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1 Introduction
We consider a Ginzburg-Landau functional of the superconductivity in a thin film given
by

$E(\psi)$ $:= \int_{D}\{\frac{1}{2}|(\nabla-iA_{0})\psi|^{2}+\frac{\kappa^{2}}{4}(1-|\psi|^{2})^{2}\}a(x, y)dxdy$, (1.1)

where $D$ is a 2-dimansional domain, $\psi$ is the complex valued order parameter describing
a macroscopic superconducting state, $\kappa$ is the Ginzburg-Landu parameter, $a(x, y)$ is a
positive function describing the variable thickness of the film and $A_{0}$ is a vector potential
for an applied magnetic field. The above energy can be reduced from the full Ginzburg-
Landau energy in a thin domain

$\Omega(\epsilon)=\{(x, y, z)\in \mathbb{R}^{3} : (x, y)\in D, 0<z<\epsilon a(x, y)\}$ ,

as $\epsilonarrow 0$ . Mathematical justification for the reduction is found in [2], [7] and [8].
Throughout the paper we assume

$A_{0}=h(0, x)$ , $D:=\{(x, y):0<x<L_{1},0<y<L_{2}\}$ ,

and periodic boundary conditions for $\psi$ in y-direction. Thus we also assume $a(x, y)$ is
periodic in $y$ .

By the change of variables and parameters such as

$x=L_{1}x’$ , $y=(L_{2}/2\pi)y’$ , $h=(2\pi/L_{1}L_{2})h’$ , $\lambda$ $:=\kappa^{2}L_{1}^{2}$ , $d:=2\pi L_{1}/L_{2}$ ,
$E(\psi)=E’(\psi)/d$ , $a’(x’, y’)=a(L_{1}x’, (L_{2}/2\pi)y’)$

and dropping the primes, we obtain the non-dimensional form

$E( \psi);=\int_{0}^{2\pi}dy\int_{0}^{1}\{\frac{1}{2}|\psi_{x}|^{2}+\frac{d^{2}}{2}|(\partial/\partial y-ihx)\psi|^{2}+\frac{\lambda}{4}(1-|\psi|^{2})^{2}\}a(x, y)dx$ . (1.2)

We extend the domain of $\psi\cdot(x, y)$ and $a(x, y)$ over $(0,1)xR$ so that $\psi(\cdot, y+2\pi)=\psi(\cdot, y)$

and $a(\cdot, y+2\pi)=a(\cdot, y)(y\in R)$ are satisfied.
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In this article we are dealing with the gradient equation for (1.2) given by

$\{\begin{array}{ll}\psi_{t}=\frac{1}{a}D_{A}(aD_{A}\psi)+\lambda(1-|\psi|^{2}) \psi,(x,y,t)\in(0 ,1)\cross \mathbb{R}/2\pi\cross(0, \infty),\psi_{x}(0, y, t)=\psi_{x}(1,y,t)=0, (y,t)\in \mathbb{R}/2\pi\cross(0,\infty),\psi(x, y, 0)=\psi_{0}(x, y,0), (x, )\in[0,1]\cross R/2\pi,\end{array}$ (13)

and discuss a bifurcation of non-trivial solutions around some critical values of the pa-
rameters together with the stability of the bifurcating solutions, where we put

$D_{A}:=(\partial/\partial x, d(\partial/\partial y-ihx))$ .

Note that $\mathbb{C}$ is always identified with $\mathbb{R}^{2}$ . Hence solutions of (1.3) generate a smooth
semfflow in the space $X_{1}$ $:=H^{1}((0,1)\cross \mathbb{R}/2\pi;\mathbb{C})$ . As for the constant case of $a(x,y)$ ,
the work of [3] shows that in the parameter space $(h, \lambda)$ there are bifurcation curve
$C_{k}$ : $\lambda=\sigma_{k}(h)$ where a non-trivial solution bifurcates from the trivial solution $\psi=0$ .
Such a bifurcating solution can be expressed as

$\psi=\epsilon w^{(k)}(x)\exp(iky)+O(\epsilon)$

near the bifurcation curve for each $k\geq 0,$ $k\in \mathbb{Z}$ . Here $w^{(k)}$ is a positive eigenfunction of
the eigenvalue problem

$-w_{xx}+d^{2}(hx-k)^{2}w=\sigma w$ , $w_{x}(0)=w_{x}(1)=0$ ,

corresponding to the first eigenvalue $\sigma=\sigma_{k}(h)$ . Then any two curves $C_{k}$ and $C_{m}(0\leq$

$k<m)$ intersect at $(h_{c}, \lambda_{c})$ $:=(k+m, \sigma_{k}(k+m))$ . Therefore a bifurcation analysis in
a neighborhood of $(h_{c}, \lambda_{c})$ tells that the existence of a mixed mode solution, which is
written as

$\psi=\alpha w^{(k)}(x)\exp(iky)+\beta w^{(m)}(x)\exp(imy)+O(\epsilon^{2})$ , $|\alpha|,$ $|\beta|=O(\epsilon)$ , (1.4)

for $(h, \lambda)=(h_{c}+\xi, \lambda_{c}+\eta),$ $\xi,$ $\eta=O(\epsilon^{2})$ . Moreover, there is a parameter region in which
this mixed mode solution allows a vortex structure in the sense that it possesses isolated
zeros of $\psi$ (see [3]).

The purpose of this article is to drive a normal form of the reduced equation on
the center manifold in the presence of the nonconstant $a(x, y)$ . Here we assume the
heterogeneity of $a(x, y)$ is small so that it can be regarded as a perturbation to the
homogeneous one near $(h_{c}, \lambda_{c})$ . Thus we will be able to investigate how the bifurcation
structure near the critical point of $(h_{c}, \lambda_{c})$ is affected by the presence of a nonconstant
$a(x, y)$ and the stability of bifurcating solutions.
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2Reduction of the flow on the center manifold
We recall the following property of the bifurcation curve $C_{k}$ given by [3]:

$\frac{d\sigma_{0}}{dh}>0$ $(h>0)$ ,

and for $k\geq 1$ ,
$\frac{d\sigma_{k}}{dh}<0(h\in(0, k])$ .

Thus for $h>0,$ $C_{0}$ and $C_{k}(k\geq 1)$ first Intersect at $(h, \lambda)=(k, \sigma_{0}(k))$ transversally.
Moreover, we can prove the next lemma by the induction argument:

Lemma 2.1 Suppose that for any $k,$ $m$ with $0\leq k<m$, bounded by a positive number
$h_{M}$ , the two curues $C_{k}$ and $C_{m}$ intersect only at $h=k+m$ in $h\in[0, h_{M}]$ . Let $N$ be the
maximal integer less than equal to $h_{M}$ . Then at $h=2n-1(1\leq 2n-1<N)$

$\sigma_{n-1}=\sigma_{n}<\sigma_{n-2}=\sigma_{n+1}<\cdots<\sigma_{1}=\sigma_{2n-2}<\sigma_{2n}<\cdots<\sigma_{N}$,

while at $h=2n(2\leq 2n<N)$

$\sigma_{n}<\sigma_{n-1}=\sigma_{n+1}<\sigma_{n-2}=\sigma_{n+2}<\cdots<\sigma_{0}=\sigma_{2n}<\sigma_{2n+1}<\cdots<\sigma_{N}$

holds.

This lemma tells that under the assumption of the lemma only the critical points of
$C_{n-1}\cap C_{n}(n=1, \ldots, (N+1)/2)$ allow stable bifurcating solutions if we apply the local
bifurcation theory near the critical points. In other words, in a neighborhood of the other
critical points we are not able to obtain a stable solution by the local bifurcation theory.

Next we specify the perturbation so that $a(x, y)$ is given by

$a(x,y)=(1+\nu_{1}p(x))(1+\nu_{2}q(y))$ , $|\nu_{j}|=O(\epsilon^{2})(j=1,2)$ , $q(-y)=q(y)$ . (2.1)

where $\epsilon$ is as in (1.4). Then

$\frac{\nabla a}{a}=(\nu_{1}p_{x}, \nu_{2}q_{y})+O(|(\nu_{1}, \nu_{2})|^{2})$.

Set
$\lambda_{k+m}$ $:=\sigma_{k}(k+m)(=\sigma_{m}(k+m))$ , (2.2)
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and for $h=k+m$ define

$a_{1}$
$:=2 \pi\int_{0}^{1}(w^{(k)})^{2}xdx$ , $a_{2}$ $:=2 \pi\int_{0}^{1}(w^{(m)})^{2}xdx=1-a_{1}$ ,

$b_{1}$ $:=2 \pi\int_{0}^{1}(w^{(k)})^{2}x^{2}dx$, $b_{2}$ $:=2 \pi\int_{0}^{1}(w^{(m)})^{2}x^{2}dx=b_{1}-2a_{1}+1$ ,

$A_{1}$ $:=\{-2ka_{1}+2(k+m)b_{1}\}d^{2}$ , $A_{2}$ $:=\{-2ma_{2}+2(k+m)b_{2}\}d^{2}$ ,

$C$ $:=2 \pi\lambda_{k+m}\int_{0}^{1}(w^{\langle k)})^{4}dx=2\pi\lambda_{k+m}\int_{0}^{1}(w^{(m)})^{4}dx$ ,
(23)

$D:=2 \pi\lambda_{k+m}\int_{0}^{1}(w^{(k)}w^{(m)})^{2}dx$ ,

$\gamma_{1}$
$:=2 \pi\int_{0}^{1}p_{x}\cdot w_{x}^{(k)}w^{(k)}dx$ , $\tilde{\gamma}_{1}$ $:=2 \pi\int_{0}^{1}p_{x}w_{x}^{(m)}w^{(m)}dx$ ,

$\gamma_{2}$
$:= \frac{m-k}{2}\int_{0}^{1}w^{(k)}w^{(m)}dx\int_{0}^{2\pi}q_{y}$ sin $(m-k)ydy$

Note that at $h=k+m,$ $w^{(m)}(x)=w^{(k)}(1-x)$ holds ([3]).
Denote

$\langle u, v\rangle$ $:= \int_{0}^{1}dx\int_{0}^{2\pi}u(x, y)\overline{v(x,y)}dy$,

and
$\varphi_{k}$

$:=w^{(k)}(x)\exp(iky)$ $(k=0,1,2, \ldots)$ , $\Vert\varphi_{k}\Vert_{L^{2}}=1$ .
We decompose a function of $X_{1}$ as

$\psi=z_{0}\varphi_{k}+z_{1}\varphi_{m}+\hat{\psi}$,

where $\hat{\psi}$ is orthogonal to $\varphi_{k}$ and $\varphi_{m}$ , that is,

$(\hat{\psi}, \varphi_{k}\rangle=\langle\hat{\psi}, \varphi_{m})=0$.

Then we can naturally define the projection $Q:\psirightarrow\hat{\psi}=Q\psi$ .
Applying the center manifold theorem at $h=k+m$ to the equation (1.3), we obtain

the following proposition:

Proposition 2.2 Let $0\leq k<m$ . Assume that only the two curves $C_{k}$ and $C_{m}$ intersect
at $(h_{c}, \lambda_{c})$ $:=(k+m, \sigma_{k}(k+m))$ . Let $\xi$ $:=h-h_{c}$ and $\eta$

$:=\lambda-\lambda_{c}$ . Then there enist a
neighborhood

$\mathcal{U}$ $:=\{(z_{0}, z_{1},\xi,\eta, \nu_{1}, \nu_{2},\hat{\psi}):|(z_{0}, z_{1}, \xi,\eta, \nu_{1}, \nu_{2})|<\delta_{1}, \Vert\hat{\psi}\Vert_{X_{1}}<\delta_{2}\}$
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and a smooth map $K(z_{0}, z_{1}, \xi, \eta, \nu_{1}, \nu_{1})$ : $\mathbb{C}^{2}\cross \mathbb{R}^{4}arrow QX_{1}$ such that the graph of $K$ is
contained in $\mathcal{U}$ and the semiflow genemted by solutions $\psi(\cdot, \cdot, t)=z_{0}(t)\varphi_{k}+z_{1}(t)\varphi_{m}+$

$\hat{\psi}(\cdot, \cdot, t)$ to (1.3) can be reduced on the manifold, that is, any bounded trajectory contained
in $\mathcal{U}$ lies in the manifold. Moreover, by scaling

$z_{0},$ $z_{1}=O(\epsilon)$ , $\xi,$
$\eta,$ $\nu_{1},$

$\nu_{2}=O(\epsilon^{2})$ ,

the flow on the manifold is given by the system of ordinary differential equations:

$\{\begin{array}{l}\dot{z}_{0}=\{-A_{1}\xi+\eta-Cz_{0}^{2}-2Dz_{1}^{2}\}z_{0}+\nu_{1}\gamma_{1}z_{0}-\nu_{2}\gamma_{2}z_{1}+R_{0}(z_{0}, z_{1}, \xi,\eta)\dot{z}_{1}=\{-A_{2}\xi+\eta-2Dz_{0}^{2}-Cz_{1}^{2}\}z_{1}+\nu_{1}\tilde{\gamma}_{1}z_{1}-\nu_{2}\gamma_{2}z_{0}+R_{1}(z_{0}, z_{1},\xi, \eta)\end{array}$ (2.4)

wheoe $R_{j}=O(\epsilon^{4}),j=0,1$ .

The next corollary is proved by the attractivity of the manifold and the invariant
foliation along the manifold (see [6], [5] and [4]).

Corollary 2.3 For $k=0,m=1$ , a non-degenerate stable (resp. an unstable) equilibrium
of (2.4) for sufficiently small $\epsilon$ gives a stable (resp. an unstable) equilibrium solution to
(1.3) by $\psi=z_{0}\varphi_{k}+z_{1}\varphi_{m}+K(z_{0}, z_{1},\xi, \eta, \nu_{1}, \nu_{2})$ . If the assumption of Lemma 2.1 hold8,
then for any $(k, m)=(n-1, n)(n\leq(N+1)/2)$ the same assertion holds.

We remark that a non-degenerate equilibrium is meant by a solution at wfich the lin-
earized operator has a simple zero eigenvalue corresponding to the invariance for the
transformation $\psirightarrow e^{ic}\psi$ and the other eigenvalues being away from zero.
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