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1 Introduction

In this article we will construct Markov processes on
the ring of adeles. We will give an investigation to the
processes whose p-components are all semistable, and ex-
amine exiting times for them from some regions. It will
be shown that the expectations concerning the exiting
times represent Riemann’s zeta function in the region of
convergence of the Euler product.

For every prime integer $p$ , we denote by $Q_{p}$ the field
of p-adic numbers and by $Z_{p}$ its integer ring. The p-adic
norm 1 $|_{p}$ is normalized so that $|p|_{p}=p^{-1}$ .

2 Semistable processes on the p-adic fields

Since the p-adic field $Q_{p}$ is totally disconnected, every
stochastic process thereon is purely of jump type. There-
fore an additive process $\{X_{t}\}_{t\geq 0}$ on $Q_{p}$ is completely de-
termined by its Levy measure $F$ . In [Y] it is shown that
if the law of $\{X_{t}\}_{t\geq 0}$ is invariant by rotations around
the origin, then the Levy measure $F$ , and hence the law
of $\{X_{t}\}_{t\geq 0}$ corresponds in one-to-one way to a sequence
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$\{a^{(p)}(m)\}_{m\in Z}$ of positive numbers such that

$a^{(p)}(m+1)\leq a^{(p)}(m)$ for any $m\in Z$ , (1)

and
$\lim_{marrow\infty}a^{(p)}(m)=0$ . (2)

3 Markov processes on the adeles

Let $A$ be the ring of adeles on $Q$ , namely the ristricted
product of $R=Q_{\infty}$ and $Q_{p}$ for all prime integers $p$

relative to their integer rings. We put $S$ for the ristricted
product of $Q_{p}$ for all (finite) primes :

$S$ $:= \{(x_{p})_{p}\in\prod_{p<\infty}Q_{p}$

$x_{p}\in Z_{p}$ except for a finite number of $p\}$ ,

then we have $A=R\cross S$ .
Let us fix an integer $m$ . For each prime integer $p$ ,

let $\{B_{i}^{(p,m)}\}_{i=0,1,2},\ldots$ be the set of disjoint p-adic discs of
radius $p^{m}$ such that $Q_{p}=\bigcup_{i=0}^{\infty}B_{i}^{(p,m)}$ . If we put $B_{i}^{(m)}=$

$\Pi_{p}B_{i_{p}}^{(p,m)}$ for every sequence $i=(i_{p})_{p}$ indexed by prime
integers $p$ , then the direct product space $\Pi_{p<\infty}Q_{p}$ is the
disjoint union of the sets $B_{i}^{(m}$).

Take a sequence $\{a^{(p)}(m)\}_{m\in Z}$ for each prime $p$ satis-
fying (1), (2), as well as

$0< \sum_{p}a^{(p)}(m)<\infty$ , (3)
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and for non-negative integers $i$ and $j$ , define $a_{ij}^{(p)}(m)$ by

$a_{ij}^{(p)}(m)$ $:=\{\begin{array}{l}-a^{(p)}(m)i=j(p-1)^{-1}p^{-k+1}(a^{(p)}(m+k-1)-a^{(p)}(m+k))d_{p}(B_{i}^{(p,m)},B_{j}^{(p,m)})=p^{m+k}\end{array}$

Here for $i\neq j,$ $d_{p}(B_{i}^{(p,m)},$ $B_{j}^{(p,m)})$ is the $\mu$adic distance
between the balls $B_{i}^{(p,m)}$ and $B_{j}^{(p,m)}$ , which is well-defined
by $|x_{i}-x_{j}|_{p}$ for arbitrarily chosen points $x_{i}\in B_{i}^{(p,m)}$ and
$x_{j}\in B_{j}^{(p,m)}$ . Then for sequences $i=(i_{p})_{p}$ and $j=(j_{p})_{p}$

we define $c_{\ddot{B}}(m)$ by

$c_{\ddot{u}}(m)$

$:=\{\begin{array}{ll}\sum_{p}a_{i_{p}i_{p}}^{(p)}(m), if i_{p}=j_{p} for all p,a_{i_{p}j_{p}}^{(p)}(m), if i_{p}\neq j_{p}, and if i_{p’}=j_{p’} for all p’\neq p,0, otherwise.\end{array}$

We consider the Kolmogorov’s differential equations

$\{\begin{array}{l}P_{\ddot{u}^{(t)=\sum_{k}}\%(m)P_{ik}^{(m)}(t)}^{(m)t}P_{\ddot{u}}^{(m)\prime}(t)=\sum_{k}c_{ik}(m)P_{b}^{(m)}(t)\end{array}$

Then it can be seen that there exists a unique solution
$\{P_{\ddot{u}}^{(m)}(t)\}_{t\geq 0}$ satisfying the followings:

$P^{(m)}(t)\geq 0P_{\ddot{u}}?_{m)}(0)=\delta_{h}$

,

: $P_{\ddot{u}}^{(m)}(t)=1$ for all I,

$P_{\ddot{u}}^{(m)}(t+s)= \sum_{k}P_{ik}^{(m)}(t)P_{b}^{(m)}(s)$ .
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The solution $\{P_{ii}^{(m)}(t)\}_{t\geq 0}$ gives a Markovian semigroup
on the set of sequences $i=(i_{p})_{p}$ , and by identifying the
sequence $i$ with the subset $B_{i}^{(m)}$ in the direct product
space $\Pi_{p<\infty}Q_{p}$ , we obtain a Markov chain on $\{B_{i}^{(m)}\}_{i}$ .

It is not hard to see that the semigroup $\{P_{\ddot{u}}^{(m)}(t)\}_{t\geq 0}$

is consistent with respect to the index $m$ in the following
sense. Let $m>m’$ , and for each sequence $i$ , let $\mathcal{I}(i)$ be
the set of all sequences $i’$ such that $B_{i}^{(m’)}\subset B_{i}^{(m)}$ . Then
$B_{i}^{(m)}$ is the disjoint union of $B_{i}^{(m’)}$ for $i’\in \mathcal{I}(i)$ , and it
follows that

$P_{\ddot{u}}^{(m)}(t)= \sum_{j’\in \mathcal{I}(j)}P_{ij}^{(m’)}(t)$ ,

for any $i’\in \mathcal{I}(i)$ .
By this consistency, we can define a Markovian semi-

group $\{\tilde{P}_{t}(x, \cdot)\}$ on the direct product space $\Pi_{p<\infty}Q_{p}$ by

$\tilde{P}_{t}(x,$ $B_{j}^{(m)})=P_{\ddot{u}}^{(m)}(t)$ ,

where $i$ is taken so that $x\in B_{i}^{(m)}$ .
We have constructed a semigroup $\{\tilde{P}_{t}(x, \cdot)\}$ on the di-

rect product space $\Pi_{p<\infty}Q_{p}$ , whereas we have the follow-
ing.
Proposition 3.1. For any $x_{0}\in S$ and $t\geq 0$ , we have
$\tilde{P}_{t}(x_{0}, S)=1$ .

If we take any Markovian semigroup $\{\mu_{t}\}_{t\geq 0}$ on $R$,
then by this proposition $\{P_{t} :=\mu_{t}*\tilde{P}_{t}\}_{t\geq 0}$ gives a Marko-
vian semigroup on the adele ring $A$ . Let

$X_{t}=(X_{t}^{(\infty)}, X_{t}^{(2)}, X_{t}^{(3)}, \ldots, X_{t}^{(p)}, \ldots)$

be the corresponding Markov process on $A$ .
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4 Semistable processes on the adeles and repre-
sentation of Riemann’s zeta function

We examine the particular case where for every prime
$p$ the sequence $\{a^{(p)}(m)\}_{m\in Z}$ is a geometric sequence :

$a^{(p)}(m)=c_{p}p^{-\alpha_{p}m}$

with some positive numbers $c_{p}$ and $\alpha_{p}$ . Then as is proved
in [Y], the p-th component $x_{t}^{(p)}$ is a semistable process
on $Q_{p}$ satisfying $X_{p^{-\alpha p}t}^{(p)}=pX_{t}^{(p)}$ in law. Let $\tau_{p}$ be the

first exiting time of $x_{t}^{(p)}$ from $pZ_{p}$ :

$\tau_{p}$
$:= \inf\{t>0 : X^{(p)}(t)\not\in pZ_{p}\}$ ,

and for a complex number $s$ , define a random variable
$Y_{s}$ by

$Y_{s}$ $:= \prod_{p<\infty}(1-p^{-\alpha_{p}})^{-1}|X_{\tau_{p}}^{(p)}|_{p}^{\alpha_{p}-s}\cdot$ .

Then we have the following,

Proposition 4.1. If ${\rm Re}(s)>1$ then $Y_{s}$ has a finite ex-
pectation, and $E[Y_{s}]=\zeta(s)$ , where $\zeta$ is Riemann’s zeta
function.

We can apply this proposition with $\alpha_{p}=$ Re(s) to
obtain the following corollary.

Corollary 4.2. For ${\rm Re}(s)>1_{f}$ we have

$\frac{\zeta(s)}{\zeta({\rm Re}(s))}=Eb\prod_{<\infty}|x_{\tau_{p}}^{(p)}|^{-\sqrt{-1}{\rm Im}(s)}]$ ,

$\frac{\zeta(s)}{\zeta(\overline{s})}=\frac{E[\Pi_{p<\infty}|X_{\tau_{p}}^{(p)}|^{-\sqrt{-1}{\rm Im}(s)}]}{E[\Pi_{p<\infty|x_{\tau_{p}}^{(p)}|^{\sqrt{-1}{\rm Im}(s)}]}}$ ,
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where $\overline{s}$ denotes the conjugate complex number of $s$ .
Let $c$ be a constant with $0<c<1$ , and take $\alpha_{p}=$

$-\log_{p}c$ for all primes $p$ . In this case the assumption (3)
is equivalent to

$0< \sum_{p<\infty}q<\infty$ . (4)

For a real number $s>1$ , take %=-log $(1-p^{-s})$ , then
they satisfy (4). Let us take any semistable process $x_{t}^{(\infty)}$

$onletRsatisfyingX_{c}^{(\infty)}f_{x_{t}^{(3)},\ldots,x_{t}^{(p)},..)bethe}=rX_{t}^{(\infty)}for.somer\in x_{t}=(X_{t}^{\infty},$$X_{t}^{(2},MarkovR,and$
process on $A$ as above. Then we can see that $X_{t}$ becomes
a semistable process on $A$ as follows.

Proposition 4.3. Let $\gamma=(r, 2,3, \ldots,p, \ldots)\in A_{f}$ then
it follows that $X_{ct}=\gamma X_{t}$ .

For this semistable process $X_{t}$ , let $\tau$ be the first exiting
time from the set $R\cross\Pi_{p<\infty}Z_{p}$ :

$\tau$ $:= \inf\{t>0$ : $X_{t}\not\in R\cross\prod_{p<\infty}z_{p}\}$ .

Then we have :

Proposition 4.4.

$\zeta(s)=$ exp $E[\tau]^{-1}$ .
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