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1 Introduction and Main Result
There are several results on the studies of solutions to the following equation with a

balanced bistable nonlinearity:

$\epsilon^{2}\Delta u+h(x)^{2}(a(x)^{2}-u^{2})u=0$, $x\in\Omega$ , $\frac{\partial u}{\partial n}=0$ , $x\in\partial\Omega$ ,

where $\Omega$ is a bounded domain in $R^{n},$ $n\geq 1$ with smooth boundary, $\epsilon>0$ is a parameter,
and $h(x)$ and $a(x)$ are positive functions on $\Omega$ . Solutions $u$ of the boundary value
problem above is corresponding to critical points of the functional

$J(u)= \frac{1}{2}\epsilon^{2}\int_{\Omega}|\nabla u(x)|^{2}dx+\frac{1}{4}\int_{\Omega}h(x)^{2}(a(x)^{2}-u(x)^{2})^{2}dx$

on $H^{1}(\Omega)$ . The global minimizer $u(x)$ of $J(u)$ on $H^{1}(\Omega)$ has an asymptotic behavior
$u(x)arrow a(x)$ (or $u(x)arrow-a(x)$ ) as $\epsilonarrow 0$ . In general, to find anontrivial local
minimizer $u(x)$ with inner transition layers is adelicate problem.

If the dimension is one, there are several results. Let $\Omega=(0,1)$ . When $h(x)\equiv 1$ ,
Nakashima [8] proved by using adelicate construction of asubsolution and asuper-
solution that if $a\in C^{2}[0,1]$ takes anondegenerate local minimum at $x_{0}\in(0,1)$ , then
there exists astable solution which has the asymptotic behavior $u_{\epsilon}(x)\sim-a(x)$ on
$(0, x_{0})$ and $u_{\epsilon}(x)\sim a(x)$ on $(x_{0},1)$ as $\epsilonarrow 0$ . Later, $Matsu\mathbb{Z}awa[7]$ extended her re-
sult in adegenerate setting. On the other hand, when $a(x)\equiv 1$ , Nakashima [9] also
constructed astable solutlon which has $\bm{t}$ Inner trtsition layer near alocal minimal
point of $h(x)\bm{t}d$ studied the location of inner transition layers of solutions in details.
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Furthermore, Nakashima-Tanaka [10] constructed solutions with multi-transition layers
systematically by using variational methods.

For the studies in the higher dimensional case and $a(x)=1$ , we refer to [3], [6], [11],
[12]. In these previous results, the effect of domain geometry or the effect of $h(x)$ have
been studied for the existence of stable solutions with inner transition layers. However,
it seems that there exist few studies on the effect of $a(x)$ to this problem in the higher
dimensional case.

In this paper, we consider the special case $a(x)=\chi_{D}(x)$ with a subdomain $D\subset\Omega$

and show existence of stable solutions with inner transition layers to

$\epsilon^{2}\Delta u+(a(x)^{2}-u^{2})u=0$, $x\in\Omega$ , $\frac{\partial u}{\partial n}=0$ , $x\in\partial\Omega$ .
Assume that $D=D_{1}\cup.D_{2},\overline{D_{1}}n\varpi_{2}^{-}=\emptyset,$ $\overline{\partial D\cap\Omega}\subset\Omega$ and $\partial D_{1},$ $\partial D_{2}$ belong to the $C^{2}$

class. Then we have the following.

Theorem 1. For sufficiently small $\epsilon>0$ , there exists a local minimizer $u_{\epsilon}$ of $J(u)$ on
$H^{1}(\Omega)$ which has the following asymptotic behavior: $u_{\epsilon}$ converges to 1 uniforrmly on any
compact subset of $D_{1}$ , converges to $-1$ uniformly on any compa$ct$ subset of $D_{2}$ , and
converges to $0$ uniformly on any compact subset of $\Omega\backslash (\overline{D})$ .
Remark 1. The same result holds under the homogeneous Dirichlet boundary condi-
tion.
Remark 2. When $D$ consists of several components, by choosing $D_{1}$ and $D_{2}$ suitably,
Theorem says the existence of local minimizers which have different asymptotic behav-
ior, i.e. are close to 1 on some components and are close to-l on other components.
Remark 3. Although we think the smoothness of $\partial D_{i},$ $i=1,2$, is not necessary, we
need at least $C^{2}$ regularity from a technical reason.

2 Useful Lemmas
We recall two useful lemmas.

Lemma 1 (Asymptotic behavior). Let $D=\{x\in R^{n}||x|<\delta\},$ $g\in C^{1}(R^{1})$ , and
there exists a constant $T>0such$ that $g(t)>0(t<0),$ $g(T)=0,g(t)<0(t>T)$ .
Suppose that $G(t)= \int_{0}^{t}g(s)ds$ has a unique maximum at $t=T$. Then, for a minimizer
$u_{\epsilon}\in H_{0}^{1}(D)$ of

$\inf\{J_{\epsilon}(u;D)|u\in H_{0}^{1}(D)\}$ ,

where
$J_{\epsilon}(u;D)= \frac{\epsilon^{2}}{2}\int_{D}|\nabla u|^{2}dx-\int_{D}G(u)dx$ ,

we have $0\leq u_{e}(x)\leq T,$ $(x\in D),u_{\epsilon}(x)=u_{\epsilon}(|x|)$ . Moreover, $u_{e}(x)$ converges to $T$

uniformly on any compact subset $K\subset D$ .
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Next, let $g_{1}(x, t),$ $g_{2}(x, t)$ be $C^{1}$-functions with respect to $t$ and let

$G_{i}(x, t)= \int_{0}^{t}g_{i}(x, s)ds,$ $i=1,2$ .

For $\eta_{i}\in H^{1}(D),$ $i=1,2$ , consider the minimizing problem:

$\inf\{J_{i}(u;D)|u-\eta_{i}\in H_{0}^{1}(D)\}$ , $J_{1}(u;D)= \frac{\epsilon^{2}}{2}\int_{D}|\nabla u|^{2}dx-\int_{D}G_{i}(x, u)dx$.

Lemma 2 (Energy comparison). $u_{i}\in H^{1}(D),i=1,2$ be minimizers to the mini-

mization problem above. $A_{8}sume$ that there exit constants $m<M$ such that

$(a)m\leq u_{i}(x)\leq M$ for $i=1,2,x\in D$ .

$(b)g_{1}(x,t)\geq g_{2}(x,t)$ for $x\in D,$ $t\in[m, M]$ .

$(c)\eta_{1}(x)\geq\eta_{2}(x)$ for $x\in D$ .

Suppose $\eta_{j}\in C(D),$ $\eta_{1}(x)\not\equiv\eta_{2}(x)$ on $\partial D$ . Then, we have $u_{1}(x)\geq u_{2}(x),$ $x\in D$ .

Although the proofs of these lemmas are known (see [3], [14]), we present it for

reader’s convenience.
Proof of Lemma 1. $u_{\epsilon}$ satisfies

$\{\begin{array}{ll}-\epsilon^{2}\Delta u=g(u), for x\in D=\{x||x|<\delta\}),u=0, on \partial D. \end{array}$

By the maximum principle and the condition on $g(t)$ , we have $0\leq u_{\epsilon}(x)\leq T,$ $x\in D$ .
Gidas-Ni-Nirenberg’s theorem implies

$u_{\epsilon}(x)=u(|x|),$ $u_{\epsilon}’(r)<0,$ $(r=|x|>0)$ .

For sufficiently small $\epsilon>0$ , define $w_{\epsilon}\in H_{0}^{1}(D)$ as follows:

$w_{\epsilon}(x)=\{\begin{array}{ll}T, (|x|\leq\delta-\epsilon)-\frac{T}{\epsilon}(|x|-\delta), (\delta-\epsilon<|x|\leq\delta).\end{array}$

Since $u_{\epsilon}$ is a minimizer,

$- \int_{D}G(u_{\epsilon})dx\leq J_{\epsilon}(u_{\epsilon};D)\leq J_{e}(w_{\epsilon};D)$ .

There exists a constant $C_{0}$ such that

$J(w_{\epsilon};D) \leq\frac{\epsilon^{2}}{2}\int_{\{x|\delta-\epsilon<|x|\leq\delta\}}|\nabla w_{\epsilon}|^{2}dx-G(T)|B(0, \delta)|+2\max_{0\leq t\leq T}|G(t)||\{x|\delta-\epsilon<|x|\leq\delta\}|$

$\leq-G(T)|D|+C_{0}\epsilon$ .
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where $|A|$ denotes the Lebesgue measure of a set $A\subset R^{n}$ . Thus

$\int_{D}(G(T)-G(u_{\epsilon}))dx\leq C_{0}\epsilon$.

Since $G(t)$ takes its maximum only at $t=T$, we have $G(T)-G(u_{\epsilon})\geq 0$ on $D$ .
Take arbitrary $r_{0}\in(0, \delta)$ and fix. For $\sigma\in(0, \delta-r_{0})$ ,

$\int_{D}(G(T)-G(u_{\epsilon}))dx\geq\int_{\{ro\leq|x|\leq ro+\sigma\}}(G(T)-G(u_{\epsilon})))dx$

$=(G(T)-G(u_{\epsilon}(r_{\epsilon})))|\{x|r_{0}\leq|x|\leq r_{0}+\sigma\}|$

holds for some $r_{\epsilon}\in(r_{0}, r_{0}+\sigma)$ .
Because the measure 1 $\{x|r_{0}\leq|x|\leq r_{0}+\sigma\}|$ is positive and independent of $\epsilon$ , as

$\epsilonarrow 0$ we have
$0\leq G(T)-G(u_{\epsilon}(r_{e}))\leq C_{1}\epsilon$ .

Since $G(t)$ takes its maximum only at $t=T$, we obtain $u_{e}(r_{\epsilon})arrow T$ as $\epsilonarrow 0$ . Noting
$u_{\epsilon}(x)=u_{\epsilon}(|x|)$ and $u_{\epsilon}’(r)<0$ , we see

$u_{\epsilon}(r_{\epsilon})\leq u_{\epsilon}(r)=u_{\epsilon}(|x|)\leq T$ , $r=|x|\leq r_{0}\leq r_{\epsilon}$ .

In particular, it follows

$\{x||x|\leq r_{0}\}\max|u_{\epsilon}(x)-T|arrow 0$ as $\epsilonarrow 0$ .

By using a compactness argument, $u_{\epsilon}(x)$ converges to $T$ uniformly on any compact
subset of $D$ .
Proof of Lemma 2. Let $M=\{x\in D|u_{2}(x)>u_{1}(x)\}$ . Assume $M\neq\emptyset$ . Then $D\backslash M$

contains nonempty open set. Put $\phi(x)=(u_{2}-u_{1})^{+}$ . Then $\phi\in H_{0}^{1}(D),$ $\phi\not\equiv 0$ on $D$ ,

and $\phi(x)=0$ on $D\backslash M$ . Since $u_{1},$ $u_{2}$ are minimizers respectively,

$0\leq J_{1}(u_{1}+\phi)-J_{1}(u_{1})$

$= \frac{\epsilon^{2}}{2}\int_{M}(|\nabla(u_{1}+\phi)|^{2}-|\nabla u_{1}|^{2})dx-\int_{M}\int_{u_{1}(x)}^{u_{1}(x)+\phi(x)}g_{1}(x, s)dsdx$

$\leq\frac{\epsilon^{2}}{2}\int_{M}(|\nabla(u_{1}+\phi)|^{2}-|\nabla u_{1}|^{2})dx-\int_{M}\int_{u_{1}(x)}^{u_{1}(x)+\phi(x)}g_{2}(x, s)dsdx$

$=J_{2}(u_{2})-J_{2}(u_{2}-\phi)\leq 0$ .
This means that $u_{1}+\phi$ is also a minimizer of $J_{1}$ , and hence

$-\epsilon^{2}\Delta(u_{1}+\phi)=g_{1}(x, u_{1}+\phi)$ .

Therefore, there exists a bounded function $c(x)$ such that

$-\epsilon^{2}\Delta\phi=g_{1}(x, u_{1}+\phi)-g_{1}(x, u_{1})=c(x)\phi$.

The maximum principle or the unique continuation property leads a contradiction.
Thus we can conclude $M=\emptyset$ .
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3 Proof of Theorem 1
In this section we use the notation

$J_{\epsilon}(u;G)= \frac{1}{2}\epsilon^{2}\int_{G}|\nabla u(x)|^{2}dx+\frac{1}{4}\int_{G}(a(x)^{2}-u(x)^{2})^{2}dx$

for $u\in H^{1}(G)$ with $G\subset\Omega$ . Let $v$ , be a positive global minimizer of

$\inf_{v\in H_{0}^{1}(D_{1})}J_{e}(v;D_{1})$ .

Existence $of_{-}$ follows &om the standard argument. Moreover, by the maximum prin-
ciple we have $0<\underline{v}_{\epsilon}(x)<i$ on $D_{1}$ . By Lemma 1, $\underline{v}_{\epsilon}(x)$ converges to 1 uniformly on
any compact subset $K\subset D_{1}$ . Let $w$ be a negative global minimizer of

$infJ_{\epsilon}(v;\Omega\backslash T_{1})$ .
$v\in H_{0}^{1}(\Omega\backslash \varpi_{1}^{-})$

By Lemma 1, $\underline{w}_{\epsilon}(x)$ converges to-l uniformly on any compact subset $K\subset D_{2}$ and to
$0$ uniformly on any compact subset $K\subset\Omega\backslash \overline{D_{1}\cup D_{2}}$ . Define $=u\in H^{1}(\Omega)$ as follows:

4 $(x)=\{\begin{array}{ll}\underline{v}(x), x\in D_{1}\underline{w}_{\epsilon}(x), x\in\Omega\backslash \overline{D_{1}}.\end{array}$

Lemma 3. Let $\nu$ be the outward unit normal vector on $\partial D_{1}$ . Then there exist positive
constants $\delta_{0},$ $C_{0}$ independent of $\epsilon$ such that

$\frac{\partial v_{\epsilon}}{\partial\nu}(x)\leq-\delta_{0},$ $(x\in\partial D_{1})$ ,

$\frac{\partial\underline{w}_{\epsilon}}{\partial\nu}(x)\geq-C_{0}\epsilon,$ $(x\in\partial D_{1})$ .

Proof. For simplicity, we. assume $\overline{D}\subset\Omega.$ Let $\underline{v}_{\epsilon_{0}}$ be a positive global minimizer of
$\inf_{v\in H_{0}^{1}(D_{1})}J_{\epsilon 0}(v;D_{1})$ . Then, it is easy to see that $\underline{v}_{\epsilon_{0}}$ is a subsolution of the equation

with $\epsilon(<\epsilon_{0})$ on $D_{1}$ . Since $v\equiv 1$ is a supersolution and the uniqueness of a positive
solution, we have

$0\leq v_{e_{0}}(x)\leq\underline{v}_{\epsilon}(x)\leq 1,$ $(x\in D_{1})$ .

This implies
$\frac{\partial\underline{v}_{\epsilon}}{\partial\nu}(x)\leq\frac{\partial v_{\epsilon 0}}{\partial\nu}(x)\leq-\delta_{0}<0,$ $(x\in\partial D_{1})$ .

Let $w=-\mathfrak{W}>0$ be a positive minimizer of

$infJ_{\epsilon}(v;\Omega\backslash m_{1}$ .
$v\in H_{0}^{1}(\Omega\backslash B_{1}^{-})$

It suffices to show
$\frac{\partial w}{\partial\nu}(x)\leq C_{0}\epsilon,$ $(x\in\partial D_{1})$ ,
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where $\nu$ be the outward (from $D_{1}$ ) unit normal vector on $\partial D_{1}$ .
Take a smooth domain $(\Omega\supset)\tilde{D}_{1}\supset\overline{D_{1}}$ s.t. $\overline{\tilde{D}_{1}}\cap D_{2}=\emptyset$ . Let $\tilde{w}$ be a global minimizer

of
$\inf$ { $J_{\epsilon}(v;\tilde{D}_{1}\backslash D_{1});v\in H^{1}(\tilde{D}_{1}\backslash D_{1}),$ $v=0$ on $\partial D_{1},$ $v=1$ , on $\partial\tilde{D}_{1}.$ }.

By Lemma 2, we have

$w(x)\leq\tilde{w}(x))(x\in\tilde{D}_{1}\backslash D_{1})$ .

Since $\tilde{D}_{1}\backslash D_{1}\subset\Omega\backslash B,\tilde{w}$ satisfies

$\epsilon^{2}\Delta\tilde{w}=\tilde{w}^{3}$ .

Let $W_{\epsilon}(x)=\epsilon^{-1}\tilde{w}(x)$ . Then

$\Delta W_{\epsilon}=W_{\epsilon}^{3},$ $x\in\tilde{D}_{1}\backslash D_{1}$ ,

$W_{\epsilon}(x)=0,$ $(x\in\partial D_{1})$ , $W_{\epsilon}(x)= \frac{1}{\epsilon},$ $(x\in\partial\tilde{D}_{1})$ .
It is well-known (e.g., [5], [1], [13] and the references therein) that under the

assumption $\partial D_{1}$ and $\partial\tilde{D}_{1}$ are of $C^{2}$ class there exists a unique positive solution to

$\Delta V_{\infty}=V_{\infty}^{3},$ $x\in\tilde{D}_{1}\backslash D_{1}$ ,

$V_{\infty}(x)=0,$ $(x\in\partial D_{1})$ , $V_{\infty}(x)=+\infty,$ $(x\in\partial\tilde{D}_{1})$ .

Moreover, by comparison’s theorem (see, e.g. [4]) we have

$W_{\epsilon}(x)\leq V_{\infty}(x),$ $(x\in\tilde{D}_{1}\backslash D_{1})$ .

Thus, we have
$w(x)\leq\tilde{w}(x)=\epsilon W_{\epsilon}(x)\leq\epsilon V_{\infty}(x),$ $(x\in\tilde{D}_{1}\backslash D_{1})$ .

For any compact subset $K\subset\tilde{D}_{1}\backslash D_{1}$ , where $K$ include a neighborhood of $\partial D_{1}$ ,

$\frac{\partial w}{\partial\nu}(x)\leq\epsilon\frac{\partial V_{\infty}}{\partial\nu}(x)\leq\epsilon C_{0},$ $x\in K$ .

This completes the proof of Lemma 3.
As an easy consequenoe of Lemma 3, we have the following.

Proposition 1. There exists a sufficiently small $\epsilon_{0}>0$ such that, $V_{e}$ is a subsolution
for $0<\epsilon<\epsilon_{0}$ .

Proof. We show that

$\int_{\Omega}(\epsilon^{2}\nabla\underline{u}_{\epsilon}\cdot\nabla\phi-(a(x)^{2}-\underline{u}_{\epsilon}^{2})u_{\epsilon}\phi)dx\leq 0$
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holds for any $\phi\in C_{0}^{\infty}(\Omega)$ with $\phi(x)\geq 0$ in $\Omega$ . Note that by the elliptic regularity
theorem we have $\underline{v}_{\epsilon}\in W^{2,p}(D_{1})$ for any $p>n$ and hence $\underline{v}_{\epsilon}\in C^{1}(\overline{D_{1}})$ . Also we have
$arrow w\in W^{2,p}(\Omega\backslash \overline{D_{1}})$ for any $p>n$ and hence $arrow w\in C^{1}(\overline{\Omega\backslash \overline{D_{1}}})$ . Thus we obtain

$\int_{\Omega}(\epsilon^{2}\nabla\underline{u}_{\epsilon}\cdot\nabla\phi-(a(x)^{2}-\underline{u}_{\epsilon}^{2})\underline{u}_{\epsilon}\phi)dx$

$\int_{D_{1}}(\epsilon^{2}\nabla\underline{v}_{\epsilon}\cdot\nabla\phi-(a(x)^{2}-\underline{v}_{\epsilon}^{2})\underline{v}_{\epsilon}\emptyset)dx$

$+$ $\int_{\Omega\backslash \overline{D_{1}}}$

.

$(\epsilon^{2}\nabla w_{\epsilon}\cdot\nabla\phi-(a(x)^{2}-\underline{w^{2}})\underline{w}\emptyset)dx$

$\int_{\theta D_{1}}\epsilon^{2}\frac{\partial\underline{v}_{\epsilon}}{\partial\nu}\phi dS-\int_{D_{1}}(\epsilon^{2}\Delta\underline{v}_{\epsilon}\phi+(a(x)^{2}-\underline{v}_{\epsilon}^{2})\underline{v}_{\epsilon}\emptyset)dx$

$\int_{\partial D_{1}}\epsilon^{2}\frac{\partial\underline{w}_{e}}{\partial\nu}\phi dS-\int_{\Omega\backslash \overline{D_{1}}}(\epsilon^{2}\Delta\underline{w}_{\epsilon}\phi+(a(x)^{2}-arrow w^{2})\underline{w}_{\epsilon}\emptyset)dx$

$\epsilon^{2}\int_{\partial D_{1}}(\frac{\partial\underline{v}}{\partial\nu}-\frac{\partial_{\mathfrak{B}}}{\partial\nu})\phi dS$

$\leq$ $\epsilon^{2}\int_{\partial D_{1}}(-\delta_{0}+C_{0}\epsilon)\phi dS\leq 0$.

This completes the proof of Proposition 1.

In a similar way, let $\overline{v}_{\epsilon}$ be a negative global minimizer of

$\inf_{v\in H_{0}^{1}(D_{2})}J_{\epsilon}(v;D_{2})$ .

Let $\overline{w}_{\epsilon}$ be a positive global minimizer of

$\inf_{v\in H_{0}^{1}(\Omega\backslash \overline{D_{2}})}J_{\epsilon}(v;\Omega\backslash \overline{D_{2}})$
.

Define $\overline{u}_{\epsilon}\in H^{1}(\Omega)$ as follows:

$\varpi_{\epsilon}(x)=\{\begin{array}{ll}\varpi_{\epsilon}(x), x\in D_{2}\varpi_{e}(x), x\in\Omega\backslash \overline{D_{2}}.\end{array}$

Then we have the following lemma which can be proved in the same way as in the proof

of Lemma 3.

Lemma 4. Let $\nu$ be the outward unit normal vector on $\partial D_{2}$ . Then there exist positive

constants $\delta_{1},$ $C_{1}$ independent of $\epsilon$ such that

$\frac{\Gamma v_{\epsilon}}{\partial\nu}(x)\geq\delta_{1},$ $(x\in\partial D_{2})$ ,

$\frac{\partial\varpi_{\epsilon}}{\partial\nu}(x)\leq C_{1}\epsilon,$ $(x\in\partial D_{2})$ .

By Lemma 4, we have the following proposition as in the proof of Proposition 1.
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Proposition 2. There exists a sufficiently small $\epsilon_{0}>0$ such that, $\overline{u}_{\epsilon}$ is a supersolution
for $0<\epsilon<\epsilon_{0}$ .

The following lemma is a consequence of the energy comparison lemma.

Lemma 5. For $0<\epsilon<\epsilon_{0}$ , we have $\pi_{\epsilon}(x)>\underline{u}_{\epsilon}(x),$ $(x\in\Omega)$ .

Proof. By using Lemma 2, we have $\overline{w}_{\epsilon}(x)\geq\underline{v}_{\epsilon}(x)$ on $D_{1}$ . Moreover, by the strong
maximum principle we have $\varpi_{\epsilon}(x)>\underline{v}(x)$ on $D_{1}$ . In a similar way, we have $\varpi_{\epsilon}(x)>$

$arrow w(x)$ on $D_{2}$ . By the construction, these yield the desired result.
Proof of Theorem 1. By Lemma 5 and Brezis-Nirenberg’s argument (see e.g. [2],
[7], [12]), we have a local mimimizer $u_{\epsilon}$ of $J_{\epsilon}(u;\Omega)$ on $H^{1}(\Omega)$ such that

$\overline{u}_{\epsilon}(x)\geq u_{\epsilon}(x)\geq\underline{u}_{\epsilon}(x),$ $(x\in\Omega)$ .

The asymptotic behavior of $u_{\epsilon}$ follows from the constructions of $\varpi_{\epsilon},u_{\epsilon}$ , Lemma 1 and
the proof of Lemma 3.

4 Some Extensions and Questions
In this section we discuss about possible extensions and open questions. First, for a

given positive function $b(x)$ , when $a(x)=b(x)\chi_{D}(x)$ with the same assumptions on $D$

as in Theorem 1, we have a similar result. Moreover, it is possible to extend our result
for the equation on compact manifolds, since the proof of Theorem 1 depends on simple
minimizing problems, a comparison theorem and a solvability of solutions which blow
up at the boundary.

Finally, we mention that the following questions remain open.
1. For a technical reason, in Theorem 1 we assume the condition $\partial D\cap\Omega\subset\Omega$ . It is

an open question to show the same statement as in Theorem 1 for the case that $\overline{\partial D\cap\Omega}$

intersects $\partial\Omega$ .
2. When $a(x)=\chi_{D},$ $\overline{D}\subset\Omega$ , and $D$ is a dumbbell like domain with a thin channel,

can one still have a stable solution with inner transition layers? (cf. [2])
3. Without the smallness of $\epsilon>0$ , under certain assumption on $D$ as in Theorem 1,

can one show the existence of solutions which change sign?
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