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Abstract

We study the Cauchy problem for a semilincar parabolic equation
with a power nonlinearity. It is known that in some parameter range,
the equation has a singular steady state. Our concern is a solution
with a moving singularity that is obtained by perturbing the singular
steady state. By the formal expansion, it turns out that the correction
termn must satisfy the heat equation with inverse-square potential near
the singular point. From the well-posedness of this equation, we see
that there appears a critical exponent. Paying attention to this ex-
ponent, given a motion of the singular point and suitable initial data,
we establish the time-local existence result.

1 Introduction

We study singular solutions of the semilinear parabolic equation

{ut==Au+uP ~in RY x (0, 00),

u(z,0) = up(x) in RN, (1.1)

where p > 1 is a parameter and up € L}, (R") is a nonnegative function. It
is known that for N

N _.>.. 3: p> Paing ‘= 1_\’-"_':—2"1

(1.1) has an explicit singular steady state p(|z|]) € C®(RN \ {0}) with a
singular point 0;
2

¢(lz|) = Llz{™, m= py { L7t =m(N —m—2).
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Then ¢(]x|) satisfies (1.1) in the distribution sense, and

N -1
Prr + —"'1',_"()07‘ +p? =0, r=|z[ >0. (12)

Clearly, the spatial singularity of u = ¢(|z|) persists for all ¢ > 0, but the
singular point does not move in time.

Our aim of this paper is to discuss the existence of a solution of (1.1)
whose spatial singularity moves in time. More precisely, we define a solution
with a moving singularity as follows.

Definition 1. The function u(z,t) is said to be a solution of (1.1) with
a moving singularity ¢(¢) € RY for ¢ € (0,T), where 0 < T < oo, if the
following conditions hold:

(i) u, u? € C([0,T); L}, (RN)) satisfy (1.1) in the distribution sense.

(i) u(z,t) is defined on {(z,t) € RN*1 .z € RN\ {£(0)}, L € (0,T)}, and
is twice contimiously differentiable with respect to z and continuously
differentiable with respect to .

(ili) u(z,t) >0 a8z — §(t) for every t € [0, T).

In this paper. we study the time-local existence for a solution with a
moving singularity of the Cauchy problem (1.1). In order to state our result,
we first introduce a critical exponent given by

 N+2yN-1
P N—4r2/N-T

which appeared in the papers of Véron [8] and Chen-Lin [3]. It was shown in
[8] that p, is related to the linearized stability of the singular steady state,
while it was shown in [3] that p, plays a crucial role for the existence of
solutions with a prescribed singular set of the Dirichlet problem

Au+uP=0 in

u=0 on Of),

where 2 is a bounded smooth domain in RN, In fact, in [3], they proved
that if N > 3, psing < p < p.. then for any closed set K C €, there exists a
singular solution having K as a singular set. We note that p, is larger than
Daing and is smaller than the Sobolev critical exponent ps := (N+2)/(N —2).
We also introduce the important numbers

_ N-2-/(N-2¢2 - 4p#!
_ 5 ,
 N-2+/(N=22—4pL#!
- . :

A1Z

Ag:
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We note that for N > 3, psing < p < p., the constants \; < A, are positive
roots of

~(N=2X+pl7 ' =0.

Finally, for a € R, [a] denotes the largest integer not greater than a.
Our result is concerning the time-local existence of a solution of (1.1)
with a moving singularity.

Theorem 1. Let N > 3 and p,ing < p < p.. Assume the following condi-
tions:

(A1) £(2) € C*2([0,00); RY) (o > 0) with & = [l2=32ll] 4 1,

(A2) ug is nonnegative and continuous in z € RV \ £(0), and is uniformly
bounded for |z — £(0)| > 1.

(A3) If m — Ag is not an integer, then

[m~24]

(@) = Lo = €0 {1+ 3 b([7 =5 0) ke~ €0

+0(|z - £O)* )}

as T — £(0) for some ¢ > 0, where bi(w,t) are functions on SN2
defined later by (2.8)-(2.5). If m — Ay is an integer, then

-m x — £(0) i
uo(x) = Tz — £(0)] {1+ Z b( (O 0)|z - £(0)]
+e(O)z — €O Iog |z - £0)| + O(Js - O}

as x — £(0) for some € > 0, where bj(w,t) are functions on SN-!
defined later by (2.8)-(2.5) and b,,—»;(w,t) and c(t) satisfy (3.1)

Then. for some T > 0, there exists a solution of (1.1) with a moving singu-
larity £(¢).

Remark 1. If N >3 and

3N +5
3N -3J)°

then 0 < m — Ay < 1 so that [m — A] = 0. In this case, (Al) implies
£(t) € C1*2([0.00); RN) (a > 0), and (A3) is simplified as

un(z) = Liz — E(0)™™ + O(lz — £(0)|~22%€) as z — £(0). (1.3)
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In this paper, we consider only the time-local existence of the Cauchy
problem with a moving singularity. Ncedless to say, the cxistence of time-
global solutions are important questions. Also, when the solution with a
moving singularity is not time-global, it is interesting to ask what happens
at the maximal existence time. These questions will be future works.

This paper is organized as follows: In Section 2 we carry out formal
analysis for a solution of (1.1) as a perturbation of the singular steady state.
In Section 3 we state the outline of proof of the time-local existence.

2 Formal expansion at a singular point

In this section, we consider the formal expansion of a solution u(z,t) of (1.1)
with a moving singularity £({). Assuming that the solution resembles the
singular stcady statc around &(t), we may naturally cxpand u(z,t) as

k
| u(z, t) = Lr“"‘{l + E\b,—(w, t)r* + v(y, t)r"‘}, (2.1)

=1

where
1 -
y=x—§(t) : T = lx—f(t)l ; w=;_-(x—-§) e sV ) k=[m]’
and the remainder term v satisfies

v(y,t) = o(ly|™) as |yl — 0. (2.2)

Substituting (2.1) into (1.1), and using
(£ =€) - & w- &

1
n=—-—— w,=—=§{+ —w,
a r r

A=, +2 20 + Lag
T T

and the Taylor expansion, we compare the coefficients of r~™+~2 for i =
0,1,...,k. Then we obtain

N-1
r

T (L), + (Lr™™), + (Lr™™) =0,

r~™ L Agv-aby + {(—m + 1)(N —m — 1) + pm(N — m — 2)}b,
| =mw - Eh (2'3)
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7,—-'m; Agn-1by + {(—7", + 2)(N - 7]1,) -+ ])’"L(N —m — 2)}b2

=m-1)bhw- & — (& — (w-&)w) - Vb + p(p; l)m(N —-m — Z)bf, (2.4)

rm T Agn-ib + {(—m + ) (N —m+i—2) + pm(N — m — 2)}¥;
= Gi(w;bn, by, bt ) (i=3,4,...,K). (2.5)

where Agnv-1 is the Laplace-Beltrami operator on S¥~! and the function
Gi(w; by, ba, - .., bi—1, &) on SN x [0, oc) is determined by (by, by, . .., by, €).

The equality for r~™"2 always holds by (1.2). From other equations, we
have the above system of inhomogeneous elliptic equations for b; on SV-1:
By these equations, by, by, ... are determined sequentially.

Let us consider the solvability of (2.3), (2.4) and (2.5). It is well known
(see, e.g. [2] ) that for every j =.0,1,2,..., the eigenvalues of —Agn-1 are
given by

MJ=J(N+J_2)1 J=0,12,....

and the eigenspace F; associated with p; is given by
E; = { f|lsn-1 : [ is a harmonic homogeneous polynomial of degree j }.
Therefore, unless
(—m+)(N-m+i-2)+pm(N -m—2)=35(N+j—2), (2.6)
the operators in the left-hand side of (2.3), (2.4) and (2.5) are invertible. We
define a set A by
A= {p > 1: (2.6) holds for some i € {1,2,..., [5--——]} j€{0,1,2,. ,z}}.

Morcover, we consider G;(w; b1, ba, . . ., bi—1, §) in detail and obtain next lemma.

Lemma 1. Suppose that £(t) satisfies (Al). If p &€ A, then there exist
by (w, 1), ba(w, t), .., be(w,t) € C*(SN-1 x [0, 00)) such that (2.3), (2.4) and
(2.5) hold.

By this lemma, in order to consider the existence of the solution of (1.1)
with a moving singularity, it suffices to consider v(y,t). By taking b; (w, i) as
Lemma 1, (1.1) is satisfied if v(y, t) satisfies

=Av+&-Vv+ F(v,y,t) inRY x (0,00). (2.7)
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where F(v,y,l) is determined by by, b, ..., bk and €. After tedious compu-
tations, wc noticc that

L1
F(v,y,t) = P =Y +o(r™?) asr —0.

In order to consider the existence of solutions of (2.7), we first consider

171-1
v = Av + ”Ir —v in R" x (0,00). (2.8)

This equation has been investigated in [1, 7, 6], and it was shown that (2.8)
is well-posed when

N —2)?
0<plPlc« (—4—-)-—, (2.9)
and
lv(y, 0)] < Cr=> for some \; < A < A, C > 0.
The inequalities (2.9) hold if and only if p satisfies
N-2J/N=1
Psing <P <ps for N2>3, 0r p>pj:= N iU for N > 10.

Here the exponent pyp was first introduced by Joscph-Lundgren [4] and is
known to play an important role for the dynamics of solutions of (1.1).

Since the gradient term in (2.7) and the higher order term of F' do not
affect the well-posedness, we must assume (2.9) for the solvability of (2.7).
If p > pyL, then A\; < m does not hold so that (2.2) may not be true. Hence
we exclude the case py;, < p. Based on the above formal analysis, we will
focus on the case pging < p < ..

3 Time-local existence

Taking into account of the formal analysis in the previous section, we will
show the existence of a time-local solution with a moving singularity. To this
end, we develop the idea of Marchi [6] for the well-posedness of the linear
cquation (2.8).

The outline of the proof is divided into three steps. Roughly speaking, we
construct a suitable supersolution and subsolution with a moving singularity
in Subsection 3.1. In Subsection 3.2, we construct a sequence of approximate
solutions and find a convergent subsequence. In Subsection 3.3, we show that
the limiting function is indeed a solution of (1.1) with a moving singularity.
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3.1 Construction of a supersolution and a subsolution

In this subsection, we construct a supersolution and a subsolution of (1.1)
that are suitable for our purpose.

First we note that if 7n — A3 is not an integer, then (2.6) does not hold
forall i =1,2,...,[m—Ag], j =0,1,...,i. Indeed, if (2.6) docs not hold
forsome 1 <i<m-—X.j=1,...,i then i = =)\, j = 0, contradicting
that m — ) is not an integer. Therefore, if m — ) is not an integer, then by
Lemma 1 and (Al), we can determine b (w,t), ba(w,t),..., bpm-rg(w,t) €
C*1(SN-1 x [0,00)) by (2.3), (2.4) and (2.5).

On the other hand, if m— A is an integer, (2.6) holds for i = m—\;, 7 = 0.
However, we carry out similar argument by replacing by, »,)(w, L)rim=2al with
(bm—xg (W, ) + c(t) log r)r™ 2 that satisfics

ASN-l m—>Xy = (I — PQ)G(U), t), C(t) = (N - 2A2 - 2)"1P0G(w, t), (3.1)
where F, is define the projection on E, and G(w, t) is the right-hand side of
(2.5) with i = m - )\2.

Now we fix A = A3 — ¢ satisfying
min{\;, m — [m— Ag] - 1} <A<

and replace k defined in Section 2 with k := [m — A;]. From (A2) and (A3),
it follows that up € C(RY \ £(0)) N L*=>(RN \ B(£(0),1)), uo > 0, and

k
- —£(0) O
up(z) = Liz—€0) {1+ Y b (s, 0) 2 — £(O)F
° { ; (Iw—é(o)l )
+0(lz—€O)™)} a8 3 £(0).
Then there exist constants C' > 0 and R > 0 such that
(]
w(@) - Diz — €O ™{1+ 3 (o O(E=) e - cor}]
i=1
< CL|z ~ £(0)|™* in B(£(0), R).
Fix any T} > 0.
First we construct a supersolution and a subsolution of (1.1) in a neigh-

borhood of £(t) by using (2.7). By (2.1), we have
—Au—-vw=L{v,—-Av-§&- - Vv- F(y,yt)}



131

Hence .
u(z,t) = Lr"’"’{l + Z bi(w, t)r* +v' (v, t)r”‘}
i=1

is a supersolution of (1.1) if and only if »* is a supersolution of (2.7). Since
it follows from tedious calculation that ¥ := Cr~? is a supersolution of (2.7)
on Bg x (0,T1) if R > 0 is sufficiently small,

k
T i= Lig - €0 ™{1+ 3" b, Oz — € + Clo— €O}

=1

is a supersolution of (1.1) on Uyg,<r, Br(£(t)) x {t} for small R > 0. Simi-
larly, we can show that " '

k
wi= Lz — O™ {1+ X bilw, Ols - €W - Clo = €)™}

is a subsolution of (1.1) on Uyg,cr, Br(€(2)) x {t} for small R > 0.
Next, we construct a supersolution and a subsolution near infinity. By
direct calculation, it is shown that

— [ —
'U.:=C1(1—-2-T—;) -0

is a supersolution of (1.1) on R¥ \ B(¢(t),1) x (0,T%), provided that
Cy > |Juoll 2 ®M\B(£(0),1))5 T2 < 2\/5(1’ - 1)CT™ g

Clearly u = 0 is a subsolution (1.1).

Finally, connecting these supersolutions and subsolutions in the inter-
mediate region, we obtain a supersolution % and a subsolution u such that
T, ¥, u, u* € L} (RN x [0,T]) and the following properties hold:

(i) ®u(x,t) and u(x,t) are defined on {(z,t) € R¥*1:z € RN\ {£(t)}, t €
[0,T)} and are twice continuously differentiable with respect to z and
continuously differentiable with respect to ¢.

(i) For cvery t € [0, T), u(z,t), u(z,t) — oo as z — £(t). In particular,
k
B(z,) = Lig — €@ {1+ Y bilw, )l — £®)F + Clz - €0I™},
i=1

k
w(z,b) = Lz - €I ™{1+ 3 hw,t)lz - €@ - Cla - 0T

i=1

for |z - &) < Rpand 0<t <T.
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(iii) The inequalities
%(z,0) > ug(z) > u(r,0) in RN\ {£(0)},
(z,t) > u(z,t) in RV x[0,T]\ (J (£(t),0)

0<t<T
hold.
(iv) The inequalities

W2 Au+% mRYx[0,7T]\ | (£@).8),
0<t<T

u<Au+w’ mRYx[0,7T]\ | (@)1

0<t<T

hold.
for some small Ry and T.

3.2 Construction of approximate solutions

In this subsection, by using the supersolution and subsolution given in the
previous subsection, we construct a series of approximate solutions that is
convergent in an appropriate function space.

Define a sequence of bounded domains

Aut) == {z € RV : |z —£@)| < n, |z — £(t)] > ;1:} (n=12..).

For each n, let u.(z,t) be a classical solution of

( Un = Au, + u’y’; in U Aﬂ(t) X {t}’

0<I<T

 Un=1u on U 0AL(t) x {t},
0<t<T

\ Uy (2,0) = ugpn(z) in  A,(0),

where the initial value is assumed to satisfy

u(z,0) < uon(®) < ugms1(z) <U(z,0) in A,(0),

uon(Z) = u(2,0) on AAn(0),un, Uy 88 m — oc.
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It is easily seen that u < un < T in Upeper An(t) x {t} by the comparison
principle. Furthcrmore, by the standard parabolic theory [5] and the Ascoli-
Arzela theorem, from {u,}, we can obtain a subsequence {u,(;}; and some
function u(z,t) such that

Ungj) — U locally uniformly in RV x (0,T) \ U (&(t),t) as n(j) — oo
o<tkT

Hence the limiting function u(z,t) satisfies

uc€ C(RN x (0,T)\ UU<L<T(€(t)1t))a
u<u<T in RY x (0,7)\ Upcrar(£(2), 7).

3.3 Completion of the proof

In this subsection, we show that the limiting function u(z,t) obtained in
Subsection 3.2 is indeed a solution of (1.1) with a moving singularity £(t) for
t € (0,7).

First, by 4 < v < T and the Lebesgue convergence theorem, we can
show that the function u satisfies (1.1) in the distribution sense. Next, by
u < u < 7 and the standard parabolic theory [5], the function u has the
desired properties as stated in Definition 1. Consequently, it is shown that
the function u is a solution of (1.1) with a moving singularity £(t) for ¢t €
(Os T) . |
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