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Bifurcation Analysis for a Ginzburg-Landau equation
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1 Introduction

We consider a Ginzburg-Landau functional of the superconductivity in a thin film given
by

W)= [ {%Kv ~ iAol + (1 - |w|2)2} a(z, y)dzdy, (L.1)

where D is a 2-dimansional domain, 9 is the complex valued order parameter describing
a macroscopic superconducting state, x is the Ginzburg-Landu parameter, a(z,y) is a
positive function describing the variable thickness of the film and Ay is a vector potential
for an applied magnetic field. The above energy can be reduced from the full Ginzburg-
Landau energy in a thin domain

as € — 0. Mathematical justification for the reduction is found in [2], [7] and [8].
Throughout the paper we assume

“Ap=h(0,z), D:={(z,y):0<z<L;,0<y< Ly},
and periodic boundary conditions for ¢ in y-direction. Thus we also assume a(z,y) is

periodic in y.
By the change of variables and parameters such as

z=Li, y=(Laf2r)y, h=(2r/LiL)}, I:=r>L3, d:=2rL,/L,,
E(p)=FE@®)/d, d(,y)=a(la,(Ly/2m)y)

and dropping the primes, we obtain the non-dimensional form
: o 1o e & , 2, A 2\2
Ew)= [ dy [ {308+ 1010 - ihayul + 30 - WP atenide. (12

We extend the domain of ¥(z,y) and a(x,y) over (0,1) x R so that ¥(-,y + 27) = ¥(-,y)
and a(-,y + 27) = a(-,y) (y € R) are satisfied.
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In this article we are dealing with the gradient equation for (1.2) given by

’

Yo = ~Da(Dat) + (1~ [9)9,
(@.3:1) € (0,1) x R/27 x (0,00),

. . . (1.3)
¥z(0,9,t) = ¥x(1,9,t) =0, (y,t) € R/2m x (0, 00),

| %(@,9,0) = %o(&,u,0), (a,y) € [0,1] x R/2m,

and discuss a bifurcation of non-trivial solutions around some critical values of the pa-
rameters together with the stability of the bifurcating solutions, where we put

Dy := (8/0x,d(0/0y — ihx)).

Note that C is always identified with R2. Hence solutions of (1.3) generate a smooth
semiflow in the space X; := H'((0,1) x R/2m;C). As for the constant case of a(z,y),
the work of [3] shows that in the parameter space (h,)) there are bifurcation curve
Ck : A = ox(h) where a non-trivial solution bifurcates from the trivial solution ¢ = 0.
Such a bifurcating solution can be expressed as

¥ = ew™(z) exp(iky) + O(e)

near the bifurcation curve for each k > 0,k € z. Here w™® is a positive eigenfunction of
the eigenvalue problem

~Weq + d2(hz — k)*w = ow, wz(0) = w,(1) =0,

corresponding to the first eigenvalue o = o%(h). Then any two curves Cj and C,, (0 <
k < m) intersect at (hc, A;) := (k + m,ox(k + m)). Therefore a bifurcation analysis in
a neighborhood of (h, A;) tells that the existence of a mixed mode solution, which is
written as

¥ = aw®(z) exp(iky) + fw™ (z) exp(imy) + O(e?), |al,|8] = O(e), (1.4)

for (h,A) = (he + &, Xc + 1), &, 1 = O(e?). Moreover, there is a parameter region in which
this mixed mode solution allows a vortex structure in the sense that it possesses isolated
zeros of ¢ (see [3]).

The purpose of this article is to drive a normal form of the reduced equation on
the center manifold in the presence of the nonconstant a(zr,y). Here we assume the
heterogeneity of a{(z,y) is small so that it can be regarded as a perturbation to the
homogeneous one near (h¢, A;). Thus we will be able to investigate how the bifurcation
structure near the critical point of (h., A.) is affected by the presence of a nonconstant
a(z,y) and the stability of bifurcating solutions.
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2 Reduction of the low on the center manifold

We recall the following property of the bifurcation curve Cj given by [3]:

dO’o
ah >0 (h > 0),
and for k > 1, 4
Ok
ah <0 (he (O,k]).

Thus for h > 0, Cp and Cj (k > 1) first intersect at (kh,A) = (k,09(k)) transversally.
Moreover, we can prove the next lemma by the induction argument:

Lemma 2.1 Suppose that for any k,m with 0 < k < m, bounded by a positive number
hu, the two curves Cy and Cp, intersect only at h =k +m in h € [0,hpr]. Let N be the
mazimal integer less than equal to hyy. Thenat h=2n—-1(1<2n—-1< N)

On-1=0n < Op-g = Ont1 < '+ < 0 = Ogp_g < Oz < - -+ < ON,
while at h =2n (2 < 2n < N)
On < Op-1 = 0Ont1 < Op—2=0p42<::'<00=02 <0241 < <ON

holds.

This lemma tells that under the assumption of the lemma only the critical points of

Cp1NCp (n=1,...,(N +1)/2) allow stable bifurcating solutions if we apply the local

bifurcation theory near the critical points. In other words, in a neighborhood of the other

critical points we are not able to obtain a stable solution by the local bifurcation theory.
Next we specify the perturbation so that a(z,y) is given by

a(z,y) = (1 +vp(@))(1 +v29(¥)), Iyl =0(*) (G=1,2), a(-y)=4q@). (21)
where ¢ is as in (1.4). Then |

\Y
_;f = (1Pz, 12gqy) + O(| (11, va)|?).

Set
Aksm = Ox(k +m) (= om(k +m)), - (2.2)
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and for h =k + mvdeﬁne

1 1
ap = 27r/ (w*)2zde, ap := 27r/ (w™)2zdz =1 — a;,
0 0

1 1
by = 271'/ v('w(k))2:1:2d$, by := 21‘!‘/ (w(m))2$2d$ =b; — 2a; + 1,
0 0
Ay = {-2ka; + 2(k + m)b1}d?, Ay :={-2ma; + 2(k + m)b,}d?,

1 1
C =21 Ak4m / (w®)dz = 2 Aeym / (w™)4dz,
0 0 (2.3)

1
D := 21 \kim / (w®w™)2dz,
0
1 1
M =27 / prwPuw®de, 5, :=2n / prw™w™dz,
0 0

m—k 1 ' 27
V2= / w®w™ dg / gy sin (m — k)y dy
0 0

Note that at b = k + m, w™(z) = w®(1 — z) holds ([3]).
Denote

(u,v) :=/0 dxA"u(x,y)v(z,y)dy,

~and .
or = w®(z)exp(iky) (k=0,1,2,...), [exllez =1.
We decompose a function of X as
¥ = 200k + 210m + U,

where 1,7) is orthogonal to ¢, and ¢,,, that is,

('&’ k) = <¢,‘Pm) = 0.

Then we can naturally define the projection Q : 9 — ¥ = Q.
Applying the center manifold theorem at h = k + m to the equation (1.3), we obtain
the following proposition:

Proposition 2.2 Let 0 < k < m. Assume that only the two curves Cy and C,, intersect
at (hey Ae) = (k + myox(k +m)). Let § :==h — h, and  := XA — A\,. Then there exist a
neighborhood

U:= {(anzlsfanthV%‘&) : |(Zo’z1a§’77’ VlaV2)| < 61: ”'d;ll)h < 62}
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and a smooth map K(zp,z1,&,m,11,11) : € X R* — QX such that the graph of K is
contained in U and the semiflow generated by solutions (-, -,t) = 2o(t)pr + 21(t)om +
1/)( ,+»t) to (1.3) can be reduced on the manifold, that is, any bounded trajectory contained
in U lies in the manifold. Moreover, by scaling

29,21 = O(e), §,mv, Ve = 0(52),

the flow on the manifold is given by the system of ordinary differential equations:

{i’o = {—Ai€ +n— C22 —2D=z3}2 + imzo — vav221 + Ro(20, 21,€,7), (2.4)

z = {—Azf +n - 2ng - sz}h + i1z — vavezo + R1(Zo, 21,5,71),

where R; = O(et), j =0,1.

The next corollary is proved by the attractivity of the manifold and the invariant
foliation along the manifold (see [6], [5] and [4]).

Corollary 2.3 For k =0, m = 1, a non-degenerate stable (resp. an unstable) equilibrium
of (2.4) for sufficiently small € gives a stable (resp. an unstable) equilibrium solution to
(1.3) by ¥ = 2000k + 21m + K (20, 21,€,m, 11, 12). If the assumption of Lemma 2.1 holds,
then for any (k,m) = (n — 1,n) (n < (N + 1)/2) the same assertion holds.

We remark that a non-degenerate equilibrium is meant by a solution at which the lin-
earized operator has & simple zero eigenvalue corresponding to the invariance for the
transformation ¢ — e*1) and the other eigenvalues being away from zero.
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