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1. INTRODUCTION

1.1. Interfaces driven by reaction-diffusion equations. Interfacial phenom-
ena have been studied in terms of reaction-diffusion equations. In particular
the Allen-Cahn equation

(A-C) %"=Au+g(u), t>0, z RN,

where g is a bi-stable reaction term, has been a widely used model to describe
various physical phenonena. Here, bi-stability of g means that it is the minus
of the derivative, g(u) = —W'(u), of a double well potential W{(u) with non-
degenerate wells located at © = ux. When W(u_) # W(u;), a hyperbolic
scaling gives rise to

Ou

i eAu + é g(u), (e > 0 is a scaling parameter)

in which case the interface is driven by the difference of potential values W (u_-)—
W (uy);
V=c,

where V stands for the normal speed of the interface and c is a constant deter-
mined from W, i.e., c x W(uy) — W(u-).

When the two wells have the same depth, then ¢ = 0 and hence the interface
equation above does not give any information on the motion of the interface.
In this case, we apply a parabolic scaling to (A-C) so that it has the following
form;

ou 1
5= Au + gg(u).
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The motion law of the interface for this equaton is the so called “mean curva-
ture flow”, namely,

V=H,

where H stands for the sum of principal curvatures of the interface. Such in-
terface evolutions for reaction-diffusion equations have been established by
many authors (see [2]).

The purpose of this paper is to investigate what happens to these interface
equations when a convection term is added to (A-C).

1.2. Reaction-diffusion with convection. We investigate interfacial phenom-
ena for the following equation;

(RDC) ug + div f(u) = Au+g(u), (z,t) € RN x (0, 00).

This equation is derived as follows.
When a physical quantity u is carried by a flux J with source term g(u), then
the balance equation is expressed as
ou

(BL) 57 +divI=g(v).

If the flux J is represented by a (vector-valued) function f : R — RY and the
gradient of v,

(Flux) J=—uVu+f(u) (u > 0 viscosity),

equation (BL) reduces to (RDC). In diffusive flow fields, the flux f is supposed
to originate from fluid flows, and therefore, should be coupled with Navier-
Stokes equations governing the flow field. We are considering here a simplified
problem without reference to such flow-field equations. From now on, we set
the viscosity equalto 1; =1

To describe the dynamics of (RDC) as t — oo, we perform a hyperbolic
spatio-temporal scaling; (x,t) — (z/e,t/e) which reduces (RDC) to

(1) - ug +div f(u) = eAu +e71g(u),

where ¢ > 0 is a scaling parameter.

Our objective below is to investigate the dynamics of (1) in the smgular limit
e—0.

To consider the singular limit ¢ — 0 means that we are describ-
ing the variation of u over large spatial ranges as time t — oo in
the original system.
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We work throughout under the following hypotheses.

(H1): (i) g € C*(R), g(u.) = 0 at u, =u_,0,uy,
gdu.)<0, ¢(0)>0, g'(us)<0 (bi-stable reaction term).
(i) f € C3(R,R")

Well-posedness of initial value problem: Under the hypothesis
(H1), the problem (1) with an initial condition

(2 u(z,0) = ¢(z) € BCyu(R")
possesses a unique global (in time) solution living in BC2,;(R").

unif

This is proved by a standard way by using abstract theories for
evolution equations (see [1], for example).

2. PLANAR WAVES

First thing to do is to study planar traveling wave solutions. The traveling
wave solution of (1) in the » € SV—!-direction; u(z, t) = U(24.=2) satisfies

3) U"(2) + (s — £ (U(2)) - v) U'(2) + 9(U(2)) = 0,
z € R, (' =d/dz2),
U(xoo) =ux, U(0) =0,
where s is the wave speed to be determined together with the wave profile.
The following result is obtained by a phase plane analysis.

Proposition 2.1 ([3] and [5]). (i) For each direction v € SN~1, there uniquely
exists a wave speed s = s(v) for which the problem (3) has a unique heteroclinic
orbit connecting (u_,0) (at z = —oo) and (u..,0) (at z = +o00).

(ii) The wave speed s(v) depends on v as smooth as the nonlinear terms £'(u) and
g(u) do on u.

(iii) The wave profile Q(z;v) with Q(0;v) = 0 depends on (z,v) as smooth as
the nonlinear terms £'(u) and g(u) do on u, and it is a (strictly) monotone
increasing function of z.

(iv) If £(u) is even and g(u) is odd in u, then Q(z) is an odd function of z and the
wave speed satisfies s(v) = 0.
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An important feature is that the wave speed is orientation (direction) depen-
dent. This anisotropy later gives rise to anisotropic mean curvature flows.

It is interesting to note that the wave speed and the wave profile are related
as follows.

o) LD v L ™ 5@z
+ - oo

Uy —U-

and

_Glu) - Gluy) J2o Qx(2 )’ (Q(z;v)) - vdz
2, Q:(zv)dz J2o Q:(2;v)2d2 :

where G(u) is an anti-derivative of g(u). The first formula looks like a gen-
eralized Rankin-Hugoniot condition for viscous shocks for conservation laws,
while the second expression resembles the wave speed characterization for bi-
stable reaction-diffusion equations, with modification in terms of the entire
wave profile. It is also important to note that s(v) depends not only on the
asymptotic states (which is the case for reation-diffusion equations), but also
on the entire viscous wave profile.

s(v)

Lemma 2.2. In the nonlinear eigenvalue problem (3), if the nonlinearities are given

by

I

—R(u — u)u(u — uy),
with u. <0<uy, R>0,

fu) = -;-uza—kub, a, be RV,

g(u)

then, the wave speed s(v) and wave profile Q(z) are explictly represented as follows.
U_ + Uy 2
s(v) = 1 {a-u-—\/(a-v) +8R}+b-u,

—UpU_ + Usu_e~Dur—u-)z

Q(Z) = )

—U_ + u+e—-D(u+—u_)z

" where D is defined by

\/(a-u)2+8R—a-V
D= . .

The proof is the same as the case without convection term (see [6]). One may
also substitute these functions into (3) to directly verify the lemma.
|
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Generically, we expect that the wave speed s(v) vanishes on a subset in SV-1
which has codimension at least one. However, we have been unable to prove
or disprove this expectation in general case. The set where s(v) vanishes,

P :={veSN!|sv)=0}

is called a set of pinned directions. When the wave speed is given as in Lemma
2.2, then P is generically of codimension at least one. Althourgh this is the case
for the specific cases, we make the following hypothesis.

(H2): The set of pinned directions P has codimension at least one in SV-1.

3. RESULTS

We now give some of main results. There are two cases, one in which (H2)
is valid, and the other where P = SV-1,

3.1. When codim P < 1. We call this case a hyperbolic scaling case.
Theorem 3.1. Under the hypotheses (H1) and (H2), we consider the following Cauchy

problem
us (x, 0) ¢e (x).

There exist two functions u§(z) < Tg(x) and a constant T > 0 such that the following
statement is true: If the initial function satisfies

%(7) < ¢°(z) < (),

then the solution u®(z,t) converges to a limit u%(z,t) = lim,_,ou*(z,t) for almost
all (z,t) € RN x [0, T). The limit function u°(z,t) is a piece-wise constan function,
assuming only two values u_ and .. The bulk regions

Q*(t) := {z € R"; «%(z,t) = us}

are separated by a hypersurface I'(t), and the hypersurface (interface) evolves accord-
ing to the motion law

V = s(v),

where V represents the normal velocity of the interface T'(t), and v is a unit normal
vector on I'(t) pointing into the interior of the bulk region Q*(t).
If we define e-dependent interface I'* (t) by

I“(t) = {x € RY | u°(z,t) = 0},
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then its motion law is governed by

(5) Ve =s5(1°)
N
+e {He(y, t) + Z T K2 (y, t)}
pg=1
+ O(eY),

where v is the unit normal vector of T'*(t) (pointing into the interior of + region),
s(v°) is the wave speed evaluated at v¢, H*(y,t) is the sum of principal curvatures
(mean curvature, for short) of I'*(t) at y € I*(t), (T%,) is a symmetric, positive semi-
definite N x N matrix depending only on (£, g,v*), KP? is a symmetric tensor related
to the second fundamental form of T (t).

We note that T' > 0 in the statement above is determined by the time interval
where V' = s(v) has a smooth soluiton. »

Now, let us give explicit forms to the quantities appearing in the theorem.
For this purpose, we use the travelling wave profile Q = Q(z;v). Let P =
P(z;v) be defined by

P(2) = Q.(z;v) exp (/: [s(v) — £'(Q(7;v) - V] dT) .

We also let I'(t) be represented by 7 as follows.

Y : M x[0,T] 3 (y,t) = (v, t) € T(2),
where M is a reference manifold.

Then, representing by g = (g,;) and h = (hy;) the first and second fundamental
forms of I'(t), respectively, with g=! = (¢*/), we have

0(%)? 0(10)? i, s
Ko = o oy & Mg

T = M;* / .P_Z-Q:L(z) ® L(z) dz,

L) = [ P Tos) - FQENI 7,

M, = / P(2)Q,(2) dz > 0.

It is clear from these formula that T is positive semi-definite. Generically, we
expect that the matrix T is positive definite, not only positive semi-definite. To
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see this, let a € RV, then we have

L[ 1
a™Ta = M / (L) @) dz > 0
—00

Therefore, a" Ta = 0 implies L(z) - a = 0, which in turn implies
(Vus(v) — £(Q(z;v))) -a=0.

This is possible for non-zero a only when the vector V,s(v) — f(Q(z;v)) is

parallel to a constant vector for all z € R. Generically, we do not expect that
this should happen.

On the other hand, when f'(u) = b is a constant vector, then

s(v)=c+b-v
where c is the traveling wave speed of
Ug+cU,+g(U)=0, zeR
Jim U(z)=uz, U(0)= 0.

Therefore, we have V,s(v) — f'(Q(z;v)) = 0, and hence T = 0.

3.2. When s(v) = 0. We have been unable to give general conditions which

imply s(v) = 0 on SV, In this subsection, therefore, we assume the following
conditions are fulfilled.

(H3): f(u) is even and g(u) is odd.

Evidently, Proposition 2.1 says that (H3) implies s(v) =
Theorem 3.2. Under the hypotheses (H1) and (H3), we consider the following prob-

lem;
©) { us Auf — g7 (uf) - Vs + e~2g(u®)

u®(z,0) @ (z).
There exist a class of initial functions ¢° and a constant T > 0 such that the solution
u® of (6) converges to a limit for almost all (z,t) € RN x [0,T;

u’(z,t) = lim u*(z,1).

The limi function u®(z, t) is piecewise constant, taking on two values u_ and u...
The interface T'(t) separating two bulk regions Q*(t) := {x € RY; u%(z,t) = us}
evolves according to the followzng motion law.

7) V= H+ZT K™ = 2(6 + Tpe) K™,

Pg=1 pq=1
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where

O(70)P O(0)? !
P9 — 8

T =M;? / PlQ, L(z) ® L(z) dz,

LM=/Pw@wﬂ®MC

-=00

A@) =~ [r@mw) var,
P(2) =e4¥Q,(2).

As before, T is positive semi-definite, and generically positive definite. It is
also of interest to note that T introduces a kind of Riemannian metric (possibly
degenerate) in the ambient space RV. If T were the N x N identity matrix, then
TK = tr(hg~') would be the sum of principal curvatures of the interface.

Proposition 3.1. The sum T,, K™ is a weighted sum of principal curvatures:

N-1
TpKP =) ',
i=1
where k; (i = 1,2, ..., N — 1) are principal curvatures of I'(t) and
N N-1

: 8(70)* 8(%0)? s
w* = T : g
p,qz=1 ; " oy oy
Therefore, (7) is rewritten as
) V= Zﬂ+wm,

=1

namely, the interface T'(t) is driven by an anisotropic mean curvature flow.

By inspecting the proof of Theorem 3. 2 we obtain the existence result for
equilibrium solutions of (6).

Corollary 3.2. Let I'* be anisotropically minimal in the sense that

0= Z(l +w')s;  on T*.

i=1



116

IfT* is non-degenerate in the sense that an elliptic linear operator L defined on T* does

not have 0-eigenvalue, then there exists a family of equilibirum solutions u®(z) of (6)
for small € > 0 so that

. € _ U4 :cve Q+
lgxg)u(x)—{u_ z€EN_.

The linear operator £ has the following explicit form.
LA =A""A + Ty [V (Vr-A)P)?
+F-Vr.A+G- VA
+ [HD - T, (V)] 4,
where AT is the Laplace-Beltrami operator on I',

N-1
H® =% "(;)?,

i=1

N-1
oy* ., 0A
VA= St

i O
N-1
1) 4 07" isp ik OA
v J'agk:=1 ang" haig oy*’

and F and G are vector fields on I'* to which we do not give explicit forms.
However, we emphasize that £ is the linearization of the right hand side of (7)
around I'*, relative to normal variations of hypersuface.
4. SOME EXAMPLES
4.1. Symmetric nonlinearity. We deal with the following specific nonlinear-
ity;
f(u) = %’u?a eRY, g(u) = —u(u? - 1)

Then we obtain; wave profile : Q(z) = tanh(Dz) and wave speed: s(v) = 0.
Note that the v-dependency of the wave profile is only throught the quantity
D defined by

D= (/& FF8-a)

To describe the interface equation, we need to compute:
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oQ _ Da, z

@ o V/(a-v)? + 8cosh?(Dz)’

P =Q.e* = D (cosh(Dz))~ (o +?

My = / eA@Q?(2)dz = D? / (cosh(Dz))~ T dz

and

o0

MLy = - [ A90.0:8(Q)ds

—00
o0

2 .y
Day2, ztanh(Dz) (cosh(Dz)) (B +9 dz

Via-v)+ 8_oo

2 s w
= Dl ( 1 )f (cosh(Dz))" B+ dz.

Il

V@-v)2+8\a-v+4D

Therefore, by using 4D + a- v = /(a - v)? + 8, we obtain

_ A
T =Goeis

On the other hand, a simple computation yields

1
ququ = -232—-;—]":8. . V[‘(t)D,

and the interface equation is given by

® V = Hy,t) +a- Vg (Arctan(\/iD))

V2

Here D > 0in Q(z) = tanh (Dz) means “steepness” of the wave profile, and
(8) says that the tangential variation of the “steepness”
Arctan (v2D)
V2

of the wave profile is converted to the normal speed of the interface in the
singular limit. At a formal level, this kind of observation was first given in [4].
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As before, the second term in the right hand side of (8) T,, K™ is rewritten
and (8) reduces to

©) V=Y +um,

=1

e ,,)2+82( ) (ge)#

In other words, (9) is interpreted as a weighted mean curvature flow. Note that
w* in (9) is 0 when a is parallel to v.

Although the matrix T originates from the first order differential operator
div f, it exhibits a curvature effect (a second order differential operator) in the
singular limit.

where
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