QUASI-FREE FINITE GROUP ACTIONS ON THE CUNTZ ALGEBRA \mathcal{O}_{∞}

京都大学理学研究科 泉 正己 (Masaki Izumi) Graduate School of Science, Kyoto University

1. INTRODUCTION

The Cuntz algebra \mathcal{O}_n , for $n = 2, 3, \dots, \infty$, is the universal C^* -algebra generated by isometries $\{S_i\}_{i=1}^n$ with mutually orthogonal ranges, satisfying $\sum_{i=1}^n S_i S_i^* = I$ if n is finite. Let \mathcal{H}_n be the closed linear span of $\{S_i\}_{i=1}^n$, which has a Hilbert space structure with inner product $T^*S = \langle S, T \rangle I$. An action α of a group G on \mathcal{O}_n is said to be quasi-free if $\alpha_g(\mathcal{H}_n) = \mathcal{H}_n$ for all $g \in G$. There is a one-to-one correspondence between the quasi-free actions of G and the unitary representation of G in \mathcal{H}_n . For a quasi-free action α , we denote by $(\pi_{\alpha}, \mathcal{H}_n)$ the corresponding unitary representation of G. We assume that G is finite in what follows.

A priori, the conjugacy class of a quasi-free action α depends on the unitary equivalence class of the unitary representation $(\pi_{\alpha}, \mathcal{H}_n)$. Indeed, it really does when nis finite (see, for example, [2], [3]). However, when $n = \infty$, the pair $(\mathcal{O}_{\infty}, \alpha)$ is equivariantly KK-equivalent to the pair $(\mathbb{C}, \mathrm{id})$, and there is no way to differentiate quasi-free actions as far as K-theory is concerned. In fact, P. Goldstein announced in his preprint [1] (ten years old by now) that any two non-trivial quasi-free \mathbb{Z}_{2} actions are mutually conjugate. His idea is to develop a \mathbb{Z}_2 -equivariant version of Lin-Phillips' argument, which gives a uniqueness theorem for unital homomorphisms from \mathcal{O}_{∞} to purely infinite C^* -algebras up to approximately unitary equivalence (see [7, Section 7.2]). However, his proof is based on Evans-Su's unpublished work, which is not available for some reason.

The aim of this short note is to announce that any two faithful quasi-free actions are indeed mutually conjugate for every finite group G. Our strategy is basically the same as Goldstein's. However, while Goldstein compares two quasi-free actions directly using an equivariant version of Elliott's intertwining argument, we use a model action splitting argument, which in fact works for every outer action on the Kirchberg algebras.

2. MAIN RESULTS

A Kirchberg algebra is a purely infinite, simple, nuclear, separable C^* -algebra. The reader is referred to [7] for basic properties and classification results for Kirchberg algebras. The Cuntz algebras are typical examples of Kirchberg algebras. We denote by K the set of compact operators on a separable infinite dimensional Hilbert space.

We fix a finite group G. By a G- C^* -algebra (A, α) , we mean a C^* -algebra A with a fixed G-action α . A G-homomorphism φ from a G- C^* -algebra (A, α) into another G- C^* -algebra (B, β) is a homomorphism from A into B intertwining the two G-actions

QUASI-FREE FINITE GROUP ACTIONS ON THE CUNTZ ALGEBRA \mathcal{O}_{∞}

 α and β . We denote by $\operatorname{Hom}_G(A, B)$ the set of *G*-homomorphisms from (A, α) into (B, β) . Two *G*-homomorphisms $\varphi, \psi \in \operatorname{Hom}_G(A, B)$ are said to be *G*-approximately unitarily equivalent if there exists a sequence of unitaries $\{u_n\}$ in the fixed point algebra B^G such that

$$\lim_{n\to\infty} \|\varphi(x) - \operatorname{Ad} u_n \circ \psi(x)\|, \quad \forall x \in A.$$

When A and B are separable, an equivariant version of Elliott's intertwining argument implies the following: if there exist $\varphi \in \operatorname{Hom}_G(A, B)$ and $\psi \in \operatorname{Hom}_G(B, A)$ such that $\psi \circ \varphi$ is G-approximately unitarily equivalent to $\operatorname{id}_{(A,\alpha)}$ and $\varphi \circ \psi$ is Gapproximately unitarily equivalent to $\operatorname{id}_{(B,\beta)}$, then the two actions α and β are conjugate.

Let β be a faithful outer action of G on a simple C^{*}-algebra B, and let $\{\lambda_g\}$ be the implementing unitary representation of G in the crossed product $B \rtimes_{\beta} G$. Let

$$e_{\beta} = \frac{1}{\#G} \sum_{g \in G} \lambda_g,$$

which is a projection in $B \rtimes_{\beta} G$. Then the homomorphism

$$\Phi_{\beta}: B^G \ni x \mapsto xe_{\beta} \in B \rtimes_{\beta} G$$

induces the isomorphism $K_*(\Phi_\beta) : K_*(B^G) \to K_*(B \rtimes_\beta G)$.

Let \hat{G} be the unitary dual of G. The dual coaction $\hat{\beta}$ of the action β induces an action of the representation ring $\mathbb{Z}\hat{G}$ on $K_*(B \rtimes_\beta G)$. For a finite dimensional unitary representation (π, H_π) of G, we denoted by $K_*(\hat{\beta}_\pi)$ the corresponding endomorphism in $\operatorname{End}(K_*(B \rtimes_\beta G))$.

The following theorem is an equivariant version of Rørdam's result (cf. [7, Theorem 5.1.2]):

Theorem 2.1. Let α be a quasi-free action of G on \mathcal{O}_n with finite n, and let (B, β) be a G- C^* -algebra. We assume that B is unital purely infinite simple, and β is outer. For two unital G-homomorphisms $\varphi, \psi \in \operatorname{Hom}_G(\mathcal{O}_n, B)$, let

$$u = \sum_{i=1}^{n} \psi(S_i) \varphi(S_i)^*,$$

which is a unitary in B^{G} . Then the following conditions are equivalent.

- (1) The K_1 -class $K_1(\Phi_\beta)([u])$ is in the image of $K_1(\hat{\beta}_{\pi_\alpha}) 1$.
- (2) The G-homomorphisms φ and ψ are G-approximately unitarily equivalent.
- (3) $[\varphi] = [\psi]$ in the equivariant KK-group $KK_G(\mathcal{O}_n, B)$.

The equivalence of (1) and (2) follows from the Rohlin property of the shift of the UHF algebra $M_{n\infty}$ restricted to the fixed point algebra of a product type G-action.

Let \mathcal{T}_n be the Cuntz-Toeplitz algebra, which is the universal C^* -algebra generated by isometries $\{T_i\}_{i=1}^n$ with mutually orthogonal ranges. Then there exists a homomorphism from \mathcal{T}_n to \mathcal{O}_n sending T_i to S_i for $i = 1, 2, \dots, n$, which gives a short exact sequence

 $0 \longrightarrow \mathbb{K} \longrightarrow \mathcal{T}_n \longrightarrow \mathcal{O}_n \longrightarrow 0.$

Quasi-free actions on \mathcal{T}_n are defined in the same way as in the case of the Cuntz algebras, and this short exact sequence is actually a semi-splitting short exact sequence of $G-C^*$ -algebras. Therefore we get the following 6-term exact sequence of equivariant KK-groups:

Let $\tilde{\alpha}$ be the quasi-free action of G on \mathcal{T}_n that is a lift of α . Since $(\mathcal{T}_n, \tilde{\alpha})$ is equivariantly KK-equivalent to $(\mathbb{C}, \mathrm{id})$, we get an exact sequence

A tedious computation shows $\delta(K_1(\Phi_\beta)([u])) = [\varphi] - [\psi]$, which shows equivalence of (1) and (3). This argument also shows that there exists a short exact sequence

$$0 \to \operatorname{Coker}(1 - K_{1-*}(\hat{\beta}_{\pi_{\alpha}})) \to KK^*_G(\mathcal{O}_n, B) \to \operatorname{Ker}(1 - K_*(\hat{\beta}_{\pi_{\alpha}})) \to 0.$$

As in [7, Proposition 7.2.5], Theorem 2.1 implies

Theorem 2.2. Let α be a quasi-free action of G on \mathcal{O}_{∞} , and let (B,β) be a unital G- C^* -algebra. We assume that B is purely infinite simple, and β is outer. Then any two unital G-homomorphisms in $\operatorname{Hom}_G(\mathcal{O}_{\infty}, B)$ are G-approximately unitarily equivalent.

Thanks to Theorem 2.2, we get a G-equivariant version of Kirchberg-Phillips' \mathcal{O}_{∞} theorem (cf. [7, Theorem 7.2.6]).

Theorem 2.3. Let B be a Kirchberg algebra, and let β be an outer action of G on B. Let $\{\gamma^{(i)}\}_{i=1}^{\infty}$ be any sequence of quasi-free actions of G on \mathcal{O}_{∞} . Then (B,β) is conjugate to

$$(B\otimes \bigotimes_{i=1}^{\infty} \mathcal{O}_{\infty}, \beta\otimes \bigotimes_{i=1}^{\infty} \gamma^{(i)}).$$

Applying Theorem 2.3 to $B = \mathcal{O}_{\infty}$ with a faithful quasi-free action β , we obtain Corollary 2.4. Any two faithful quasi-free G-actions on \mathcal{O}_{∞} are mutually conjugate.

3. Approximately representable actions

An action α of G on a unital separable C^* -algebra A is said to be approximately representable if there exists a sequence of unitaries $\{u(g)_n\}_{n=1}^{\infty}$ in A for each $g \in G$ such that

$$\lim_{n \to \infty} \|u(g)_n x u(g)_n^* - \alpha_g(x)\| = 0, \quad \forall x \in A, \ \forall g \in G,$$
$$\lim_{n \to \infty} \|u_n(g) u(h)_n - u(gh)_n\| = 0, \quad \forall g, h \in G,$$

QUASI-FREE FINITE GROUP ACTIONS ON THE CUNTZ ALGEBRA \mathcal{O}_∞

$$\lim_{n\to\infty} \|\alpha_g(u(h)_n) - u(ghg^{-1})_n\| = 0, \quad \forall g, h \in G.$$

When G is abelian, an action α is approximately representable if and only if its dual action has the Rohlin property. When G is a cyclic group of prime power order, approximately representable quasi-free actions on \mathcal{O}_n with finite n are completely characterized in [3], and there exist quasi-free actions that are not approximately representable.

Theorem 3.1. Every quasi-free G-action on \mathcal{O}_{∞} is approximately representable.

It does not seem to me that one could show Theorem 3.1 directly from the definition of quasi-free actions. Our proof uses the intertwining argument between two model actions; one is obviously quasi-free, and the other is an infinite tensor product action, which is obviously approximately representable.

4. Equivariant Rørdam group

Let A and B be simple C^{*}-algebras. Following Rørdam [6], we denote by H(A, B)the set of approximately unitary equivalence classes of non-zero homomorphisms from $A \otimes \mathbb{K}$ into $B \otimes \mathbb{K}$. Choosing two isometries S_1 and S_2 satisfying the \mathcal{O}_2 relation in the multiplier algebra of $B \otimes \mathbb{K}$, we can define the direct sum $[\varphi] \oplus [\psi]$ of two classes $[\varphi]$ and $[\psi]$ in H(A, B) to be the class of the homomorphism

$$A \otimes \mathbb{K} \ni x \mapsto S_1 \varphi(x) S_1^* + S_2 \psi(x) S_2^* \in B \otimes \mathbb{K}.$$

This makes H(A,B) a semigroup. When A is a Kirchberg algebra, Rørdam semigroup H(A,B) is in fact a group, which is isomorphic to KL(A,B), a certain quotient of KK(A,B) (see [6]).

When (A, α) (resp. (B, β)) is a unital G- C^* -algebra, we equip $A \otimes \mathbb{K}$ (resp. $B \otimes \mathbb{K}$) with a G- C^* -algebra structure by the diagonal action $\alpha_g \otimes \operatorname{Ad} u(g)$ (resp. $\beta_g \otimes \operatorname{Ad} u(g)$), where u(g) is a countable direct sum of the regular representation of G. Then one can introduce an equivariant version $H_G(A, B)$ of Rørdam's semigroup H(A, B) in an obvious way.

Theorem 4.1. Let (A, α) and (B, β) be G-C^{*}-algebras with outer actions α and β . We assume that A and B are Kirchberg algebras. Then $H_G(A, B)$ is a group.

The proof uses Theorem 2.3 and the fact that $(A \otimes \mathcal{O}_2, \alpha \otimes \mathrm{id})$ is conjugate to $(\mathcal{O}_{\infty} \otimes \mathcal{O}_2, \gamma \otimes \mathrm{id})$ with a quasi-free action γ (see [2]).

Note that there are two natural homomorphisms

$$\mu: H_G(A, B) \to H(A, B),$$

 $\nu: H_G(A, B) \to H(A \rtimes_{\alpha} G, B \rtimes_{\beta} G).$

Theorem 4.2. Let the notation be as above.

- (1) If β has the Rohlin property, then μ is injective.
- (2) If β is approximately representable, then ν is injective.

QUASI-FREE FINITE GROUP ACTIONS ON THE CUNTZ ALGEBRA \mathcal{O}_{∞}

Moreover, when the assumption of (1) (resp. (2)) is satisfied, the image of μ (resp. ν) can be completely characterized, so that $H_G(A, B)$ is computable if the algebras involved satisfy UCT.

We conjecture that if G-approximately unitary equivalence in the definition of $H_G(A, B)$ is replaced by G-asymptotically unitary equivalence, one would get the equivariant KK-group $KK_G(A, B)$, as it is the case for trivial G (see [5]).

References

- [1] Goldstein, P. Classification of canonical \mathbb{Z}_2 -actions on \mathcal{O}_{∞} . preprint, 1997.
- [2] Izumi, M. Finite group actions on C*-algebras with the Rohlin property. I. Duke Math. J. 122 (2004), 233-280.
- [3] Izumi, M. Finite group actions on C*-algebras with the Rohlin property. II. Adv. Math. 184 (2004), 119-160.
- [4] Kishimoto, A. Automorphisms of AT algebras with the Rohlin property. J. Operator Theory 40 (1998), 277-294.
- [5] Phillips, N. C. A classification theorem for nuclear purely infinite simple C*-algebras. Doc. Math. 5 (2000), 49-114.
- [6] Rørdam, M. Classification of certain infinite simple C*-algebras. J. Funct. Anal. 131 (1995), 415-458.
- [7] Rørdam, M.; Størmer, E. Classification of Nuclear C*-algebras. Entropy in Operator Algebras. Operator Algebras and Non-commutative Geometry VII. Encyclopedia of Mathematical Sciences, Springer, 2001.