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1. Introduction

Since the long-range dependency of the Internet traffic was found in the mid of 1990s [16], much efforts
have been spent to develop stochastic models for describing the network traffic over the classical Poisson
process models. The fractional Brownian motion [21] and fractal $autc\succ regraesive$ integrate moving average
process [11] are the typical examples which are oriented to represent the fractal nature of Internet traffic
caused by the long-range dependency. As an extension of the Poisson process, Markovian arrival process
(MAP) [18] and its associated stochastic process are often used to analyze mathematically the stochastic
behavior arising in many practical situations such as reliability and performance evaluation.

The MAP is one of the most flexible stochastic processes, and is defined $a8$ a specific continuous-time
Markov chain (CTMC). More precisely, the MAP consists of two different processes with discrete state
space. One process repraeents the dynamics of internal state called phase process, another corresponds to
the number of events, i.e, the counting process like a Poisson process. Here we call the number of events
level. The phase process is usually modeled by a CTMC, and the level process is modulated by the phase
process. Since the MAP is dense for any stochastic point process with an arbitrary number of phases [2],
the family of MAP can be applied to approximations of complex stochastic counting processes such as
the number of accesses in the Internet. In fact, Markov-modulated Poisson process (MMPP) [12], batch
MMPP (BMMPP) and batch MAP (BMAP) [17], which are super- and sub-cla8ses of MAP, have been
utilized to evaluate the information communication systems based on the queueing analysis.

The MAP possesses a $8ignificant$ problem on the statistical inference of its parameters in practical
applications. That is, we often need to determine model parameters of the MAP when evaluating the
performance of real systems such as network system and production $sy_{8}tem$ . Given observed data in the
real systems, the problem is to find appropriate parameters fitted to the observed data. The commonly
used method for the parameter estimation is the maximum likelihood (ML) method. However, the ML
method for MAP arises some technical difficulties due to the flexibility of MAP, i.e., a large number of
&ee parameters are included.

To overcome this technical problem, some authors developed statistical methods to estimate the
model parameters of MAP or its associated processes. The EM (expectation-maximization) algorithm
$[9, 28]$ is one of the most popular methods to estimate the parameters of MAP, and also provides a
general numerical framework to derive the ML estimates for the stochastic model which involves hidden
information. Since the EM algorithm has good properties on numerical computation such as a global
$\infty nvergence$ property, it is quite effective to estimate stochastic models with many free parameters;
$Gau8sian$ mixed model (GMM) [5] and hidden Markov model (HMM) [4] as well as MAP.
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This paper proposes an EM algorithm for a superposition of MAPs. In general, the superposition

of MAPs can be formulated by a Kronecker representation of the underlying CTMC. We revisit the

existing EM algorithm for an MAP [27] from the viewpoint of matrix computation, and reformulate the

E-step and M-step with the Kronecker representation. This leads to reduce the matrix computation $co$st

drastically in the EM-based parameter estimation procedure.

2. Related Work

In general, there are two approaches for fitting the famlly of MAP to observed data: moment-based
approach and likelihood-based approach. In the moment-based approach, one determines the model

parameters of MAP so as to fit $th\infty retical$ moments to empirical ones from the observed data. Heffes and

Lucantoni [13] provided an explicit formula for estimating the parameters of two-state MMPP by using

the empirical moments of the number of arrivals. Anderson and Nielsen [1] proposed a fitting method

for a superposition of 2-state MAPs based on Hurst parameter as well as the moments. Yoshihara et

al. [29] developed a moment-based estimation procedure for an MMPP with several states in order to

model self-similar traffic. Also, Mitchell and Liefvoort [20] developed a two-step method which deals

with inter-arrival time data and lag correlation separately. The main advantage of such moment-based

approaches over the likelihood-based approaches, is to reduce the computational cost.

The ML estimation for MAP has posed some difficulties until the mid of $1990s$ . The principle of ML

estimation is to find the parameters which maximize the likelihood on the observed data as realizations

of the stochastic process. The direct approach to compute ML estimates in MAPs requires large scale

matrix computation. Since MAP includes numerous parameters in general, it is generally hard to find the

maxima of the likelihood from the data. For example, Meier-Hellstern [19] discussed the ML estimation

algorithm for a simple MMPP with only 2 phaees. The EM algorithms $[9, 28]$ for MMPP and MAP were
proposed to overcome these problems.

The EM algorithm is a statistical framework to compute ML estimates under incomplete data, and is

particularly useful for the stochastic models with many parameters like GMMs. The first EM algorithm

for a family of MAP was the forward-backward algorithm in an HMM [4]. Deng and Mark [10] proposed

a method for ML estimation of MMPP by converting an MMPP to a Markov modulated BemouUi
process (MMBP) and by applying the forward-backward algorithm in the discretetime domain of MMBP.

Asmussen et al. [3] gave an EM algorithm to estimate parameters of a phase-type (PH) distribution, and

their idea could be used to estimate parameters of MMPP and MAP in the continuous-time domain.

Ryd\’en [27] extended Asmusaen’s idea to provide the exact ML estimates for MMPPs. In other words,

the EM algorithm in Ryd\’en [27] is analogous to the forward-backward algorithm in $HMM8[4]$ .
Based on the Ryd\’en’s work, two enhancements of EM algorithms are $p_{OS8}ible$ . One direction is

to develop EM algorithm for a wider class of stochastic processes and data structure. Breuer [6] and

Klemm et al. [15] independently $di_{8}cussed$ EM algorithms to estimate parameters of BMAPs. Okamura

et al. $[22, 23]$ developed the EM algorithm for MAP under the condition that group data of arrivals are
available. Another direction is to improve the computation techniques of the original EM algorithms.

$Ryd6n’ s$ algorithm has some numerical problems on the scaling and computation of matrix exponential

function. Roberts et al. [26], Klemm et al. [15] and Buchholz [7] discussed computational improvements
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to Ryd\’en’s algorithm. In particular, Klemm et al. [15] and Buchholz [7] implemented the uniformization
technique to perform the EM algorithm effectively for the family of MAP. Furthermore, Buchholz and
Panchenko [8] and Horv\’ath et al. [14] proposed two-step fitting methods by combining the EM algorithm
for PH distribution and the moment-based two-step method [20].

3. Markovian Arrival Process
3.1. Deflnition

The MAP is a counting process whose arrival rate is governed by a CTMC. Let $M$ and $D_{1}$ denote an
infinitesimal generator of the underlying CTMC, and a rate matrix for the arrival leading to a state change
of the CTMC, respectively. For instance, if there are $m$ distinct states in the CTMC, the corresponding
matrices $M$ and $D_{1}$ are given by

$M=(\begin{array}{llll}-\mu_{1,1} \mu_{1.2} \mu_{1,m}\mu_{2,1} -\mu_{2,2} \mu_{2,m}| | \ddots |\mu_{m,1} \mu_{m,2} -\mu_{m,m}\end{array})$ , $D_{1}=(\begin{array}{llll}\lambda_{1,1} \lambda_{1,2} \lambda_{1,m}\lambda_{2,1} \lambda_{2,2} \lambda_{2,m}| | \ddots |\lambda_{m,1} \lambda_{m,2} \lambda_{m,m}\end{array})$ ,
$\cdot$

(1)

where $\mu:,:=\sum_{j=1,j\neq i}^{m}\mu:.j$ . In this paper, the state of the underlying CTMC is called a phase.

Let $\{N(t);t\geq 0\}$ and $\{J(t);t\geq 0\}$ be the stochastic processes which indicate the number of arrivals
during time interval $[0,t$) and the phase at time $t$ , respectively. Define the matrix $P_{k}(t)$ whose $(i,j)-$

element is given by

$[P_{k}(t)]_{i,j}=P(N(t)=k, J(t)=j|N(O)=0,$ $J(O)=i)$ . (2)

Then we obtain the following differential-difference equations:

$\frac{d}{dt}P_{0}(t)=P_{0}(t)D_{0}$ , $\frac{d}{dt}P_{k}(t)=P_{k}(t)D_{0}+P_{k-1}(t)D_{1}$ , $k=1,2,$ $\ldots$ , (3)

where the matrix $D_{0}$ is defined by

$D_{0}=M-diag(D_{1}e)$ . (4)

In Eq. (4), $e$ is a column vector whose elements are 1 and diag(De) gives a matrix with the element8
of $De$ on the main diagonal. Also the initial phase is determined by an inlitial probability vector $\pi=$

$(\pi_{1},\pi_{2}, \ldots\pi_{m})$ with $\sum_{i=1}^{m}\pi:=1$ .
3.2. Brief overview of the EM algorithm

The EM algorithm is an iterative method for ML estimation with incomplete data $[9, 28]$ . In general,
$\mathcal{D}$ and $\mathcal{U}$ are defined as observed and unobserved data, respectively, and we estimate a set of model
parameters $\theta$ given the observed data $\mathcal{D}$ . The EM algorithm is based on a proeedure for finding the
parameter set $\theta$ that maxinuzes the expected log-likelihood function (LLF) for the complete data pair
$(\mathcal{D},\mathcal{U})$ , provided that only $\mathcal{D}$ is observed. Therefore we have the following formula in the EM algorithm:

$\theta$

$:= \arg_{\theta}\max R_{4}[LLF(\theta|\mathcal{D},\mathcal{U})|\mathcal{D}]$ , (5)

where $E_{\mathcal{U}}$ is the expectation operator for the unobserved data $\mathcal{U}$ . In order to $\infty mpute$ the above expected
LLF, we need a provisional set of parameters. That is, Eq. (5) essentially provides an update formula
of the $est_{\dot{\Psi}1}ated$ parameters, and the parameters are updated until they $\infty nverge$ to certain values. E-
step and M-step in the EM algorithm are the procedures to compute the expected LLF and to find the
parameters maximizing the expected LLF, respectively.
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3.3. M-step formulas for the MAP

Consider an estimation problem for an m-state MAP under a given observed data $\mathcal{D}$ . The data $\mathcal{D}$

consists of $K$ samples of time intervals between successive two arrivals, which is called the time data in

this paper. More precisely, we define the time interval between the kth and the $k+1st$ arrivals as $t_{k}$ , and
$s_{0}=0<s_{1}<\cdots<s_{K}$ is a cumulative time sequence, i.e., $s_{k}= \sum_{i=1}^{k}t_{i}$ .

Define the following unobserved variables (random variables):

$B_{i}$ : an indicator random variable for the event that the phase is $i$ at the initial time $t=0$ .
$Y_{i,j}^{[k]}$ : an indicator random variable for the event that an arrival with phase transitions from $i$ to $j$ occurs

at time instant $s_{k}$ .
$Z_{1}^{[k]}$ : total sojourn time for phase $i$ during a time interval $(s_{k-1}, s_{k})$ .
$M_{i,j}^{[k]}$ : the number of phase transitions from $i$ to $j$ during a time interval $(s_{k-1}, s_{k})$ .
Then it is straightforward to see that

$B_{i}=I(J(0)=i)$ , (6)

$Y_{1j}^{[k]}=I(J(\epsilon_{k}^{-})=i, J(s_{k}^{+})=j)$ , (7)

$z_{1}!^{k]}= \int_{h-1}^{e\kappa}I(J(\tau)=i)d\tau$, (8)

$M_{*,j}^{[k]}= \int_{s_{k-1}}^{\iota_{k}}I(J(\tau^{-})=i, J(\tau^{+})=j)d\tau$, $i\neq j$ , (9)

where $I(\cdot)$ denotes the indicator function, and $\tau^{-}$ and $\tau^{+}$ represent the left and right limits, i.e.,

$I(N( \tau^{-})=x,N(\tau^{+})=y)=\lim_{Aarrow+0}I(N(\tau-\Delta t)=x, N(\tau+\Delta t)=y)$ . (10)

Deflne the parameter set $\theta:=\{\pi:,\mu_{i,j}, \lambda_{i,j}\}$ and the unobserved variables $\mathcal{U}$ $:=\{B:,Y_{1j}, Z_{1},M_{*,j}\}$

for $i,j=1,$ $\ldots m$ and $k=1,$ $\ldots K$ . Since the parameters $\mu:,j$ and $\lambda_{:,j}$ essentially equal the rates of

exponential distributions representing phase transitions and arrivals in the MAP, we have the following

MLEs under the complete data pair $(\mathcal{D},\mathcal{U})$ :

$\hat{\pi}_{i}=B_{i}$ , $\hat{\mu}_{i,j}=\frac{\sum_{k--1}^{K}M_{1j}^{[k]}}{\sum_{k=1}^{K}Z_{1}!^{k]}}$ , $\hat{\lambda}_{t,j}=\frac{\sum_{k-1}^{K}Y_{i.’ j}^{[k]}}{\sum_{k\sim 1}^{K}Z_{1}^{[k]}}$ . (11)

According to Eq. (5) and the above MLEs, the update formulas (M-step formulas) of the EM algorithm

for MAP are obtained as follows.

$\pi_{i}$ $:=E[B_{i}|\mathcal{D}]$ , $\mu:,j$
$:= \frac{\sum_{k-1}^{K}E[M_{1,j}^{[k]}|\mathcal{D}]}{\sum_{k=1}^{K}E[Z_{i}^{[k]}|\mathcal{D}]}$ , $i\neq j$ , $\lambda:,j$ $:= \frac{\sum_{k--1}^{K}E[Y_{1j}^{[k]}|\mathcal{D}]}{\sum_{k\approx 1}^{K}E[Z_{t}^{[k]}|\mathcal{D}]}$, (12)

where we omit the subscript of the expectation operation for simplicity.
3.4. E-step formulas

Define the following indicator random variables:

$A_{k}=I(N(s_{k}^{+})-N(s_{k}^{-})=1)$ . (13)

Then the forward, backward and overall events can be represented by $\mathcal{F}_{k}=A\iota\cdots A_{h},$ $\mathcal{B}_{k}=A_{k}\cdots A_{K}$

and $O=\mathcal{A}_{1}\cdots A_{K}$ , respectively. For the sake of simplicity, we use the notation $P(A)=P(A=1)$ as
the probability of any indicator random variable $A$ .

232



Let $f_{k}(u)$ and $b_{k}(u)$ be row and column vectors representing the probabilities (likelihoods) for the
forward and backward events during the time period $(s_{k-1}, s_{k})$ . Specifically, the i-th elements of both
vectors are defined by

$[f_{k}(u)]_{i}=P(F_{k-1},$ $N((s_{k-1}+u)^{-})-N(s_{k-1}^{+})=0,$ $J((s_{k-1}+u)^{-})=i)$ , (14)

$[b_{k}(u)]:=P(N(s_{k}^{-})-N((s_{k}-u)^{+})=0,$ $\mathcal{A}_{k},$ $B_{k+1}|J((s_{k}-u)^{+})=i)$ . (15)

Consider the expected values in Eq. (12). By using the indicator random variable $O$ , we have

$\pi_{i}:=\frac{E[B_{1}O]}{P(O)}=\frac{\pi_{i}[b_{1}(t_{1})]_{1}}{\pi b_{1}(t_{1})}$ . (16)

Next we focus on computation of the expected value $E[M_{i,j}^{[k]}|\mathcal{D}]$ . Since $E[M_{1j}^{[k]}|\mathcal{D}]=E[M_{1,j}^{[k]}O]/P(O)$ ,
the subsequent analysis treats only $E[M_{i,j}^{[k]}\mathcal{O}]$ . According to the conditional stationary independent
increments of $N(t)$ provided that the Markov process $J(t)$ is known, we get

$E[M_{1,j}^{[k]}O]=\int_{\epsilon_{k-1}}^{\epsilon\iota}P(J(\tau^{-})=i, J(\tau^{+})=j,N(\tau^{+})-N(\tau^{-})=0,$$O$) $d\tau$

$= \int_{\epsilon_{h-1}}^{\epsilon_{k}}P(\mathcal{F}_{k-1}, N(\tau^{-})-N(s_{k-1}^{+})=0,$$J(\tau^{-})=i)$

$xP(J(\tau^{+})=j,N(\tau^{+})-N(\tau^{-})=0|J(\tau^{-})=i)$

$xP(N(s_{k}^{-})-N(\tau^{+})=0,A_{k},\mathcal{B}_{k+1}|J(\tau^{+})=j)d\tau$ . (17)

Using $f_{k}(u)$ and $b_{k}(u)$ , Eq. (17) can be reduced to

$E[M_{1,j}^{[k]}O]=\int_{0}^{t_{k}}[f_{k}(\tau)]_{i}\mu_{1j}[b_{k}(t_{k}-\tau)]_{j}d\tau$. (18)

The expected value of $z_{i}^{[k]}$ is obtained from Eq. (18). That is, substituting $i$ into $j$ in Eqs. (17) and (18)
yields

$E[Z_{i}^{[k]}O]=\int_{0}^{t_{k}}[f_{k}(\tau)]_{i}[b_{k}(t_{k}-\tau)]_{i}d\tau$ . (19)

The expected value of $Y_{i,j}^{[k]}$ is also derived from the similar analysis.

$E[Y_{i,j}^{[k]}O]=P(\mathcal{F}_{k-1}, N(s_{k}^{-})-N(s_{k-1}^{+})=0,$ $J(s_{k}^{-})=i)$

$xP(J(s_{k}^{+})=j, N(s_{k}^{+})-N(s_{k}^{-})=1|J(s_{k}^{-})=i)P(\mathcal{B}_{k+1}|J(s_{k}^{+})=j)$ . (20)

Hence we have

$E[U_{1j}^{[k]}O]=[f_{k}(t_{k})]_{1}\lambda:,j[b_{k+1}(t_{k+1})]_{j}$ . (21)

3.5. Computation Algorithms

To execute the EM algorithm described before, we need the vectors $f_{k}(t)$ and $b_{k}(t)$ . In addition, the
expected values $E[M_{i,j}^{[k]}]$ and $E[Z_{1}^{\mathfrak{l}^{k]}}]$ require the computation of convolution such as Eqs. (18) and (19). In
the EM algorithm for MAP, which is the so-called Ryd\’en’s method, its computation is based on the diag-
onalization of the matrix $D_{0}$ . Asmussen et al. [3] applied differential equations for solving the $\infty nvolution$

integral for the $phae\triangleright type$ (PH) distribution. Recently, Klemm et al. [15] and Buchholz [7] presented an
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improved method for the Ryd\’en’s method. The key idea is discretization of the underlying CTMC by

using the uniformization technique [25]. Furthermore, Okamura et al. [24] realized the uniformization on

the Asmussen’s EM.algorithm for PH distribution with some improvements. Here we explain the concrete

E-step procedure for MAP when applying the same technique as Klemm et al. [15] and Buchholz [7].

The vectors $f_{k}(t)$ and $b_{k}(t)$ can be expressed as

$f_{k}(t)=\pi\exp(D_{0}t_{1})D_{1}x\cdots\exp(D_{0}t_{k-1})D_{1}\exp(D_{0}t)$ , (22)

$b_{k}(t)=\exp(D_{0}t)D_{1}x\cdots\exp(D_{0}t_{K})D_{1}e$. (23)

Therefore $f_{k}(t)$ and $b_{k}(t)$ can be computed by applying a simple uniformization. Let $q$ be a constant

which is larger than the maximum of absolute diagonal elements of $D_{0}$ . Then we have

$\alpha p(D_{0}t)=\sum_{z=0}^{\infty}e^{-qt}\frac{(qt)^{z}}{z!}(I+D_{0}/q)$ , (24)

where I is the m-by-m identity matrix. The above infinite sum is truncated by a certain point in the

practical computation, which is determined by the Poisson probability mass function.

On the other hand, the convolution integral is more complex for the computation based on the

uniformization. Here we provide the following computation procedure as follows:

Uniformization-based Integration of Matrlx Exponential:

Step 1: Compute $b_{u}$ for $u=1,$ $\ldots U$ ;

$b_{u}$ $:=Pb_{u-1}$ , $b_{0}=b_{k}(0)$ . (25)

Step 2: Compute $c_{u}$ for $u=U-1,$ $\ldots$ , $0$ ;

ち $:= c_{u+1}P+e^{-qt_{k}}\frac{(qt_{k})^{u+1}}{(u+1)!}f_{k}(0)$, $c_{U}:=e^{-qt_{k}}\frac{(qt_{k})^{U+1}}{(U+1)!}f_{k}(0)$. (26)

Step 3: Compute $H_{k}=(1/q) \sum_{u=0}^{U}b_{u}c_{u}$ ,

where $q> \max_{1}|\mu_{i,i}|,$ $P=I+D_{0}/q$ . $Mor\infty ver,$ $U$ is a right truncation point of uniformization satisfying

$\sum_{u=0}^{U}e^{-qt_{h}}\frac{(qt_{k})^{u}}{u!}\geq 1-$ (tolerance error). (27)

After the above computation procedure, the $(j,i)$-element of the matrix $H_{k}$ indicates

$[H]_{j,i}= \int_{0}^{t_{k}}[f_{k}(\tau)]:[b_{k}(t_{k}-\tau)]_{j}d\tau$. (28)

Also the time complexity of the procedure is given by $O(KUm^{2})$ . Compared to $\infty nventional\infty mputation$

methods such as diagonalization and differential equations, the time complexity can be reduced. Thus

we can treat the MAP with a large number of phases by means of the above procedure.

However, in the practical situation, we encounter some difficulties to compute the expected values

in the E-step, even if we use the above computation procedure. The most significant and troublesome

problem is a stitthess of the underlying CTMC. In the CTMC, the stiioes corresponds to the praeence of

transition rates whose orders of magnitude are larger than the reciprocal of the length of the interval of

integration. Intuitively, the stiff CTMC includes very rapid events and very slow events $simul\tan\infty usly$.
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The MAP is also composed of the CTMC of phase transition, and thus the stiffness problem arises in
the MAP estlmation. In partlcular when the MAP has a long-range dependency, the underlylng phase
process of the MAP tends to be stiff. Thls motivates us to develop the EM algorithm for a superposition
of MAPs instead of a general MAP.

4. Superposition of MAPs
4.1. Deflnition

Consider a superposition ofMAPs with $n$ multiplicity. Each MAP has the set of parameters $(\pi^{[l]},D_{0}^{[l]},D_{1}^{[l]})$

for $l=1,$ $\ldots$ , $n$ . Here we present the $(i,j)$-elements of $D_{0}^{[l]}$ and $D_{1}^{[l]}$ as $\mu_{i,j}^{[l]}$ and $\lambda_{i,j}^{[l]}$ , respaetively. In
general, the superposition of MAPs can also be described by an MAP with the following parameters:

$\pi=\bigotimes_{l\sim 1}^{\mathfrak{n}}\pi^{[l]}$ , $C= \bigoplus_{l\approx 1}^{n}D_{0}^{[l)}$ , $D= \bigoplus_{l=1}^{n}D_{1}^{\mathfrak{l}^{l]}}$ , (29)

$where\otimes and\oplus are$ the Kronecker product and sum, respectively. Suppose that each MAP has $m$ phues
for the sake of simplicity. Then the number of phases of the superposition process is given by $m^{n}$ . We
thus represent a large size MAP by the superposition of the MAPs with a few phases. For example, it is
well known that the superposition of interrupted Poisson process (IPP) can be reduced to an MMPP.

5. Parameter estlmation for the superposition of MAPs
5.1. M-step formulas

Consider again the time interval data $\mathcal{D}=\{t_{1}, \ldots , t_{K}\}$ , where $t_{k}$ is a time interval between the $(i-1)-st$

and the i-th arrivals. Also $\epsilon_{k}$ is the cumulative time until the k-th arrival; $\epsilon_{k}=\sum_{:=1}^{k}t_{i}$ . Yoehlhara et
al. [29] proposed a moment match method for a superposition of IPPs, i.e., an MMPP. In this paper,
we consider the maximum likelihood estimation for the superposition of MAPs with $n$ multiplicity, and
particularly the EM algorithm is applied to the superposition of MAPs.

Similar to Section 3, we define the following unobserved values (random variables) for each superposed
MAP:
$B_{1}!^{l}1_{:}$ an indicator random variable for the event that the phase is $i$ at the initial time $t=0$ in the l-th

MAP.
$Y_{1j}^{[l,k]}$ : an indicator random variable for the event that an arrival with a phase transition from $i$ to $j$

occurs in the l-th MAP at time $s_{k}$ .
$z_{1}!^{l,k]}$ : total sojoum time for phase $i$ in the l-th MAP during time interval $(8_{k-1}, S_{k})$ .
$M_{I,f}^{[l,k]}$ : the number of phase transitions from $i$ to $j$ without arrivals in the l-th MAP during the time

interval $(\epsilon_{k-1}, s_{k})$ .
Let $J^{[t]}(t)$ and $N^{[l]}(t)$ be the phaee process of the l-th MAP and the cumulative number of arrivals from
the l-th MAP at time $t$, respectively. Then we have

$B_{1}!^{l1_{=I(J^{[t]}(0)=i)}}$ , (30)

$Y_{1,j}^{[l,k]}=I(J^{[\iota]}(s_{k}^{-})=i, J^{[\iota]}(s_{k}^{+})=j,N^{[\iota]}(s_{k}^{+})-N^{[l]}(s_{k}^{-})=1)$ , (31)

$z_{:}^{[l,k]}=\int_{h-1}^{\iota_{k}}I(J^{[l]}(\tau)=i)d\tau$, (32)

$M_{1\dot{j}}^{[lk]}= \int_{\iota_{h-1}}^{4}I(J^{[l]}(\tau^{-})=i, J^{[l]}(\tau^{+})=j)d\tau$, $i\neq j$ . (33)
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Using the above unobserved variables, the estimates for the l-th MAP are given by

$\hat{\pi}_{i}^{[l]}=B_{i}^{[l]},\hat{\mu}_{i,j}^{[l]}=\frac{\sum_{k--1}^{K}M_{i,j}^{[l,k]}}{\sum_{k=1}^{K}Z_{i}^{1^{l,k]}}},\hat{\lambda}_{i,j}^{[l]}=\frac{\sum_{k--1}^{K}Y_{i,j}^{1^{t,k]}}}{\sum_{k=1}^{K}Z_{i}^{1^{l,k]}}}$ . (34)

Therefore the M-step formulas for the superposition of MAPs are

$\pi_{*}!^{l}1_{;=E[B_{i}^{[l]}|\mathcal{D}]}$ (35)

$\mu_{\mathfrak{i},f}^{[l]}$ $:= \frac{\sum_{k--1}^{K}E[M_{i,j}^{[l,k]}|\mathcal{D}]}{\sum_{k=1}^{K}E[Z_{i}^{[l,k]}|\mathcal{D}]}$, $i\neq j$ , (36)

$\lambda_{i,j}^{1^{l]}}:=\frac{\sum_{k--1}^{K}E[Y_{1,j}^{l,k]}|\mathcal{D}]}{\sum_{k=1}^{K}E[Z_{1}^{l,k]}|\mathcal{D}]}!$ . (37)

The main differenoe between the M-step formulas in a general MAP and the superposition of MAPs is

that the M-step formulas are specified for respective superpos\’e MAPs.
5.2. Bstep formulas

Define the following indicator random variables:

$\mathcal{A}_{k}^{[l]}=I(N^{[t]}(s_{k}^{+})-N^{[l]}(s_{k}^{-})=1)$ , $T_{k}^{[l)}=I(N^{[l]}(s_{k}^{+})-N^{1^{\iota]}}(\epsilon_{k}^{-})=0)$ . (38)

Then one arrival event is represented by

$A_{k}=(A_{k}^{[1]}\overline{A}_{k}^{[2]}\cdots\overline{A}_{k}^{[\mathfrak{n}]})+\cdots+(\overline{\mathcal{A}}_{k}^{[1]}\cdots\lambda_{k}^{[n-1]}\mathcal{A}_{k}^{[n]})$. (39)

Similar to the MAP case, the forward, backward and overall $event_{8}$ can be represented by $\mathcal{F}_{k}=\mathcal{A}_{1}\cdots \mathcal{A}\kappa$ ,
$B_{k}=A_{k}\cdots \mathcal{A}_{K}$ and $O=\mathcal{A}_{1}\cdots A_{K}$ , respectively.

Let $f_{k}(u)$ and $b_{k}(u)$ be row and column vectors with $m^{n}$ elements which represent the likelihoods for

the forward and backward events in the time period $(s_{k-1}, s_{k})$ . Thus we have

$f_{k}(u)= \bigotimes_{l=1}^{n}\pi^{[l]}(\bigotimes_{\iota=1}^{n}\exp(D_{0}^{[l]}t_{1})\bigoplus_{l=1}^{n}D_{1}^{[l])}\cdots(\bigotimes_{l=1}^{n}\exp(D_{0}^{[l]}t_{k-1})\bigoplus_{l=1}^{n}D_{1}^{[l])\bigotimes_{l=1}^{n}\exp(D_{0}^{[l]}u)}$ (40)

and

$b_{k}(u)= \bigotimes_{t=1}^{n}\exp(D_{0}^{[l]}u)\bigoplus_{l=1}^{\mathfrak{n}}D_{1}^{[l]}(\bigotimes_{l=1}^{n}\exp(D_{0}^{[l]}t_{k+1})\bigoplus_{l=1}^{n}D_{1}^{[l])}\cdots(\bigotimes_{l=1}^{n}\exp(D_{0}^{[l]}t_{K})\bigoplus_{l\simeq 1}^{n}D_{1}^{[l]})\bigotimes_{l=1}^{n}e$ . (41)

Although the above equations are essentially same as those in the case of the MAP, they can reduce

the time complexity of matrix operation by using the Kronecker representation, compared to the general

MAP. That is, if we use Eqs. (22) and (23) for the superposition of MAP, the time complexity of the

total computation of $f_{k}(t_{k}),$ $k=1,$ $\ldots$ , $K$ turns out to be $O(Km^{2n})$ . In contrast, the time complexity is

the Kronecker repraeentation ls given by $O(Km^{2}n^{2})$ . Accordingly, we can reduce the computation effort

only by applying the Kronecker representation to the superposition of MAPs.

Next we consider the expected values in the case of the superposition of MAPs. The expected value
$E[B_{1}!^{l]}0]$ is easily obtained by using $b_{k}(u)$ . Let $I_{i}^{[l]}$ be an $m^{\hslash}- by- m^{n}$ matrix which con81sts of the Kronecker

products for the identity matrices:

$I_{i,j}^{[l]}=I\otimes\cdots\otimes I\otimes e_{i}e_{j}^{T}\otimes I\otimes\cdots\otimes I$ , (42)
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where $e_{i}$ is a column vector whose only i-th element is 1 (the other elements are $0$), and where $T$ is a
transpose operator. Using the matrix $I_{i}^{[l]}$ , the expected value $E[B_{i}^{[l)}\mathcal{O}]$ is given by

$\pi_{i}^{[l]}$ $:= \frac{E[B_{i}^{[l]}O]}{P(O)}=\frac{\otimes_{l--1}^{n}\pi^{[l]}I_{i,i}^{[l]}b_{1}(t_{1})}{\otimes_{t=1}^{n}\pi^{(l)}b_{1}(t_{1})}$. (43)

The expected value of $Y_{1j}^{[l,k]}$ is similarly derived as

$E[Y_{1,j}^{[l,k]}O]=\lambda!_{j}^{l1_{f_{k}(t_{k})I_{i,j}^{[l]}b_{k+1}(t_{k+1})}}$ . (必)

Also, the expected value $E[M_{i,j}^{1^{l,k]}}O]$ can be derived as follows.

$E[M_{i,j}^{[l,k]}O]=\int_{\epsilon_{k-1}}^{\epsilon_{k}}P(J^{1^{\{]}}(\tau^{-})=i, J^{1^{l]}}(\tau^{+})=j$,

$xN^{[1\downarrow}(\tau^{+})-N^{[1]}(\tau^{-})=0,$ $\ldots N^{[n]}(\tau^{+})-N^{[n]}(\tau^{-})=0,$ $O$) $d\tau$

$= \int_{\epsilon_{k-1}}^{\ell_{k}}P(\mathcal{F}_{k-1}, N^{[1]}(\tau^{-})-N^{[1]}(s_{k-1}^{+})=0,$ $\ldots N^{[n]}(\tau^{-})-N^{[n]}(s_{k-1}^{+})=0$ ,

$xJ^{[l]}(\tau^{-})=i)P(J^{[l]}(\tau^{+})=j, N^{[1]}(\tau^{+})-N^{[1]}(\tau^{-})=0,$
$\ldots$ ,

$N^{[n]}(\tau^{+})-N^{[n]}(\tau^{-})=0|J^{[l]}(\tau^{-})=t)$

$xP(N^{[1|}(s_{k}^{-})-N^{[1]}(\tau^{+})=0,$ $\ldots N$同 $(s_{k}^{-})-N^{[n]}(\tau^{+})=0$ ,

$A_{k},$ $\mathcal{B}_{k+1}|J^{[l]}(\tau^{+})=j)d\tau$. (45)

The above expression seems to be quite complex, but since $N^{[l]},$ $l=1,$ $\ldots$ , $n$ , are mutually independent,
we can rewrite the equation as

$E[M_{1j}^{[l,k]}O]=\mu_{1j}^{[.l]}f_{k}(0)(\exp(D_{0}^{[1]}t_{k})\otimes\cdots\otimes A_{i,j}^{[l,k]}\otimes\cdots\otimes\exp(D_{0}^{[n]}t_{k}))b_{k}(0)$ , (46)

where $A_{i,j}^{[l,k]}$ is an m-by-m matrix;

$\Lambda_{i,j}^{[l,k]}=\int_{0}^{t_{k}}\exp(D_{0}^{[l]}\tau)e_{i}e_{j}^{T}\exp(D_{0}^{[l]}(t_{k}-\tau))d\tau$. (47)

The expected value of $z_{i}^{[l,k]}$ is obtained as

$E[Z_{i}^{[l,k]}O]=f_{k}(0)(\exp(D_{0}^{[11_{t_{k})\otimes\cdots\otimes\Lambda_{i,i}^{[l,h]}\otimes\cdots\otimes\exp(D_{0}^{[n]}t_{k}))b_{k}(0)}}$ . (48)

Based on the above equations, the computation cost of the E-step for the superposition of MAPs with $n$

multiplicity is reduced. For instance, we can apply the computation procedure, called Unlformization-
based Integration of Matrix Exponential, into the computation of the matrix $A_{j}^{[.l,k]}$ directly. That
is, a large number of phases are divided into the MAPs with a few phases in the computation procedure.
Finally the time complexity of the E-step in the superposition of MAPs is given by $O(m^{2}n^{2})$ even if it
includes the integration of matrix exponential.

Also it should be noted that we can ea8i1y derive closed forms of the matrix exponential and its
integral when the number of phases is only 2. This property may be useful to resolve the stiff Markov
problem. If we represent a largescale MAP by the superposition of 2-state MAPs, it essentially gives the
closed forms of the expected values which are computed in the E-step. That is, regardless of whether the
underlying phase process is stiff or not, we can $\infty mpute$ the expected values in closed forms.
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6. Numerical Example

In this section, we compare a 4-state MAP and the superposition of 2-state MAPs. In paticular we

focus on the value of log likelihood function. A data set is 100 records composed of random variates

given by the Weibull Dlstribution with shape parameter 2.0 and scale parameter 5.0. We perfome the

EM algorithm for each MAP untll it satisfies the termination condition. The termination condition is

provided by the relative difference of log-likelihood. The algorithm stops when the relative difference

between two successive log-likellhoods is lower than 1.0B-6.

The estimates in 4-state MAP are calculated as follows.

$C=(\begin{array}{llll}-2.330 0.8450 0.9640 00.9958 -1.907 0 0.36020.7683 0 -1.654 0.33570 7.966 ll.07 -19.04\end{array})$ , (49)

$D=(\begin{array}{llll}0.53l2 O 0.5508 O 0.5503 0\end{array})$ . (50)

Eqs. (49) and (50) show the estimation results of transition matrix and arrival matrix in 4-state MAP

respectively. Moreover, Eq. (51) represents the maximum log-llkelihood in 4-state MAP.

$LLF=$ $-1.62092E+02$. (51)

Next, we estlmate the parameters of the superposition of 2-state MAPs. Eqs. (52) and (53) show the

estiomation results of transition matrlx and arrival matrix respectively. Eq. (54) repraeents the value of

log-likelihood in MAP by the superposition of 2-state MAPs.

$C=(\begin{array}{llll}-2.0966 0.2694 l.2822 019.612 -20.894 0 l.28220.1573 0 -0.97l8 0.26940 0.l674 l9.6l2 -19.770\end{array})$ , (52)

$D=(\begin{array}{llll}0.54502 O 0 O 0.54503 0\end{array})$ ‘ (53)

$LLF=$ -1.62096$E+02$ . (54)

When the values of the log likelihood shown by Eq. (51) and (54) were compared, the value of the log

llkellhood was almost the same ,thus it is indicated that the superposition of 2-state MAPs is fitting data

set as much as MAP in four states. Therefore, MAP in four states was equally expressible by $U8ing$ the

superposition of 2-state MAPs.

7. Conclusions

In this paper, we have proposed an EM algorithm for the superposition of MAPs. The proposed method

is aesentially same as the EM algorithm for the MAP discussed in the past literature. However, in the

aspect of $\infty mputation$ cost, the prop屋 oeed algorithm can reduce the time $\infty mplexity$, compared to the

other methods. That ls, by using the proposed method, we can handle the $l\arg\triangleright scale$ MAP in the

estimation problem. In addition, if we represent the MAP with the superposition of 2-state MAPs, it
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also resolves the stiff problem arising in the MAP parameter estimation. In future, we will implement
the proposed EM algorithm for the superposition of MAPs, and will examine the estimation performance
$hom$ both accuracy and computation time viewpoints.
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