)(9) = d(p) + m(®, ) — (~1)¥Im(p, @)
for p € HomTw(C)((X7¢)» (v, ‘Il))

Definition 5.6 (Triangulated category Tr(C)). The triangulated category Tr(C) is defined by
Tr(C) := H(Tw(C)).

Remark 5.7. Since the procedure of taking Tw for the original DG category C corresponds to
adding objects enough for the resulting category to be closed under the triangle (see the remark
below eq.(65)). Thus, for the zero-th cohomology categories one has the following equivalence

H(Tw(Tw(C))) = H°((Tw(C)))-

This construction of triangulated categories in the framework of DG-categories suggests
also a noncommutative generalization of D®(coh(M)) as we shall discuss later.

The generalization of this construction to an A-category C is parallel. For a given Aoo-
category C, the additive completion C® and the A-category C are defined in the same way. For
the A-category (C~)$, the remaining procedures are presented in [49]. However, to simplify the
signs, we work for A..-categories in suspended notation (eq.(59)), and hence we consider degree
zero elements for defining twisted complexes. :

Definition 5.8 (Twisted complex in the A-category C®). For a given the A-category C, a
twisted complez (X, ®) in C® is a pair of an object X € C® and an element ® € (s(C®))°(X, X)
satisfying the Maurer-Cartan equation for the A-structure:

d(®) + mz(®, ®) + m3(®,2,2)+--- =0

in 5(C®). A twisted complex (X, ®) is called one-sided if (X, ®) is of the form: X = ®}_;Xi,
X;€Cand &= {¢¢j},',j=1'_,,,1, ¢¢j € (S(C))O(XhXj), such that ¢¢j =0 fori > j.

If the Ao-structure m,, can be nonzero for any large n, the Maurer-Cartan equation for ® is

not well-defined since it contains the infinite sum. However, if ® is one-sided, the Maurer-Cartan
equation is always well-defined since m,(®, ..., ®) = 0 for any sufficiently large n.
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Deflnition 5.9 (A-category Tw(C)). For a given Ax-category C, the Ax-category Tw(C) of
one-side twisted complexes is defined as follows. The objects are one-sided complexes (X, ®) in
C. For any two one-sided complexes (X, ®), (Y, ¥) € Tw(C), the space of morphisms is given by
(Tw(C))((X, ®), (Y, ¥)) = (C®)(X,Y).

The A-structure is given by

mn(‘Pmaz’ vee ’(Pana,,.H) =

Z mn+k1+--~+k,.+1 (ch )kl ] ‘Palaw (@az )’”1 A | (Qan )k“i ‘Panan+n (¢0n+1 )kn-H)

k1,...knt+1€Z>0
for a; := (Xa,, ®a;) € Tw(C) and wq,a,,, € (8(Tw(C))(as,Gi11).
Remark 5.10. The Ay-category Tw(C) reduces to the DG-category in Definition 5.5 when the
higher A,.-products of C are absent mg = m4 = --- = 0. In particular, one sees that the product

mg in Tw(C) does not receive any correction by ®,, and is the same as mg in (C)® because of
the absence of the higher A, .-products.

Definition 5.11 (The zero-th cohomology category H9(C)). For an A-category C, the category
HO(C) is defined by Ob(H?(C)) := Ob(C) and for any X,Y € C the space of morphisms is
. Hompop)(X,Y) = H(C*(Y, X)).

The composition in H%(C) is given by the one induced from mgz in C.
Remark 5.12. In other words, H%(C) is obtained by the degree zero part of the graded cate-
gory obtained by forgetting higher A-products m3, mg,... of a minimal Ay -category of C (see
Definition 4.26 and below). Then, it is clear that the composition in H%(C) is associative.

For any A -category C, the triangulated categdry Tr(C) is defined as

Tr(C) := H°(Tw(C)).
A variant of this Bondal-Kapranov-Kontsevich construction is that, for C, we do not pass ¢ and
consider the twisted complex in C®. The resulting category
' A H°(Tw(C))

is an extension closed full subcategory (of an abelian category), which is called an ezact category
(see (26, p10}).

The following lemmas should be known.

Lemma 5.13. Let C and C' be two Ao -categories which are homotopy equivalent to each other.
Then, H(Tw(C)) ~ H°(Tw(C")).

Proof. This essentially follows from the decomposition theorem for A,-algebras (see (35]). The
detail will be presented elsewhere. a

Corollary 5.14. Let C ~ C' be two homotopy equivalent Aoo-categomfles. Then, Tr(C) ~ Tr(C’)
as triangulated categories. O

Note that the converse is not true in general. For two abelian categories which are not
equivalent, the derived categories can be equivalent (see [26, 43]). We shall see similar phe-
nomena in subsection 5.2. These hold true also in the setting with cyclic structures due to the
decomposition theorem for cyclic As-structures [35, subsection 5.2].
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Lemma 5.15. Let C be a cyclic Ax-category. Then, a cyclic structure is induced on the Aoo-
category Tw(C). a

Lemma 5.16. Let C and C’ be two cyclic A -categories which are homotopy equivalent to each
other. Then, Tw(C) ~ Tw(C') as cyclic A -categories. O

For a triangulated category 7, if there exists an A-category C such that T ~ Tr(C), we
say C is a generator of 7. By construction, a generator C is a full subcategory of Tw(C) or Tw(C).

The point is that the notion of generators of a triangulated category 7 does not exist
without the help of DG or A-categories. For instance, let C be a DG full subcategory C'cCof
a DG-category C such that H%(C) forms a triangulated category. Then, Tw(C") is also a full sub
DG-category of C. In particular, Tr(C’ ) is the smallest triangulated full subcategory of H(C)
containing H%(C'), and hence H%(C') may be called a generator of Tr(C’). However, now forget
about H%(C) and try to find a triangulated category 7' generated by H°(C’). One fails to do it
since, for a morphism u : X — Y in Tr(C’), the axiom of triangles (see comments around eq.(65))
does not determine Z € T’ uniquely (up to isomorphisms) so that (X,Y, Z;u,v,w) is a triangle
in 7’. On the other hand, if we keep the DG-structure instead of H%(C’), the DG-category C’
generates the triangulated category Tr(Cf ) uniquely. This shows an essence of Bondal-Kapranov
construction [4].

Corollary 5.14 then implies that, in order to show an equivalence of triangulated categories
T ~ T', we may find generator A-categories C and C’, Tr(C) ~ T, Tr(C') ~ 7', such that
C ~ (' as A-categories.

On the other hand, a similar remark to Remark 5.7 applies to A.o-categories. Then, the
left hand side of HMS (62) means

DY(Fuk(M,w)) := Tr(Fuk(M,w)).

Namely, the Fukaya category Fuk(M ,w) may be already ‘large’ enough, this procedure guarantees
that the result is closed under the triangles.

Then, one may think that a strategy to show HMS is to find a generator DG-category Cpg
of D?(coh(M,I)) and a generator Ae-category Ca,, of D¥(Fuk(M,w)) such that Ca,, ~ Cpg.
However, as mentioned above, the Fukaya category Fuk(_M yw) is not still defined as an Ae-
category. Thus, here is a modified version of HMS:

Problem 5.17. For for mirror pair manifolds (M, I) and (M,w), ﬁnd a DG-category Cpg and a
Fukaya Ax-category Ca,, on (M,w) such that Tr(Cpg) =~ D%(coh(M,I)) and Ca, ~ DG(M,I)
as Ay -categories.

Recall that the Fukaya category has (transversal) higher A-products associated to pseudo-
holomorphic disks. Then, one hope is to obtain the Fukaya A, category C4. as a minimal, or
smaller model of the DG-category Cpg (see Remark 4.24). A strategy for the plan is proposed by
Kontsevich-Soibelman [51] and then [37]. When one can do it for a class of mirror pair manifolds,
by Lemma 5.13 and Corollary 5.14, one has an Ay-equivalence Tw(Ca,,) ~ Tw(Cpg) and then
a triangulated equivalence Tr(C4. ) ~ Tr(Cpg), where Tw(Ca,, ), defined in half geometric and
half algebraic ways, can be a candidate for a Fukaya category as an A-category. Then, when
Fuk(M,w) will be defined completely in a geometric way, to compare it with Tw(C4,,) will be
another interesting future problem.

5.2. HMS for noncommutative two-tori. Though HMS itself is still a difficult problem, we
would like to discuss a noncommutative generalization of HMS. Since, the complex manifold
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side, D?(coh(M, I)), is defined in an algebraic way, it may be possible to consider a triangulated
category on a noncommutative deformation of M via module categories over noncommutative
algebras. Furthermore, if we can find a generator DG-category of the triangulated category, a
minimal (or smaller) Ay-category homotopy equivalent to the generator DG-category may define
a generator Ay -category for a noncommutative version of Fukaya A..-categories.

This plan worked well for real noncommutative two-tori with complex structures, as did
first in (31] (at the level without higher Ax-products). After combining many further results
mentioned later, now we can answer the HMS, in the sense in Problem 5.17, and a noncommutative
generalization of it for noncommutative two-tori, though the result does not depend greatly the
noncommutativity in this case. In this subsection, we discuss this case of noncommutative tori;
answer the (NC)HMS obtained by combining previous results in Theorem 5.20.

First, for the complex side (A%, 7), the triangulated category we consider is

Tr(Q27 (Pmod’-A2)).

Recall that, in the case of A2, the curved DG category Q7 (PmodV-A3) is a DG category (see the
end of subsection 4.3). :

For the symplectic side, we consider a (commutative) flat complexified symplectic (Defi-
nition 3.13) torus (T2,w, B) with (w, B) given by 7 via: the mirror relation (41) [31, 32]. Note
that, in this two-dimensional case, any one-dimensional submanifold becomes a Lagrangian sub-
manifold as (dy)? = 0 for any &, € Q7(PmodV-A42). We fix an irrational number 6 € R. Let
7 : R? — T? is the universal cover of T2, with coordinates (z,y) € R? being identified by = as
z~z+landy~y+1. '

Let Cag be the set of quadruples (p,q,a,B) such that (p,q) € Z? are relatively prime
integer satisfying ¢ + pd > 0 and (a,8) € R2. We label by a,b,... elements in £ag. Each
a := (Pa, qa, Xa, Ba) € Lag is associated with a geodesic cycle 7(Lg) € T2,

Lq : qay =paz + 04 ag €R,
where [, is regarded as a constant defining a flat connection of a trivial line bundle:
d 2mis,
= —_— R.
Va,l az qa + pa91 ﬂa E

The period of the cycle w(L,) is gq + paf in the coordinate z, so we call that V, and Vg4 =
(Z1)7"Va(Z1)", 2, := exp(2miz/(ga + pab)), 8re gauge equivalent for any n € Z. One has
Ba' = Ba + n. For each object a € £ag, we again attach the number u, by
= Pa

Qa +Dab ’
and, for any two objects a and b, we set ygp := up — o Note that by a SL(2,R) translation

()-()-6)6)

a line z + Oy = 0 becomes a vertical line 2% = 0, y, is the slope of L, after the translation.

For a fixed n > 2, consider a collection @ := (ay,...,an+1) Of objects ay,...,an+1 € Lag
such that pg,q,,, # 0 for any i € Z/(n+1)Z, where we set a; = ;4 (n+1)- We call such a collection
a a transversal collection.

For a transversal collection &, let 7 := (Vgya3)- -+ 1 Vanans1s Vans1a1) D€ & collection of inter-
section points in T2 such that vg,q,,, € 7(La,) N m(La,,,)- We call 7 generic if vo;_,4; # Vajaipr
for any i € Z/(n + 1)Z.

Ha *
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We call an A,.-category satisfying the following axiom a Fukaya A -category C on (Tz, p,6; Lag).
Axiom 5.18. (i) For any a,b € £ag such that ug, # 0, the space of morphisms is set to be

C(a, b) = @vabEW(La)ﬁr(Lb)C[vab]’
where the degree |[vgs]| is zero if gy > 0 and one if pgp < 0. There exists a nondegenerate inner
product

n:C(a,b) ®C(b,a) = C

defined by 7([vas), [sa]) = 1 if Vg = bg a8 points in T2 and zero otherwise. By this we define the
dual basis [vgy)* € C(b,a) of a base [vgs] € C(a,d); if vgp = Upa, We denote [vps] = [vgs]* and vice
versa.
(i) For any transversal collection @ = (ai,...,an+1), 7 = 2, express the Ag-product my, as

Mn(Vazaals - -+ s [Vanansal) = 2 e(?) - Vapsra1]*
U¢"+l a1 EW(Lol )nﬂ'(Lcn+1 )
with a constant c(¥) € C, where ¥ = (Vajaz1+ -+ ) Vanans11 Yans1a1 ). BY degree counting, my, can be
nonzero only if:two of the numbers fig a;, ..« ) Hanans1s Hansia: 8€ POSitive, since jmyg| = (2 — n).
When # i§ generic, the constant c(%) is set to be

c(9) := Z sign(9) exp (2ripA(D)) exp (2wi / ﬂ(v)), (66)

vecCc(v)
where CC(7) is the subset of

{0 = (Para2y+ - + 1 Vanans1 5Gn+lal) € (7"-1 (Vayag)s -+ ’W_l(vanann)): "_l(vanﬂax)}
satisfying the following conditions:
e the geodesic interval (¥a,_,a:1 Vaai41) 18 mcluded in m~1m(Lg,) for any i € Z/(n + 1)Z,
e 7 forms a clockwise convex (n + 1)-gon in the universal cover R? of T?2.
® Ta,1101 = Vanpian € RZ, where we fixed an inclusion of the fundamental domain T? to the
universal cover R? and denoted the image of vg,,,a, 8180 by Vg, ,,q, itself.
The sign sign(¥) is then defined by

8ign(i')) — s‘ign(xo(ﬁamz) - xa(ﬁanﬂa;)), (n: odd),
1 (n : even),

A(D) is the area of the convex (n + 1)-gon, and [ B(?) is given by

n+l
‘Z-;(“’ (Paiaiqn) — (”ai—xa;))q +Pa Ik
Remark 5.19. This axiom is at least compatible with a (cyclic) Axo-structure. For transversal
generic collections, the fact that only convex (n + 1)-gons are ‘counted’ is equivalent to the fact
that c(¥) is nonzero only when 3"it! deg(vaa,y;) = =2+ (n + 1). The Ag-relation follows from
concentrating on a polygon which has one nonconvex vertex. There exist two ways to divide the
polygon into two convex polygons. The corresponding terms then appear with opposite signs and
cancel with each other in the A-relation. See [36], where these facts are explained for the case
R?, which is enough to understand these facts for T2.

Theorem 5.20. For fized irrational number 6 and p,7 € C, Im(7) > 0, with p = —1/7, there
exist homotopy equivalent cyclic Ao -categories C4,, 0 =~ Cpg,¢ such that
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i) Ca 6 18 a unital minimal cyclic Ay, Fukaya category (Aziom 5.18) on (T2, p,6; Lag),
ii) Cpge is a unital cyclic DG-category such that Tr(Cpg 6) = Tr(Q7(Pmod¥-A2)).

Here, we can set the generator DG category as Cpgg := Q7(Pmod®*-A42,) in Definition
4.15. 0. The existence of the unital minimal cyclic Aoo-category C4. o homotopy equivalent
to Cpg,e follows from the explicit construction of it from Cpc,e in the way done for R2, the
covering space of T2, with 6 = 0 in [36], where the leading term f; of the homotopy equivalence
F = {fift,f2;...} : Ca,¢ — CpDGye is obtained in [32]. For T2 with @ = 0 case, the unital
minimal cyclic Aoo-category Ca,, =0 is presented explicitly in (38] (see also (37, section 6]). The
second statement (Theorem 5.20 ii)) is obtained due to a result by Polishchuk on classification of
holomorphic vector bundles on noncommutative two-tori. In our notation:

Theorem 5.21 (Polishchuk [62, Theorem 1.1]). The ezxact category HO( Tw(QT(Pmod"°-A2)))
coincides with the category HO(Q"(PmodY -A2)) of all holomorphic vector bundles over (A2, 7).

Now, the DG-category Tuw(Q7(Pmod*-A7)) is a DG full subcategory of Q7 (PmodV-A42).
For a DG-category C, let us denote Tw(C) := Tw(C). Then, Tw(Tw(ﬂ’(Pmod"-Ag))) isa
DG full subcategory of Tw(QT(Pmodv-A )). On the other hand, Tw(Tw(QT(Pmod" 2)))is a

DG full subcategory of Tw(Tw (Q"'(Pmod"—A ))) also. Thus, the following sequence of DG full
subcategories is obtained,

Tw(Tw(Q" (Pmod*- Ag))) C Tw(Tw(Q" (Pmod*-A32))) ¢ Tw(Q" (Pmod"-A432)),

where HO(Tw(Tw(Q" (Pmod®-A2)))) ~ HO(Tw(Q" (Pmod”-A42))) = Tr(Q" (Pmod”-A2)) as tri-
angulated category si since the zero-th cohomology categories have the same objects (see Definition
5.1), and H( Tw(Tw(Q" (Pmod*-A43)))) ~ Tr(Q7 (Pmod*-.A2)) (see Remark 5.7). This concludes
the statement of Theorem 5.20 ii). ,

One sees that the final results, the triangulated categories Tr(C 4., ¢) ~ Tr(Q"(Pmodv-.A?_o))
do not depend on the irrational number 8. This is because one sees:

Proposition 5.22. For irrational numbers 6 # 6', one has a cyclic Aw-isomorphism éAmyo =~
Ch - O

On the other hand, in [63], the equivalence of Tr(Q" (Pmod¥-.43)) with the derived category
D*(coh(T?,7)) of coherent sheaves on the (commutative) elliptic curve is discussed (without
HMS above) using an analog of Fourer-Mukai transformation functor from Tr(027(Pmod¥-A2))
to Db(coh(T?,7)) which can be defined naturally in the noncommutative tori framework. This
also implies that Tr(Q7(PmodY-A2)) is independent of 6. Thus, Theorem 5.20 completes HMS
for (commutative) tori in the sense of Problem 5.17. For partial results on HMS for two tori so
far, see references in [37).

The 6 dependence of Q’(Pmodv-.Ag) is interpreted as follows. First, recall that Ko(A2) is
identified with the even lattice A°*"(D) (eq.(8)). For any E € Pmod-AY, an element u(E) =
+(q + pdz A dy) € Ko(A2) with positive trace, g + pd > 0, is defined. Attach ?9(E) € R by

1

1 =1 p 1
-5 < ¢¢(E) := ”Arg (q+p0) <3

10gee Remark 2.18 for the reason of the minus sign for @ here and in Theorem 5.20 ii). Instead of
Q" (PmodV-A?,), one can construct a DG category consisting of left modules. Then, as DG-categories, the struc-
ture of left .A3-modules is isomorphic to that of right A% g-modules.
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The surjection g : Ob(QT(PmodV-Ag)) — Ob(Pmod-A2) obtained by forgetting the additional
structures induces a map ¢p : Ob(Q"(PmodV-A2)) — R by. ¢s(€) = ¢p(s(€)) for any £ €
Ob(Q7(PmodV-A32)). For objects £[n], n € Z, in the shift functor completion (Definition 5.3)
of Q7(PmodV-A2), we set ¢o(E[n]) := dg(€) + n. On the other hand, the result of [63] further
implies that the shift functor completion of H%( Tw(Pmod®-A3)) is equivalent to the triangulated
categories HO(Tw(Pmod®-A2)) ~ Db(coh(T?,7)). This, together with Theorem 5.21, implies
that the shift functor completion of H%(Q"(Pmod¥-A42)) is equivalent to the derived category
DY(coh(T?, 7)) [62, Corollary 1.2]. The consequence is that the full subcategory of D®(coh(T2, 1))
consisting of objects with —1/2 < ¢p < 1/2 is equivalent to 27 (PmodV-Ag) as categories. Since
@ is irrational, there does not exist an object with ¢g = 1/2, which simplifies the arguments.

This 6 dependence is interpreted [63) as the ¢-structure in the framework of Bridgeland-
Douglas stability conditions [5]. In this framework, the full subcategory of Db(coh(T?, 7)) consist-
ing of objects with —1/2 < ¢¢ < 1/2 is obtained as the heart of the ¢-structure, and hence forms
an abelian category by [5, Proposition 5.3]. The real number ¢ corresponds to what is called
the phase. The central charges defining stability conditions and their physical interpretation are
discussed in the last half of [32, section 2.3]. An interpretation of the mirror duality p = —1/7
for noncommutative tori is also given there. '

5.3. On HMS for higher dimensional noncommutative tori. The next problem may be
the extension of the HMS for two-tori in the previous subsection to higher (even) dimensional
tori. The extension is not quite straightforward; in this higher dimensional case, we do not know
what kind of categories we should consider. On the other hand, the noncommutativity should
correspond to a deformation in the sense of extended deformation by Barannikov-Kontsevich
[1]; we should set up the problem (of constructing appropriate categories and of discussing their
deformations) so that the correspondence would be described well.

In [34], a full subcategory C of the curved DG category Q7(Pmod®-A2%") is constructed
explicitly in the sense in subsection 2.5 for an abelian variety defined by (A2%,,7 =1i-1,) and
its noncommutative deformations (.Ag",'r = i:1,), where the full subcategory C consists of
modules over (A3",7 =1-1,) which corresponds to holomorphic line bundles when § = 0. The
deformations discussed explicitly correspond to the noncommutativities of the following three
cases:

Type 61: ;=03 =0, Typefy 6;=603=0, Typefs: 6; =6 =0,
for the skew-symmetric matrix 6 € Matz,(R) defining noncommutativity

_ (61 —62
6= (95 93)'

Thus, 61,603 € Mat,(R) are skew-symmetric and 62 € Mat,(R) can be an arbitrary n by n matrix.
The results are as follows. For Type 6; case, the category is deformed by any 8,. A parallel fact
holds for Type 83 case. Then, for Type 8, case, the category is deformed by 03 iff 3—6% # 0. These
results are discussed by observing the deformations of zero-th cohomology categories H °(Cf ) of
the full DG subcategories Cf of Q7(Pmod/-A2") corresponding to ¢/ € Q7(Pmod®-A42") for
some f € A2, It is also observed there that such DG-categories ¢/ includes infinitely many
objects as in the case of noncommutative two-tori. Note that the algebraic structure of H°(C/)
is related to the addition formula of Riemann theta functions; morphisms between holomorphic
line bundles are described by theta functions and the compositions of morphisms are given by
the addition formula for commutative case. The noncommutative deformation of the addition
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formula of theta functions is presented in [33]. The corresponding Fukaya categories may be
defined as special minimal A-categories of C/ via homological perturbation theory as discussed
in [37], which should include the effect of the noncommutativities quite more nontrivially than
the noncommutative two-tori case.

On the other hand, for Type 6, case with 6, = 6%, the category, for instance, Tw(C) does
not depend on 6;. The noncommutativity 62 = 6% plays a similar role to 8 in two-tori case.
(A composition of theta functions in this situation is discussed in [45]. ) This seems to imply
that to take 03 generic, keeping the relation 6; = 64, may be convenient to discuss HMS for
(commutative, higher dimensional) abelian varieties as in [16, 51].

These noncommutative deformation might be understood as generalized complex structure

Iow 6\ (I O\ (Ll -6\ (I —6I'-1I8 ©7)
Oz, 12, 0 -rIt 0 1,/ \0O ~It !

where I = (?: —01,.") now. This is often called a 3-transformation of I (see [24, 2]), where 8 = 6. In
fact, one sees that I is not deformed if 6; = 65. However, we do not still observe in [34] a precise
relation between Type 6, deformation and Type 63 deformation. Though a (noncommutative
version -of) holomorphic vector bundles and Lagrangian submanifolds can be discussed in the
context ‘of generalized geometry {24, 2}, in the author’s understanding at present, these seem not
to suggést appropriate categories we should consider. '

6. CONCLUDING REMARKS

Though we defined the curved DG category Q7 (Pmod®-,42") for noncommutative complex
tori (AZ",7), it is not clear at present whether considering triangulated categories from their
sub DG-categories as explained in the previous subsection is a correct direction or not. Another
possibility is to consider the DG-category of non one-sided twisted complexes in Q7 (Pmod*:-A2").
They are defined as a straightforward generalization of the twisted complexes in an Aoo-category
(Definition 5.8) to a weak A-category (for instance, see [59]), where one notices that the analog
of one-sided complexes does not exist except mg = 0. Instead of it, one can also define homotopy
equivalence of weak Aoo-categories at least formally, since an A -functor is thought of as a cochain
map of DG coalgebra structures defining weak Ao-categories (see Remark 4.21). Then, one may
classify the curved DG-categories 27 (Pmod®-A2") by homotopy equivalence of Ao-categories.
However, in both ways, one may see that they already require something beyond homological
algebras as opposed to the case of one-sided twisted complexes in A..-categories.

We should remark that a version of Fukaya category consisting of Lagrangian foliations is
proposed in [15] for higher dimensional symplectic tori, which gives another candidate for the
objects to form categories we should consider. The corresponding extension in complex geometry
side may be the derived category of quasi-coherent sheaves instead of something obtained from
Q7 (Pmod*-A%™).

For more general noncommutative algebras A, there still may not exist a general machinery
to associate (weak) DG algebras 20°(.4). For our case A = A§, d = 2n, it exists because we have
appropriate derivations dy,...,d4 € Der(A). The space Der(A) of derivations is spanned over C
by &1, ...,84 and inner derivations, as shown first by Takai for d = 2 [79]. Similar procedure may
work for noncommutative algebras obtained as deformation of commutative algebras. It seems
to be more important at present to find and study good examples first to understand a correct
direction of formulations. See [50] which includes some common interests with this article. -
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In any case, the construction of triangulated categories from A.-category as in subsection
5.1 may provide not only a way of giving equivalence of triangulated categories but a way of
formulating deformation of triangulated categories. Since deformation of (weak) A -categories
can be defined as the deformation of codifferential m such that (m)% = 0 (for instance, see (37,
Remark 2.3] for Ax-algebras). Namely, deformation of a triangulated category 7 ~ Tr(C) may
be defined as deformation of the generator A-category C.
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