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ABSTRACT. In 1978, Cuntz raised the problem of classifying automorphisms of $O_{\mathfrak{n}}$ which
leave both the diagonal and the core UHF subalgebra invariant. In this note, we start
developing a machinery that might be useful towards this goal. In particular, we give a
practical criterion of invertibility of endomorphisms of $O_{n}$ corresponding to unitaries in
the normalizer of the diagonal inside the UHF subalgebra. We also analyze the action
of such localized automorphisms on the spectrum of the diagonal thus obtaining criteria
of outerness.

If $n$ is an integer greater than 1, then the Cuntz algebra $O_{n}$ is a unital, simple C’-algebra
generated by $n$ isometries $S_{1},$

$\ldots$ , $S_{n}$ satisfying $\sum_{j=1}^{n}S_{1}S_{j}^{*}=1[5]$ . As in [5], we denote by
$W_{n}^{k}$ the set of k-tuples $\alpha=(\alpha^{1}, \ldots, \alpha^{k})$ with $\alpha^{m}\in\{1, \ldots, n\}$ , and we denote by $W_{n}$ the
union $\bigcup_{k=0}^{\infty}W_{n}^{k}$ , where $W_{n}^{0}=\{0\}$ . Elements of $W_{n}$ are called multi-indices and if $\alpha\in W_{n}^{k}$

then $l(\alpha)=k$ , the length of $\alpha$ . If $\alpha=(\alpha^{1}, \ldots, \alpha^{k})\in W_{n}^{k}$ , then $S_{\alpha}=S_{\alpha^{1}}\cdots S_{\alpha^{k}}$ , with
$S_{0}=1$ by convention. Each $S_{\alpha}$ is an isometry and its range projection is $S_{\alpha}S_{\alpha}^{*}$ . Every
word in $\{S_{1}, S_{i}^{*} : i=1, \ldots, n\}$ can be uniquely expressed as $S_{\alpha}S_{\beta}$ for some $\alpha,\beta\in W_{n}[5$ ,
Lemma 1.3].

The C’-subalgebra of $O_{n}$ generated by $\{S_{\alpha}S_{\beta}^{*} : l(\alpha)=l(\beta)\}$ is isomorphic to $M_{n^{k}}(\mathbb{C})$

and denoted $\mathcal{F}_{n}^{k}$ . The norm closure of the union $\bigcup_{k=0}^{\infty}\mathcal{F}_{n}^{k}$ is a UHF-algebra of type $n^{\infty}$

and is denoted $\mathcal{F}_{n}$ . It is called the core UHF-subalgebra of $O_{n}$ . There exists a faithful
conditional expectation from $O_{n}$ onto $\mathcal{F}_{n}[5]$ . The $C$“-subalgebra of $O_{n}$ generated by all
projections $S_{\alpha}S_{\alpha}^{*},$ $\alpha\in W_{n}$ , is denoted $\mathcal{D}_{n}$ and called the diagonal subalgebra of $O_{n}$ . It is a
maximal abelian subalgebra of $\mathcal{O}_{n}$ , regular both in $\mathcal{F}_{n}$ and in $O_{n}[8]$ . The spectrum of $\mathcal{D}_{n}$

is naturally identified with $X_{n}$ , the collection of infinite words on the alphabet $\{1, \ldots, n\}$

[8]. With the product topology, $X_{n}$ is homeomorphic to the Cantor set. There exists a
faithful conditional expectation from $\mathcal{F}_{n}$ onto $D_{n}$ and whence from $\mathcal{O}_{n}$ onto $\mathcal{D}_{\mathfrak{n}}$ as well.
We denote $\mathcal{D}_{n}^{k}=D_{n}\cap \mathcal{F}_{n}^{k}$ .

Let End $(\mathcal{O}_{n})$ be the semigroup (with composition) of endomorphisms of $O_{n}$ , that is
unital $*$-homomorphisms of $O_{n}$ into itself. Since $O_{n}$ is simple, each endomorphism is
injective and it is invertible (automorphism) if and only if it is surjective. Let $\mathcal{U}(O_{n})$ be the
group of all unitaries in $\mathcal{O}_{n}$ . As shown in [6], there is abijective map $\lambda$ : $\mathcal{U}(O_{n})arrow End(O_{n})$

determined by
(1) $\lambda_{u}(S_{1})=u^{*}S_{1}$ , $i=1,$ $\ldots,$

$n$ .
The inverse of $\lambda$ is the map $\psirightarrow\sum_{i=1}^{n}S_{1}\psi(S_{i}^{*})$ . The map $\lambda$ becomes a semigroup
isomorphism once $\mathcal{U}(O_{n})$ is equipped with the convolution multiplication
(2) $u*w=u\lambda_{u}(w)$ .

Endomorphisms of Cuntz algebras have been studied extensively by many authors and
in variety of contexts. In particular, they appear in connection with Jones index theory
for subfactors. We would only like to mention papers [7, 9, 12, 2, 10, 11] which are closest
in spirit to the present note. In these and other works, a prominent role is played by
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localized endomorphisms, that is those of the form $\lambda_{u}$ with $u$ in $\bigcup_{k=0}^{\infty}\mathcal{F}_{n}^{k}$ . Analysis of such
endomorphisms and related structures often reduces to clever algebraic manipulations.

In the present paper (and the follow-up [3], in preparation), our focus is on localized
automorphisms which preserve the diagonal subalgebra of $O_{n}$ . Interest in such automor-
phisms goes back to [1], where outerness of the flip-flop of $\mathcal{O}_{2}$ is shown. But the real
motivation behind our work is the ground breaking paper [6] of Cuntz. Among more
recent contributions to this subject of particular note is paper [13] of Matsumoto.

As observed in [6], endomorphism $\lambda_{u}$ is invertible if and only if $u$ belonga to its range.
Indeed, if $u^{n}=\lambda_{u}(w)$ then $\lambda_{w}$ is the inverse of $\lambda_{u}$ . Unfortunately, this condition is difficult
to check in general. Our Theorem 7, below, gives a convenient criterion of invertibility of
a special class of localized endomorphisms. Let $Aut(O_{n},\mathcal{D}_{n})=\{\psi\in Aut(O_{n})$ : $\psi(\mathcal{D}_{n})=$

$\mathcal{D}_{n}\}$ , and let $Aut_{\mathcal{D}_{\hslash}}(O_{n})=$ {$\psi\in Aut(O_{n})$ : $\psi|_{\mathcal{D}_{n}}=$ id}. Cuntz showed in [6] that
$Aut(O_{n},\mathcal{D}_{n})=\{\lambda_{w}\in Aut(O_{n}) : w\in N_{\mathcal{D}_{\hslash}}(O_{\mathfrak{n}})\}$ (with $N_{\mathcal{D}_{n}}(O_{n})$ denoting the normalizer
of $\mathcal{D}_{n}$ in $O_{n}$ ), and $Aut_{\mathcal{D}_{n}}(O_{n})=\{\lambda_{t}\in End(O_{n}) : t\in \mathcal{U}(\mathcal{D}_{n})\}$ . More recently, Power
determined in $[15]^{1}$ the structure of $\mathcal{N}_{\mathcal{D}_{n}}(O_{n})$ . Namely, every $w\in \mathcal{N}_{\mathcal{D}_{n}}(O_{n})$ has a unique
decomposition as $w=tu$ with $t\in \mathcal{U}(\mathcal{D}_{n})$ and $u$ a finite sum of words. That is, $u$ is a
unitary such that $u= \sum_{j=1}^{m}S_{\alpha_{i}}S_{\beta_{j}}^{*}$ for some $\alpha_{j},\beta_{j}\in W_{n}$ . Clearly, such unitaries form a
group, which we denote $S_{n}$ , and this group acts on $\mathcal{U}(\mathcal{D}_{n})$ by conjugation. Thus, Power’s
result says that $\mathcal{N}_{\mathcal{D}_{n}}(O_{n})$ has the structure of semi-direct product $\mathcal{U}(\mathcal{D}_{n})xS_{n}$ . We denote

(3) $\lambda(S_{n})^{-1}=\{\lambda_{w}\in Aut(O_{n}) : w\in S_{n}\}$ .
Combining the results of [6] and [15] we obtain the following Theorem 1. This results has
been obtained earlier by Matsumoto [13, Theorem 6.5] through a different argument.

Theorem 1. $Aut(O_{n},\mathcal{D}_{n})$ or $\mathcal{U}(\mathcal{D}_{\mathfrak{n}})\rtimes\lambda(S_{n})^{-1}$ . In particular, $\lambda(S_{n})^{-1}$ is a subgroup of
$Aut(O_{n},\mathcal{D}_{n})$ .
Prvof Let $u\in S_{\mathfrak{n}}$ and let $\lambda_{u}$ be invertible. Then $\lambda_{u}^{-1}\in Aut(O_{\mathfrak{n}},\mathcal{D}_{\mathfrak{n}})$ and thus $\lambda_{u}^{-1}=\lambda_{l}$

with $z\in N_{\mathcal{D}_{n}}(O_{n})$ . Thus, there are $v\in S_{n}$ and $y\in \mathcal{U}(\mathcal{D}_{n})$ such that $z=vy$. We have
id $=\lambda_{u}\lambda_{vy}$ and hence $1=u*vy=u\lambda_{u}(v)\lambda_{u}(y)$ . Thus $S_{n}\ni u\lambda_{u}(v)=\lambda_{u}(y)\in \mathcal{U}(\mathcal{D}_{n})$ .
Therefore $y=1$ and consequently $\lambda_{u}^{-1}=\lambda_{v}$ . It follows that $\lambda(S_{n})^{-1}$ is a subgroup of
$Aut(O_{\mathfrak{n}},\mathcal{D}_{n})$ . Clearly, $\lambda(S_{n})^{-1}ac$ts on $Aut_{\mathcal{D}_{n}}(O_{n})=\lambda(\mathcal{U}(\mathcal{D}_{n}))$ by conjugation.

Let $\lambda_{w}\in Aut(O_{n},\mathcal{D}_{\mathfrak{n}})$ . Then $w\in \mathcal{N}_{D_{n}}(O_{n})$ and hence there are $u\in S_{n}$ and $t\in \mathcal{U}(D_{\mathfrak{n}})$

such that $w=ut$ . Since $\lambda_{w}(\mathcal{D}_{n})=\mathcal{D}_{n})$ there is $s\in \mathcal{U}(\mathcal{D}_{n})$ such that $\lambda_{w}(s)=t^{*}$ . We have
$\lambda_{w}\lambda_{\epsilon}=\lambda_{ut}\lambda_{t}=\lambda_{ut\lambda_{ut}(\iota)}=\lambda_{u}$ . Since $\lambda_{*}^{-1}=\lambda_{\iota}$. we get $\lambda_{w}=\lambda_{u}\lambda_{*}\cdot$ . As both $\lambda_{w}$ and $\lambda_{\epsilon}$.
are invertible, so is $\lambda_{u}$ . Thus every element of $Aut(O_{n},\mathcal{D}_{n})$ can be wnitten as a product
of two elements from $\lambda(S_{\mathfrak{n}})^{-1}$ and $\lambda(\mathcal{U}_{n})$ . Clearly, such a factorization is unique. Finally,
as shown in [6], $\lambda$ is an isomorphism from $\mathcal{U}(\mathcal{D}_{n})$ onto $Aut_{\mathcal{D}_{n}}(O_{n})$ . $\square$

We now tum to the main focus of this note, automorphisms which preserve both the
diagonal and the UHF subalgebra2. It is shown in [6] that if $\lambda_{w}$ is invertible then $\lambda_{w}(\mathcal{F}_{n})\subseteq$

$\mathcal{F}_{n}$ if and only if $w\in \mathcal{F}_{\mathfrak{n}}$ . Thus, if $\lambda_{w}$ is an automorphism then $\lambda_{w}(\mathcal{D}_{n})=\mathcal{D}_{n}$ and
$\lambda_{w}(F_{n})\subseteq \mathcal{F}_{\mathfrak{n}}$ if and only if $w\in \mathcal{N}_{\mathcal{D}_{n}}(\mathcal{F}_{n})$ . This can be further strenghen as follows.

Lemma 2 (R. Conti). If $\lambda_{w}\in Aut(O_{n})$ and $w\in \mathcal{F}_{\mathfrak{n}}$ then $\lambda_{w}(\mathcal{F}_{n})=\mathcal{F}_{n}$ .

1I am indebted to Roberto Contl for bringing this paper to my attention and for thorough discussion
of Power’8 argument.

$2It$ is worth mentioning that a formula similar to that describing rostriction of guch automorphisms to
$F_{n}[6]$ appeared already in [4] in $\infty nstruction$ of examples of periodic automorphisms of the hyperfinite
$II_{1}$ factor.
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Proof. Let $\gamma$ be the standard gauge action of the circle group on $O_{n}[5]$ , for which $\mathcal{F}_{n}$

is the fixed-point algebra [5]. Then for each $z\in U(1)$ we have $\lambda_{w}\gamma_{z}=\gamma_{z}\lambda_{w}$ . Thus,
also $\lambda_{w}^{-1}\gamma_{z}=\gamma_{z}\lambda_{w}^{-1}$ and consequently $\lambda_{w}^{-1}$ preserves the fixed-point algebra of $\gamma$ . That is
$\lambda_{w}^{-1}(\mathcal{F}_{n})\subseteq \mathcal{F}_{n}$, as required. $\square$

Since $\mathcal{N}_{\mathcal{D}_{n}}(O_{n})=\mathcal{U}(\mathcal{D}_{n})\aleph S_{n}$ by [15], it easily follows that $\mathcal{N}_{\mathcal{D}_{n}}(\mathcal{F}_{n})=\mathcal{U}(\mathcal{D}_{n})\rtimes \mathcal{P}_{n}$,
where $\mathcal{P}_{n}=S_{n}\cap \mathcal{F}_{n}$ . We see that $\mathcal{P}_{n}$ is contained in the algebraic part $U_{k=0}^{\infty}\mathcal{F}_{n}^{k}$ of $\mathcal{F}_{n}$ ,
and write $\mathcal{P}_{n}^{k}=\mathcal{P}_{n}\cap \mathcal{F}_{n}^{k}$ . It is not difficult to see that unitaries in $\mathcal{P}_{n}$ are related to
permutations of multi-indices, as follows. Let $\mathbb{P}_{\mathfrak{n}}^{k}$ denote the set of permutations of $W_{n}^{k}$ ,
and let $\mathbb{P}_{n}=\bigcup_{k=0}^{\infty}\mathbb{P}_{n}^{k}$ . Then for each unitary $w\in \mathcal{P}_{n}^{k}$ there exists a permutation $\sigma\in \mathbb{P}_{n}$

such that
(4)

$w= \sum_{\alpha\in W_{n}^{k}}S_{\sigma(\alpha)}S_{\alpha}^{*}$
.

In that case we write $w\sim\sigma$ and $\lambda_{w}=\lambda_{\sigma}$ . We denote
(5) $\lambda(\mathcal{P}_{n})^{-1}=\{\lambda_{w}\in Aut(O_{\mathfrak{n}}) : w\in \mathcal{P}_{n}\}$.
Let $Aut(O_{\mathfrak{n}},\mathcal{F}_{\mathfrak{n}})=\{\psi\in Aut(O_{n}) : \psi(\mathcal{F}_{n})=\mathcal{F}_{n}\}$. With help of Lemma 2 one proves the
following proposition by an argument similar to that from Theorem 1.

Theorem 3. $Aut(O_{n}, \mathcal{D}_{n})\cap Aut(O_{n},\mathcal{F}_{n})\cong \mathcal{U}(\mathcal{D}_{\mathfrak{n}})\rtimes\lambda(\mathcal{P}_{n})^{-1}$. In particular, $\lambda(\mathcal{P}_{n})^{-1}$ is
a subgroup of $Aut(O_{\mathfrak{n})}\mathcal{D}_{n})\cap Aut(O_{n},F_{\mathfrak{n}})$ .

If $u\in \mathcal{U}(O_{n})$ then $Ad(u)=\lambda_{\Phi(u)u}$ is the inner automorphism of $O_{n}$ determined by $u$ .
We denote by Inn$(O_{\mathfrak{n}})$ the group of inner automorphisms of $O_{n}$ .
Lemma 4. Let $w\in \mathcal{P}_{n}$ . If $\lambda_{w}\in Inn(O_{n})$ then there exists $u\in P_{n}$ such that $w=\Phi(u)u^{*}$ .
Proof. Let $w\in \mathcal{P}_{\mathfrak{n}}$ and let $\lambda_{w}=Ad(z)$ . Since $\lambda_{w}(\mathcal{D}_{\mathfrak{n}})=\mathcal{D}_{n}$ , the unitary $z$ belongs to

$N_{\mathcal{D}_{n}}(O_{\mathfrak{n}})$ and thus there are $u\in S_{n}$ and $t\in \mathcal{U}(D_{n})$ such that $z=ut$ . For each $x\in \mathcal{D}_{n}$

we have $\lambda_{w}(x)=zxz=uxu^{*}$ . Therefore $\lambda_{w}^{-1}Ad(u)=\lambda_{w}^{-1}\lambda_{\Phi(u)u}$ belonga to $\lambda(S_{\mathfrak{n}})^{-1}$ (by
Theorem 1) and acts trivially on $\mathcal{D}_{n}$ . Hence $\lambda_{w}=Ad(u)$ .

Since $w\in \mathcal{F}_{n}$ , automorphism $\lambda_{w}$ commutes with the gauge action $\gamma$ of the circle group.
Thus $u\gamma_{c}(a)u^{*}=\gamma_{c}(uau)$ for all $a\in O_{n}$ and $c\in U(1)$ . Substituting $a=S_{i},$ $i=1,$ $\ldots$ , $n$ ,
we see that the unitary $\gamma_{\epsilon}(u)^{*}u$ commutes with the generators of $O_{n}$ and hence it is a
scalar. Now applying the Fourier series decomposition of $u\in O_{n}$ from [5] we conclude
that $u\in \mathcal{F}_{\mathfrak{n}}$ . Hence $u\in \mathcal{P}_{n}$ . $\square$

Suppose $u\in \mathcal{P}_{n}^{k},$ $\sigma\in \mathbb{P}_{\mathfrak{n}}^{k}$ , and $u\sim\sigma$ . Then the natural inclusion $u\in \mathcal{F}_{n}^{k}\subseteq \mathcal{F}_{n}^{k+m}$

corresponds to the embedding $\mathbb{P}_{n}arrow \mathbb{P}_{n}^{k+m}$ such that $\sigma\vdasharrow\sigma xid_{m}$ , where $id_{m}$ is the
identity on $W_{\mathfrak{n}}^{m}$ and we identify $W_{n}^{k+m}=W_{\mathfrak{n}}^{k}xW_{n}^{m}$ . On the other hand, the embedding
$\mathcal{P}_{n}^{k}arrow \mathcal{P}_{n}^{k+m}$ given by $urightarrow\Phi^{m}(u)$ corresponds to the embedding $\mathbb{P}_{n}arrow \mathbb{P}_{n}^{k+m}$ such that
$\sigmarightarrow id_{m}x\sigma$ . For $r=2,3,$ $\ldots$ we define $\sigma^{(r)}\in \mathbb{P}_{n}^{k+r-1}$ as
(6) $\sigma^{(r)}=(id_{r-1}x\sigma)(id_{r-2}x\sigma xid_{1})\cdots(\sigma xid_{r-1})$ .
If $r=1$ then simply $\sigma^{(1)}=\sigma$ . Note that if $\lambda_{u}$ is inner and $u=\Phi(w)w^{s}$ with $w\in \mathcal{P}_{n}^{k-1}$ ,
then with $w\sim\psi$ we have $\psi=(id_{1}x\sigma)(\sigma^{-1}xid_{1})$ and $\psi^{(r)}=(id_{r}x\sigma)(\sigma^{-1}xid_{r})$ . In par-
ticular, $\psi^{(k)}=\phi^{-1}x\psi$ . With this notation one notes that the convolution multiplication
$\mathcal{P}_{n}^{k}x\mathcal{P}_{n}^{r}arrow \mathcal{P}_{n}^{k+r-1},$ $(u, w)\mapsto u*w=u\lambda_{u}(w)$ , corresponds on the permutation level to
the map $\mathbb{P}_{n}^{k}x\mathbb{P}_{n}arrow \mathbb{P}_{n}^{k+r-1}$ such that
(7) $(\alpha,\beta)rightarrow\alpha*\beta=(\alpha xid_{r-1})(\alpha^{(r)})^{-1}(\beta xid_{k-1})\alpha^{\langle r)}$ .
If permutation $\sigma is*$-invertible then we denote its inverse by $\overline{\sigma}$ .
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If $w\in \mathcal{P}_{n}$ and $\lambda_{w}$ is invertible then $\lambda_{w}(\mathcal{D}_{n})=\mathcal{D}_{n}$ and hence there exists a homeomor-
phism $h_{u}$ : $X_{n}arrow X_{n}$ such that

(8) $(\lambda_{w}^{-1}f)(x)=f(h_{w}(x)))$ , $x\in X_{n},$ $f\in D_{n}=C(X_{n})$ .
If $w\sim\sigma$ then we also write $h_{w}=h_{\sigma}$ . For $x=(x_{i})\in X_{n}$ and $m=0,1,$ $\ldots$ we denote
by $x_{+m}$ the sequence in $X_{m}$ whose $i^{th}$ term is $x_{i+m}$ . For integers $k\leqq r$ we denote
$\pi_{k,r}(x)=(x_{k},x_{k+1}, \ldots,x_{r})$ . If $k=r$ then we simply write $\pi_{k}=\pi_{k,k}$ . If $\sigma\in \mathbb{P}_{n}^{k}$ then we
write $\sigma(x)=\sigma(\pi_{1,k}(x))$ .

The following lemma gives a description of the homeomorphisms of $X_{n}$ corresponding
to elements of $\lambda(\mathcal{P}_{n})^{-1}$ . It turns out that these homeomorphisms are also localized in the
sense that the value of the $m^{th}$ coordinate depends only on finitely many neighbouring
coordinates in an eventually periodic fashion. The lemma also gives a convenient practical
way of deciding if an automorphism from $\lambda(\mathcal{P}_{n})^{-1}$ is inner or not.

Lemma 5. If $w\in \mathcal{P}_{n}^{k},$ $w\sim\sigma_{f}$ and $\lambda_{w}$ is invertible, then $h_{w}(x)=y$ where

(9) $(y_{1}, \ldots, y_{k-1})$ $=\pi_{1,k-1}(\overline{\sigma}^{(k-1)}(x))$ ,
(10) $y_{k+m}=\pi_{k}(\overline{\sigma}^{(k)}(x_{+m}))$ .
$Fu\hslash hermore$, if $\pi_{k}(\overline{\sigma}^{(k)}(x))=x_{k}$ for all $x\in X_{n}$ then $\lambda_{w}\in Inn(O_{n})$ . Conversdy, if
$\lambda_{w}=Ad(u)$ with $u\in \mathcal{P}_{n}^{k-1}$ then $\pi_{k}(\overline{\sigma}^{(k)}(x))=x_{k}$ for all $x\in X_{\mathfrak{n}}$ .

Proof. At first one checks that $h_{w}(x)=y$ with $y_{j}$ the unique element of $\{1, \ldots,n\}$ such
that $(\lambda_{w}^{-1}(\dot{\Phi}^{-1}(S_{yj}S_{y_{j}}^{*})))(x)=1$ . Thies yields formulae (9) and (10) with $m=0$. However,
if $t\in\{1, \ldots, n\}$ and $j\geq k+1$ then

$\lambda_{w}^{-1}(\dot{\Phi}^{-1}(S_{t}S_{t}^{l}))=\lim_{marrow\infty}Ad(\Phi^{m}(w)\cdots w)(\dot{\Psi}^{-1}(S_{t}S_{t}^{*}))=$

$= \lim_{marrow\infty}Ad(\Phi^{m}(w)\cdots\dot{\Phi}^{-k}(w))(\dot{\Phi}^{-1}(S_{l}S_{t}^{*}))=$

$= \dot{\Phi}^{-k}(\lim_{marrow\infty}Ad(\Phi^{m}(w)\cdots w)(\Phi^{k-1}(S_{t}S_{t}^{*})))=\dot{\Phi}^{-k}(\lambda_{w}^{-1}(\Phi^{k-1}(S_{t}S_{t}^{*})))$ .
This implies (10) with $m=0,1,$ $\ldots$ .

If $\pi_{k}(\overline{\sigma}^{(k)}(x))=x_{k}$ for all $x\in X_{n}$ then there exists $\psi\in \mathbb{P}_{\mathfrak{n}}^{k-1}$ such that $h_{w}(x)=\psi(x)$ .
This implies $\lambda_{w}=Ad(u^{*})$ with $u\sim\psi$ . Finally, if $\lambda_{w}$ is inner and $\sigma=(id_{1}x\psi)(\psi^{-1}xid_{1})$

for some $\psi\in \mathbb{P}_{\mathfrak{n}}^{k-1},$ then $\overline{\sigma}^{(k)}=\psi xid_{1}x\psi^{-1}$ and hence $\pi_{k}(\overline{\sigma}^{(k)}(x))=x_{k}$ . $\square$

Theorem 6. If $u\in \mathcal{P}_{n}$ and $\lambda_{u}$ is invertible then the follounng conditions are equivalent.
$(J)$ Automorphism $\lambda_{u}$ has infinite order.
(2) The $\mathbb{Z}$ action on $O_{n}$ generated by $\lambda_{u}$ is outer.
(3) The $\mathbb{Z}$ action on $X_{n}$ generated by $h_{u}$ is topologically free.

Proof. (1) $\Rightarrow(2)$ This follows from the fact that (by Lemma 4) if $\lambda_{u}\in Inn(O_{n})$ then $\lambda_{u}$

has finite order.
(2) $\Rightarrow(3)$ If the action is not topologically free then for some $m$ the set of fixed points

of $h_{u}^{m}$ has a non-empty interior. Thus there exists $(x_{1}, \ldots,x_{r})$ such that $h_{u}^{m}$ fixes each
sequence $(y_{i})$ whose initial segment coincides with $(x_{1}, \ldots , x_{r})$ . But then $\lambda_{u}^{m}$ is inner by
Lemma 5.

(3) $\Rightarrow(1)$ This is obvious. $\square$

We now give a practical criterion of invertibility of endomorphisms corresponding to
permutations. First recall that End$(O_{n})$ contains a distinguished endomorphism $\Phi$ , called
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shift, such that

(11) $\Phi(a)=\sum_{i=1}^{n}S_{i}aS_{i}^{*}$ .

Let $w\in \mathcal{P}_{n}^{k}$ . If $k\geq 2$ then we define
(12) $B_{w}=\{w, \Phi(w), \ldots, \Phi^{k-2}(w)\}’\cap \mathcal{F}_{n}^{k-1}$.
Here prime denotes the commutant. If $k\leqq 1$ then we set $B_{w}=$ Cl. One checks that
$b\in \mathcal{F}_{n}^{k-1}$ belongs to $B_{w}$ if and only if for each pair $\alpha,\beta\in W_{n}^{l},$ $l\in\{0,1, \ldots, k-2\},$ $S_{\alpha}^{r}bS_{\beta}$

commutes with $w$ . We define a vector space $V_{w}$ as the quotient
(13) $V_{w}=\mathcal{F}_{\mathfrak{n}}^{k-1}/B_{w}$.
Now for each pair $i,j\in\{1, \ldots, n\}$ we define a linear map $a_{ij}^{w}$ : $\mathcal{F}_{n}^{k-1}arrow \mathcal{F}_{n}^{k-1}$ such that
(14) $a_{1j}^{w}(b)=S_{1}^{*}wbw^{*}S_{j}$ .
One checks that $a_{ij}^{w}(B_{w})\subseteq B_{w}$ for each $i,j$ . Thus, $a_{ij}^{w}$ induces a linear map
(15) $\overline{a}_{1j}^{w}$ : $V_{w}arrow V_{w}$ .
With this preparation we make the following deflnition:
(16) $A_{w}=the$ subring of End$(V_{w})$ generated by $\{\tilde{a}_{1j}^{w} : i,j=1, \ldots, n\}$ .
Now we are ready to prove the following.
Theorem 7. If $w\in \mathcal{P}_{n}$ then endomorphism $\lambda_{w}$ is invertible if and only if the correspond-
ing ring $A_{w}$ is nilpotent.

Proof. Necessity. Let $w\in \mathcal{P}_{n}^{k}$ and suppose that $\lambda_{w}$ is invertible. By Proposition 3
there exists $u\in \mathcal{P}_{n}$ such that $\lambda_{w}^{-1}=\lambda_{u}$ . Thus there exists positive integer $l$ such that
$\lambda_{w}^{-1}(\mathcal{F}_{\mathfrak{n}}^{k-1})\subseteq \mathcal{F}_{n}^{l}$ . For each $a\in \mathcal{F}_{n}^{l}$ the sequence $Ad(w^{*}\Phi(w^{*})\cdots\Phi^{m}(w^{*}))(a)$ stabilizes
from $m=l-1$ at the value $\lambda_{w}(a)$ . Consequently, for each $b\in \mathcal{F}_{n}^{k-1}$ the sequence
$Ad(\Phi^{m}(w)\cdots\Phi(w)w)(b)$ stabIlizes from $m=l-1$ at the value $\lambda_{w}^{-1}(b)$ . There exist
elements $c_{\mu\nu}(b)\in F_{\mathfrak{n}}^{k-1},$

$\mu,$ $\nu\in W_{n}^{l}$ , such that for each $r\geq 1$ we have

$\sum_{\mu,\nu\in W_{n}^{l}}S_{\mu}c_{\mu\nu}(b)S_{\nu}^{*}=Ad(\Phi^{l-1}(w)\cdots\Phi(w)w)(b)=$

$= Ad(\Phi^{l-1+r}(w)\cdots\Phi(w)w)(b)=\sum_{\mu,\nu\in W_{n}^{l}}S_{\mu}Ad(\Phi^{r-1}(w))(c_{\mu\nu}(b))S_{\nu}^{l}$
.

Hence $c_{\mu\nu}(b)=Ad(\Phi^{r-1}(w))(c_{\mu\nu}(b))$. Thus $span\{c_{\mu\nu}(b) : b\in \mathcal{F}_{n}^{k-1}, \mu\nu\in W_{n}^{l}\}\subseteq B_{w}$ . If
$\alpha=(i_{1}, \ldots,i_{l})$ and $\beta=(j_{1}, \ldots,j_{l})$ then let $T_{\alpha,\beta}=a_{i_{j}j_{j}}^{w}\cdots a_{i_{1}j_{1}}^{w}$ . For each $b\in \mathcal{F}_{n}^{k-1}$ we
have $T_{\alpha,\beta}(b)=c_{\alpha\beta}(b)$ . Consequently $A_{w}^{l}=\{0\}$ and $A_{w}$ is nilpotent.

Sufficiency. Let $w\in \mathcal{P}_{\mathfrak{n}}^{k}$ and suppose that $A_{w}^{l}=\{0\}$ . Let $b\in \mathcal{F}_{n}^{k-1}$ and define $T_{\alpha,\beta}$

as above. By hypothesis, $T_{\alpha,\beta}(b)$ commutes with $Ad(\Phi^{m}(w))$ for any $m$ . Hence if $r\geq 1$

then we have

$Ad(\Phi^{l-1+r}(w)\cdots\Phi(w)w)(b)=\sum_{\mu,\nu\in W_{n}^{l}}S_{\mu}Ad(\Phi^{r-1}(w))(T_{\mu\nu}(b))S_{\nu}=\sum_{\mu,\nu\in W_{n}^{l}}S_{\mu}T_{\mu\nu}(b)S_{\nu}^{l}$
.

Thus for each $b\in \mathcal{F}_{n}^{k-1}$ the sequence $Ad(\Phi^{m}(w)\cdots\Phi(w)w)(b)$ stabilizes from $m=l-1$ .
We have $w= \sum_{1j=1}^{n}S_{1}b_{ij}S_{j}^{*}$ for some $b_{1j}\in \mathcal{F}_{n}^{k-1}$ . It follows from the above argument
that the sequence

$Ad(\Phi^{l-1+r}(w)\cdots\Phi(w)w)(w^{*})=\sum_{1j}Ad(\Phi(\Phi^{m-1}(w)\cdots\Phi(w)w))(S_{1}b_{2j}S_{j}^{l})=$
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$= \sum_{1j}S_{1}Ad(\Phi^{m-1}(w)\cdots\Phi(w)w)(b_{1j})S_{j}^{*}$

stabilizes from $m=l$ at the value $\lambda_{w}^{-1}(w^{*})$ . Consequently $\lambda_{w}$ is invertible. $\square$

An easy application of Theorem 7 shows that among $\{\lambda_{w} : w\in \mathcal{P}_{2}^{2}\}$ only 4 elements
are invertible: the flip-flop, an inner automorphism of order 2, their product, and the
identity. This was observed earlier by a different method by Kawamura $[10, 11]$ . Further
discussion of Theorem 7 and its far reaching applications will be presented in [3].

We close this note with the following two examples.
Example 8. Consider a partition $W_{n}^{1}=R_{1}\cup\ldots R_{r}$ of $W_{n}^{1}$ into a union of disjoint subsets.
Let $\sigma_{i}\in \mathbb{P}_{n}^{1},$ $i=1,$ $\ldots,r$ , be permutations such that $\sigma_{i}\sigma_{j}^{-1}(R_{m})=R_{m}$ for all $i,j,$ $m$ . We
define $\psi\in \mathbb{P}_{n}^{2}$ as $\psi(\alpha,\beta)=(\alpha,\sigma_{i}(\beta))$ for $\alpha\in R_{i},$ $\beta\in W_{n}^{1}$ . So constructed $\lambda_{\psi}$ is invertible
and we have $\overline{\psi}\in \mathbb{P}_{n}$ such that $\overline{\psi}(\alpha,\beta, \mu)=(\alpha, \sigma_{i}^{-1}(\beta),$ $\sigma_{j}\sigma_{k}^{-1}(\mu))$ for $\alpha\in R_{j},$ $\beta\in R_{k}$ ,
$\sigma_{1}^{-1}(\beta)\in R_{j}$ . By Lemma 5 we have

(17) $h_{\psi}(x_{1},x_{2}, \ldots)=(x_{1}, \sigma_{\nu_{1}}^{-1}(x_{2}),$ $\sigma_{la}^{1}(x_{3}),$
$\ldots$ ), $x_{i}\in R_{\nu_{1}}$ .

Also by Lemma 5, $\lambda_{\psi}\in Inn(O_{n})$ if and only if $\psi=id$ .
If $n=4,$ $R_{1}=\{1,2\},$ $R_{2}=\{3,4\},$ $\sigma_{1}=(23),$ $\sigma_{2}=(1243),$ $\psi$ is constructed from

this data as above and $w\sim\sigma_{1}$ , then $Ad(w)\lambda_{\psi}$ is the automorphism of $O_{4}$ constructed
and discussed by Matsumoto and Tomiyama in [14].
Example 9. Let $n\geq 3,$ $\phi=(123)$ , and let $\psi$ be constructed as in Example 8 from
the data: $R_{1}=\{1,2\},$ $R_{2}=\{3, \ldots, n\},$ $\sigma_{1}=id,$ $\sigma_{2}=(12)$ . One checks that $\lambda_{\phi}$ and $\lambda_{\psi}$

are outer automorphisms of $O_{n}$ of order 3 and 2, respectively. We claim that the group
generated by $\lambda_{\phi}$ and $\lambda_{\psi}$ is isomorphic to a free product $Z_{3}*Z_{2}$ . Indeed, let $O_{\phi}(x)$ be the
$h_{\phi}$ orbit of $x\in X_{n}$ . If $h_{\psi}(x)\neq x$ then $O_{\phi}(h_{\psi}(x))\neq O_{\phi}(x)$ . Also, if $O_{\phi}(x)\neq O_{\phi}(y)$ then
there exists at moet one $t\in O_{\phi}(x)$ such that $h_{\psi}(t)\in O_{\phi}(y)$ . If $x=(x_{i})$ then $h_{\psi}(y)\neq y$

for all $y\in O_{\phi}(x)$ if the following condition $C[x]$ is satisfied: for each $s\in\{1,2,3\}$ there
exists an index $j$ such that $x_{j}=s$ and $x_{j+1}\in\{1,2,3\}\backslash \{s\}$ . Let $k\geq 1$ and $x=(x_{i})$ be
such that for each $s\in\{1,2,3\}$ there exists an index $j$ such that $x_{j}=\ldots=x_{j+k}=s$ and
$x_{j+k+1}\in\{1,2,3\}\backslash \{s\}$ . Then for each $\theta$ , a reduced word in $h_{\phi},$ $h_{\phi}^{-1},$ $h_{\psi}$ of length less or
equal $k$ , condition $C[\theta(x)]$ is satisfied. Consequently, for any such $\theta$ we have $\theta(x)\neq x$ .
It follows that the group generated by $\lambda_{\phi}$ and $\lambda_{\psi}$ is $\mathbb{Z}_{3}*\mathbb{Z}_{2}$ , as claimed. Since each
finite-order element of a hee product of cyclic groups is conjugate to a power of one of the
generators, it follows ffom Theorem 6 that all non-trivial elements of the group generated
by $\lambda_{\phi}$ and $\lambda_{\psi}$ are outer automorphisms of $\mathcal{O}_{n}$ .

As shown in Example 9 above, if $n\geq 3$ then $\lambda(\mathcal{P}_{\mathfrak{n}}^{2})^{-1}$ contains elements which generate
in Out$(O_{n})$ a group isomorphic to $\mathbb{Z}_{3}*\mathbb{Z}_{2}$ . By contrast, $\lambda(\mathcal{P}_{2}^{2})^{-1}$ yields $\mathbb{Z}_{2}$ youp in
Out$(O_{2})$ . In the forthcoming paper [3], analysis of the automorphisms from $\lambda(\mathcal{P}_{2}^{k})^{-1}$ ,
$k\geq 3$ , is presented.
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