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Abstract
Wc study the Cauchy problem for a scrnUlincar $p\iota n\cdot abolic$. equation

with a power nonlinearity. It is known that in some parameter range,
the equation has a singular steady state. Our concern is a solution
with a moving singularity that is obtained by perturbing the singular
steady $st,ate$ . By the fornal expansion, it tUrns ont that, the correction
tenn must satisfy the heat equation with inverse-square potential near
the singular point. From the well-posedness of this equation, we see
that there appears a cnitical exponent. Paying attention to this ex-
ponent, given a motion of the singular point and suitable $\dot{i}$itIal data,
we establish the time-local existence result.

1 Introduction
We study singular solutions of the semilinear parabolic equation

$\{\begin{array}{ll}u_{t}=\Delta u+u^{p} in \mathbb{R}^{N}x(0, \infty),u(x, 0)=u_{0}(x) in \mathbb{R}^{N},\end{array}$ (1.1)

where $p>1$ is a parameter and $u_{0}\in L_{lo\iota}^{1}(\mathbb{R}^{N})$ is a nonnegative function. It
is known that for

$N\geq 3_{l}$. $p>p_{\epsilon ing}$ $:= \frac{N}{N-2}$ ,

(1.1) has an explicit singular steady state $\varphi(|x|)\in C_{\text{ノ}}^{\infty}(\mathbb{R}^{N}\backslash \{0\})$ with a
singular point $0$ ;

$\varphi(|\prime x|)=L|x|^{-m}$ , $rr \iota=\frac{2}{p-1},$ $L^{p-1}=rr\iota(N-r’\iota-2)$ .
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Then $\varphi(|x|)$ satisfies (1.1) in the distribution sense, and

$\varphi,.,.+\frac{N-1}{r}’\varphi_{r}+\varphi^{p}=0$ , $r=|x|>0$ . (1.2)

Clearly, the spatial singularity of $u=\varphi(|x|)$ persists for all $t>0$ , but the
singular point does not move in time.

Our aim of this paper is to discuss the existence of a solution of (1.1)
whose spatial $si\iota lgulal\cdot ity$ moves in tirne. More precisely, we define a solution
with a moving singularity as follows.
Deflnition 1. The function $u(x, t)$ is said to be a solution of (1.1) with
a moving singularity $\xi(l)\in \mathbb{R}^{N}$ for $l\in(0, T)$ , where $0<T\leq\infty$ , if the
following conditions hold:
(i) $u,$ $u^{p}\in C([0,T);L_{loc}^{1}(\mathbb{R}^{N}))$ satisfy (1.1) in the distribution sense.

(ii) $u(x, l)$ is defined on $\{(x, l)\in \mathbb{R}^{N+1} : \prime x\in \mathbb{R}^{N}\backslash \{\xi(l)\}, l\in(0,T)\}$ , and
is twice continuously differentiable with respect to $x$ and continnoiisly
differentiable with respect to $t$ .

(iii) $u(x, t)arrow\infty$ as $xarrow\xi(t)$ for every $t\in[0, T$).

In this paper. we study the time-local existence for a solution with a
moving singularity of the Cauchy problem (1.1). In order to state our result,
we first introduce a critical exponent given by

$p_{*}:= \frac{N+2\sqrt{N-1}}{N-4+2\sqrt{N-1}}$ ,

whiCh appeared in the papers of V\’eron [8] and Chen-Lin [3]. It was shown in
[8] that $p_{*}$ is related to the linearized stability of the singular steady state,
while it was shown in [3] that $p_{*}$ plays a crucial role for the existence of
solutions wit,$h$ a prescribed $sing_{t1}1ar$ se\dagger , of the Dirichlet problem

$\{\begin{array}{ll}\Delta u+u^{p}=0 in \Omega,u=0 on \partial\Omega_{i}\end{array}$

whcre S) is a boundcd smooth $do\iota naiIl$ in $\mathbb{R}^{N}$ . III fact, in [3], they provcd
that if $N\geq 3$ , Psing $<p<p_{*}$ . then for any closed $set_{1}K\subset\Omega$ , there exists a
singular solution having $K$ as a singular set. We note that $p$, is larger than
$p_{\dot{m}nq}$ and is smaller than the Sobolev critical exponent $p_{g}$ $:=(N+2)/(N-2)$ .
We also introduce the important numbers

$\lambda_{1}:=\frac{N-2-\sqrt{(N-2)^{2}-4pL^{p-1}}}{2}$ ,

$\lambda_{A}$
$:= \frac{N-2+\sqrt{(N-2)^{2}-4pL^{p-1}}}{2}$ .
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We note that for $N\geq 3.p_{sing}<p<P*\cdot$, the constants $\lambda_{1}<\lambda_{2}$ are positive
roots of

$\lambda^{2}-(N-2)\lambda+ph^{p-1}=0$ .
Finally, for $a\in \mathbb{R},$ $[a]$ denotes the largest integer not greater than $a$ .

Our result is concerning the time-local existence of a solution of (1.1)
with a moving singularity.

Theorem 1. Let $N\geq 3$ and Paing $<p<p_{*}$ . Assume the folloutng condi-
tions:

(A1) $\xi(t)\in C^{i+\alpha}([0, \infty);\mathbb{R}^{N})(\alpha>0)$ unth $i=[ \frac{|m-\lambda_{2}||\perp}{2}]+1$ .

(A2) $u_{0}$ is nonnegative and continuous in $x\in R^{N}\backslash \xi(0)$ , and is $unif_{07}mly$

bounded for $|x-\xi(0)|\geq 1$ .

(A3) If $rr\iota-\lambda_{2}$ is not an integer, then

$u_{0}(x)=L|x- \xi(0)|^{-m}\{1+[m-\lambda_{i}]\sum_{i=1}’b_{i}(\frac{x-\xi(0)}{|x-\xi(0)|},$ $0)|x-\xi(0)|^{i}$

$+O(|x-\xi(0)|^{rr-\lambda_{2}+\epsilon})\}$

as $xarrow\xi(O)$ for some $\epsilon>0$ , where $b_{i}(\omega, t)$ are fUnctions on $S^{N-1}$

defined later by $($2. $S)-(2.5)$. If $m-\lambda_{2}$ is an integer, then

$\tau r_{0}(x)=h|x-\xi(0)|^{-m}\{1+\sum_{i=1}^{m-\lambda_{2}}b_{i}(\frac{x-\xi(0)}{|x-\xi(0)|}.0)|x,$ $-\xi(0)|^{;}$

$+c(O)|x-\xi(0)|^{m-\lambda_{2}}\log|x-\xi(0)|+O(|x-\xi(0)|^{m-\lambda_{2}+\epsilon})\}$

as $xarrow\xi(O)$ for $som(ie>0$ , inhere $b_{i}(\omega, t)a,rr$, functions on $S^{N-1}$

defined later by $(2.3)-(2.5)$ and $b_{r’\iota-\lambda_{2}}(w,t)$ and $c(t)$ satisfy (S.1)

$Th,en$ for some $T>0$ , there $exi_{\wedge}9\dagger,sa,$ soluhon of (1.1) rrnth a $mo\uparrow i,nq$ sin.qu-
lari $ty\xi(t)$ .
Remark 1. If $N\geq 3$ and

$p_{sing}<p< \min\{p_{*},$ $\frac{3N+5}{3N-3}\}$ ,

then $0\leq m-\lambda_{2}<1$ so that $[m-\lambda_{2}]=0$ . In this case, (A1) implies
$\xi(t)\in C^{1+a}([0_{:}\infty);\mathbb{R}^{N})(\alpha>0)$ , and (A3) is simplified as

$u_{n}(x1=L\mathfrak{l}x-\mathcal{E}(0)|^{-n}+O(|x-\xi(0)|^{-\lambda_{l}+e})$ as $xarrow \mathcal{E}(01$ . (1.3)
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In this paper, we consider only the time-local existence of the Cauchy
problcm with a moving singularity. Nccdlcss to say, thc cxistcncc of timc-
global solutions are important quertions. Also, when the solution with a
moving tingularity is not time-global, it is interesting to ask what happens
at the maxin$1a1$ existence time. These questions will be future works.

This paper is organized as follows: In Section 2 we carry out formal
analysis for a solution of (1.1) as a perturbation of the singular steady state.
In Section 3 wc state the outline of proof of the timc-local existencc.

2 Formal expansion at a singular poInt
In this section, we consider the formal expansion of a solution $u(x, t)$ of (1.1)
with a moving singularity $\xi(l)$ . Assuming that the solution resembles the
singular stcady statc around $\xi\cdot(t)$ , wc may $natur\ovalbox{\tt\small REJECT} y$ expand $u(x,t)$ as

$u(x_{i}t)=Lr^{-m} \{1+\sum_{i=1}^{k}b_{i}(\omega, t)r^{i}+v(y, t)r^{m}\}$ , (2.1)

whcrc

$y=x-\xi(t)$ \dagger
$r=|x- \xi(t)|jw=\frac{1}{r}(x-\xi)\in S^{N-1},$ $k=[m]$ ,

and the remainder term $v$ satisfies

$v(y, t)=o(|y|^{-m})$ as $|y|arrow 0$ . (2.2)

Substituting (2.1) into (1.1), and using

$r_{\iota}=- \frac{(\prime x-\xi)\cdot\xi_{t}}{r}$ , $\omega_{\iota}=-\frac{1}{r}\xi_{l}+\frac{\omega\cdot\xi_{t}}{r}w$ ,

$\Delta=\partial_{rr}+\frac{N-1}{r}\partial_{r}+\frac{1}{r^{2}}\Delta_{S^{N-1}}$

and the Taylor expansion, we compare the coefficients of $r^{-rr\iota+i-A}$ for $i=$

$0,1,$
$\ldots,$

$k$ . Then wc obtain

$r^{-m-2};(Lr^{-m})_{rr}+ \frac{N-1}{r}(Lr^{-m})_{r}+(Lr^{-m})^{p}=0$ ,

$r^{-m-1}$ ; $\Delta_{S^{N-1}}b_{1}+\{(-m+1)(N-m-1)+pm(N-m-2)\}b_{1}$
$=m\omega\cdot\xi_{t}$ , (2.3)
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$r^{-rr\iota};\Delta_{S^{N-1}}b_{2}+\{(-7t\iota+2)(N-7t\iota)+xrr’\iota(N-\gamma;\iota-2)\}b_{2}$

$=(m-1)b_{1} \omega\cdot\xi_{t}-(\xi_{t}-(\omega\cdot\xi_{t})\omega)\cdot\nabla b_{1}+\frac{p(p-1)}{2}m(N-m-2)b_{1}^{2}$ , (2.4)

$r^{-\pi\iota|i-2}\cdot\Delta_{S^{N-1}}b_{i}|+\{(-m+i)(N-m+i-2)+pm(N-m-2)\}b_{i}$

$=G_{i}(\omega;b_{1}, b_{2}, \ldots, b_{i-1},\xi)$ $(i=3,4_{i}\ldots, k)$ . (25)

where $\Delta_{S^{N-1}}$ is the Laplace-Beltruni operator on $S^{N-1}$ and the function
$G_{i}(\omega;b_{1}, b_{2}, \ldots., b_{i-1},\xi)$ on $S^{N-1}x[0$ , oc) is $d_{C^{\backslash }}t_{C^{\backslash }1u1}i_{IlC^{\backslash }}d$ by $(b_{1}, b_{2}, \ldots , b_{i-1,}.\xi\cdot)$ .

The equality for $r^{-m-2}$ always holds by (1.2). Fhom other equations, we
have the above system of $inhomogen\infty us$ elliptic equations for $b_{i}$ on $S^{N-1}$ :
By these equations, $b_{1},$ $b_{2,}\ldots$ . are determined sequentially.

Let us consider the solvability of (2.3), (2.4) and (2.5). It is well known
(see, e.g. [2]) that for every $j=0,1,2,$ $\ldots$ , the eigenvalues $of-\Delta_{S^{N-1}}$ are
given by

$\mu_{j}=j(N+j-2)$ , $j=0,1,2,$ $\ldots$ .
and the eigenspace $B_{j}$ associated with $\mu_{j}$ is given by

$E_{j}=$ { $\int|_{S^{N-1}}$ : $\int$ is a harmonic homogeneous polynomial of degree $j$ }.

Therefore, unless

$(-m+i)(N-m+i-2)+pm(N-m-2)=j(N+j-2)$ , (2.6)

the operators in the left-hand side of (2.3), (2.4) and (2.5) are invertible. We
define a set $\Lambda$ by

$\Lambda:=\{p>1$ : (2.6) holds for some $i \in\{1,2, \ldots , [\frac{2}{p-1}]\}_{l}.j\in\{0,1,2’\ldots. , i\}\}$ .

Moreover, we considcr $G_{i}(w;b_{1}, b_{2}, \ldots , b_{i-1},\xi\cdot)$ in dct.ail $fid$ obtain next lemma.

Lemma 1. Suppose that $\xi(t)$ satisfies (A1). If $p\not\in\Lambda$ , then there enist
$b_{1}(\omega, t)’.b_{2}(\omega, t),$

$\ldots$ , $b_{k}(\omega, t)\in C^{\infty,1}(S^{N-1}x[0’.\infty))$ such that (2.3), (2.4) and
(2.5) hold.

By this lemma, in order to consider the existence of the solution of (1.1)
with a moving singularity, it suffices to consider $v(y, t)$ . By taking $b_{i}(w, t)$ as
Lemma 1, (1.1) is satisfied if $v(y, t)$ satisfies

$v_{t}=\Delta v+\xi_{t}\cdot\nabla v+F(v_{r}.y,t)$ in $\mathbb{R}^{N}x(0, \infty)$ . (2.7)
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where $f^{F}(v, y, l)$ is determined by $b_{1},$ $b_{2,}b_{k}$ and $\xi$ . After tedious compu-
tations. wc noticc that

$F(v, y, t)= \frac{pL^{p-1}}{r^{2}}v+o(r^{-2})$ as $rarrow 0$ .

In order to consider the existence of solutions of (2.7), we first consider

$v_{t}= \Delta v+\frac{ph^{p-1}}{r^{2}}v$ in $\mathbb{R}^{N}x(0, \infty)$ . (2.8)

This equation has been investigated in [1, 7, 6], and it was shown that (2.8)
is well-posed when

$0<pL^{p-1}< \frac{(N-2)^{2}\prime}{4}$ , (2.9)

and
$|v(y, 0)|\leq Cr^{-\lambda}$ for some $\lambda_{1}<\lambda<\lambda_{2},$ $C>0$ .

The inequalities (2.9) hold if and only if $p$ satisfies

Paing $<p<p_{*}$ for $N\geq 3$ , or $p>p_{JL}$ $:= \frac{N-2\sqrt{N-1}}{N-4-2\sqrt{N-1}}$ for $N>10$ .

Hcre the cxponcnt $p_{JL}$ was first introduccd by $Jh- Ldgrrc^{\backslash }\iota 1[4]a\iota ld$ is
known to play an important role for the dynamics of solutions of (1.1).

Since the gradient term in (2.7) and the higher order term of $F$ do not
affect the well-posedness, we must assume (2.9) for the solvability of (2.7).
If $p>p_{JL}$ , then $\lambda_{1}<m$ does not hold so that (2.2) may not be true. Hence
we exclude the case $p_{JL}<p$ . Based on the above formal analysis, we will
focus on the case Psing $<p<p_{*}$ .

3 Time-local existence
TAing into account of the formal analysis in the previous section, we will
show the existence of a time-local solution with a moving singularity. To this
end, we develop the idea of Marchi [6] for the well-posedness of the linear
cquation (2.8).

The outline of the proof is divided into three steps. Roughly speaking, we
construct a suitable supersolution and subsolution with a moving singularity
in Subsection 3.1. In Subsection 3.2, we construct a sequence of approximate
solutions and find a convergent subsequence. In Subsection 3.3, we $sh\sigma\kappa$ that
the limiting function is indeed a solution of (1.1) with a movin$g$ singularity.
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3.1 Construction of a supersolution and a subsolution
In this subsection, we construct a supersolution and a subsolution of (1.1)
that are suitable for our purpose.

First we note that if $7r\iota-\lambda_{2}$ is not an integer, then (2.6) does not hold
for all $i=1,2,$ $\ldots,$

$[m-\lambda_{2}],$ $j=0,1,$ $\ldots,$
$i$ . $I_{I1}dc^{Y}c^{\backslash }d$ , if (2.6) does not hold

for some $1\leq i,$ $\leq m-\lambda_{\lambda}.j=1,$
$\ldots$ , $i$ , then $i=-\lambda_{1},j=0$ , contradicting

that $m-\lambda_{2}$ is not an integer. Therefore, if $m-\lambda_{2}$ is not an integer, then by
Lemma 1 and (A1), we can determine $b_{1}(\omega, t),$ $b_{2}(w, t),$

$\ldots,$
$b_{[m-\lambda_{2}1}(\omega,t)\in$

$C^{2,1}(S^{N-1}x[0, \infty))$ by (2.3), (2.4) and (2.5).
On the other hand, if $m-\lambda_{2}$ is an integer, (2.6) holds for $i=m-\lambda_{2_{\dagger}}j=0$ .

However, we $calTy$ out siurilar argurnent by replacing $b_{[fn-\lambda_{2}]}(w, l)r^{[m-\lambda_{2}]}$ with
$(b_{m-\lambda_{2}}(\omega,t)+c(t)1ogr)r^{m-\lambda_{2}}$ that satisfios

$\Delta_{S^{N-\backslash }}b_{m-\lambda_{2}}=(I-P_{0})G(w,t)$ , $c(t)=(N-2\lambda_{2}-2)^{-1}P_{0}G(w, t)$ , (3.1)

where $P_{0}$ is define the projection on $E_{0}$ and $G(w, t)$ is the right-hand side of
(2.5) with $i=m-\lambda_{2}$ .

Now we fix $\lambda=\lambda_{2}-\epsilon$ satisfying

$\min\{\lambda_{1:}m-[m-\lambda_{2}]-1\}<\lambda<\lambda_{2}$

and replace $k$ defined in Section 2 with $k:=[m-\lambda_{2}]$ . From (A2) and (A3),
it follows that $u_{0}\in C(\mathbb{R}^{N}\backslash \xi(0))\cap L^{\infty}(\mathbb{R}^{N}\backslash B(\xi(0), 1))_{j}u_{0}\geq 0$ , and

$u_{0}(x)=L|x- \xi\cdot(0)|^{-m}\{1+\sum_{i=1}^{k}b_{i}(\frac{x-\xi(0)}{|x-\xi(0)|},$ $0)|x-\xi\cdot(0)|^{:}$

$+O(|x-\xi(0)|^{m.-\lambda})\}uxarrow\xi(0)$ .

Then there exist constants $O>0$ and $R$. $>0$ such t,hat

$|u_{0}(x)-L|x- \xi(0)|^{-m}\{1+\sum_{i=1}^{k}b_{i}(w, 0)(\frac{x-\xi(0)}{|x-\xi(0)|})|x-\xi(0)|^{i}\}|$

$<CL|x-\xi(0)|^{-}$ in $B(\xi(O), R)$ .
Fix any $T_{1}>0$ .

First we construct a supersolution and a subsolution of (1.1) in a neigh-
borhood of $\xi(t)$ by iising (2.7). By (2.1), we have

$u_{t}-\Delta u-u^{p}=L\{v_{t}-\Delta v-\xi_{t}\cdot\nabla v-F(v, y,t)\}$ .
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Hence
$\overline{u}(x, t)=Lr^{-n}\{1+\sum_{i=t}^{k}b_{i}(\omega, t)r^{i}+v^{1}(y,t)r^{m}\}$

is a supersolution of (1.1) if and only if $v^{+}$ is a supersolution of (2.7). Since
it follows from tedious calculation that $\overline{v}:=Cr^{-\lambda}$ is a supersolution of (2.7)
on $B_{R}x(0,T_{1})$ if $R>0$ is sufficiently small,

$\overline{u}$ $:=L|x- \xi(t)|^{-m}\{1+\sum_{i=1}^{k}b_{i}(w,t)|x-\xi(t)|^{i}+C|x-\xi(t)|^{m-\lambda}\}$

is a supersolution of (1.1) on $\bigcup_{0\leq t\leq T_{1}}B_{R}(\xi(t))x\{t\}$ for small $R>0$ . Simi-
larly, we can show that

$\underline{u}:=L|x-\xi(l)|^{-m}\{1+\sum_{i1}^{k}b_{i}(\omega, l)|x-\xi(l)|^{i}-C|x-\xi(l)|^{\piarrow\lambda}\}$

is a subsolution of (1.1) on $\bigcup_{0\leq t.\leq T_{1}}B_{R}(\xi(t))x\{t\}$ for smal $R,$ $>0$ .
Next, we construct a supersolution and a $sub_{8}olution$ near infinity. By

direct calculation, it is shown that

$1:=C_{1}(1- \frac{t}{2T_{2}})^{-\frac{I}{2\{|\prime-1)}}$

is a supersolution of (1.1) on $\mathbb{R}^{N}\backslash B(\xi(t), 1)x(0,T_{2})$ , provided that
$C_{1}>\Vert u_{0}||_{L\infty(R^{N}\backslash B(\xi(0),1))}$ , $T_{2}<2\sqrt{2}(p-1)\alpha_{1}^{-1}$ .

Clearly $u\equiv 0$ is a subsolution (1.1).
Finally, connecting these supersolutions and subsolutions in the inter-

mediate region, we obtain a supersolution tt and a subsolution $\underline{u}$ such that
$\overline{u},$ $\overline{u}^{7},$

$\underline{\prime u},$

$\underline{u}^{p}\in L_{l\sigma c}^{1}(\mathbb{R}^{N}x[0.T])$ aud the following propeltiae hold:
(i) $\overline{u}(x, t)$ and $u(x, t)$ are defined on { $(x,t)\in \mathbb{R}^{N+1}$ : $x\in \mathbb{R}^{N}\backslash \{\xi(t)\},$ $t\in$

$[0,T]\}$ and are twice continuously differentiable with respect to $x$ and
continuously differentiable with respect to $t$ .

(ii) For cvcry $t\in[0,T],$ $\overline{u}(x,t),$ $\underline{u}(x,t)arrow\infty$ as $xarrow\xi(t)$ . In particular,

$\overline{u}(x,t)=L|x-\xi(t)|^{-m}\{1+\sum_{i=1}^{k}b.(w,t)|x-\xi(t)|^{i}+C|x-\xi(t)|^{m-\lambda}\}$ ,

$\underline{u}(x, t)=L|x-\xi(t)|^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega, t)|x-\xi(t)|^{i}-C|x-\xi(t)|^{m-\lambda}\}$

for $|x-\xi\cdot(t)|\leq R_{0}$ and $0\leq t\leq T$ .
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(iii) The inequalities

$\overline{u}(x, 0)>u_{0}(x)>\underline{v,}(x, 0)$ in $\mathbb{R}^{N}\backslash \{\xi(0)\}$ ,
$\overline{u}(x, t)>\underline{u}(x, t)$ in

$\mathbb{R}^{N}\cross[0’.T]\backslash \bigcup_{0\leq t\leq T}(\xi(t), t)$

hold.

(iv) The inequalities

$\overline{u}_{t}\geq\Delta\overline{u}+\overline{u}^{}$ in
$\mathbb{R}^{N}x[0,T]\backslash \bigcup_{0\leq t\leq T}(\xi\cdot(t),t)$

,

$\underline{u}_{t}\leq\Delta\underline{\uparrow l}+\underline{ll}^{P}$ in
$\mathbb{R}^{N}x[0, T]\backslash \bigcup_{0\leq t\leq T}(\xi(t),t)$

hold.

for some small $R_{0}$ and $T$ .

3.2 Construction of approximate solutions
In this subsection, by using the supersolution and subsolution given in the
previous subsection, we construct a series of approximate solutions that is
convcrgcnt in an appropriatc function spacc.

Define a sequence of bounded domains

$\Lambda_{n}(t)$ $:= \{x\in \mathbb{R}^{N} : |x-\xi\cdot(t)|\leq n, |x-\xi\cdot(t)|\geq\frac{1}{n}\}$ $(n=1,2, \ldots)$ .

For each $n$ , let $u_{n}(x, t)$ be a classical solution of

$\{\begin{array}{l}u_{\gamma.\downarrow,\prime}=\Delta u_{n}+u_{n}^{p}\bigcup_{0\leq\iota\leq T}A_{r\iota}(t)x\{t\}u_{n}=\underline{u}\cup\partial A_{n}(t)\cross\{t\}0\leq t\leq T\iota\iota_{n}(x, 0)=r\iota_{0,n}(x)A_{n}(0)\end{array}$

whcrc the initial value is assumed to satisfy

$\underline{u}(x’.0)\leq u_{0,r\iota}(x)\leq u_{0_{:}’\iota+1}(x)\leq\overline{u}(x., 0)$ in $A_{n}(0)$ ,
$u_{0,\mathfrak{n}}(x)=\underline{u}(x, 0)$ on $\partial A_{n}(0),$ $u_{f}$) $n\nearrow u_{0}$ as $narrow\infty$ .
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It is easily seen that $\underline{u}\leq u_{n}\leq\overline{\prime u}$ in $\bigcup_{0\leq t\leq 7},$ $A_{n}(l)\cross\{l\}$ by the comparison
principlc. Furthcrmorc, by thc standard parabolic thcory [5] and thc Ascoli-
Arzel\‘a theorem, ffom $\{tl_{ll}\}$ , we can $obta\dot{i}$ a subsequence $\{\uparrow\iota_{n(j)}\}_{j}$ and some
function $u(x, t)$ such that

$u_{n(j)}arrow u$ locally uniformly in $R^{N} \cross(0,T)\backslash \bigcup_{0<t<T}(\xi(t), t)$
as $n(j)arrow\infty$

Hence the limiting function $u(x, t)$ satisfies

$u \in C(R^{N}x(0,T)\backslash \bigcup_{0<\iota<?},(\xi(t),t))$ ,

$\underline{u}\leq u\leq\overline{u}$ in $\mathbb{R}^{N}x(0,T)\backslash \bigcup_{0<t<T}(\xi(t),t)$ .

3.3 Completion of the proof
In this subsection, we show that the limiting function $u(x, t)$ obtained in
Subsection 3.2 is indeed a solution of (1.1) with a moving singularity $\xi(t)$ for
$t\in(0,T)$ .

First, by $\underline{u}\leq u\leq$ a and the Lebesgue convergence theorem, we can
show that the function $u$ satisfies (1.1) iri $t1_{1}e$ distributiori sense. Next, by
$\underline{u}\leq u\leq\overline{u}$ and thc standard parabolic thoory [5], the function $u$ has thc
desired properties as stated in Definition 1. Consequently, it is shown that
the function $u$ is a solution of (1.1) with a moving singularity $\xi(t)$ for $t\in$

$(0,T)$ . 1
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