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1 Introduction and Main Result

There are several results on the studies of solutions to the following equation with a
balanced bistable nonlinearity:
ou

EAu + h(z)*(a(z)? —ud)u=0, =z€Q, 3= 0, ze€od,

where (Q is a bounded domain in R", n > 1 with smooth boundary, ¢ > 0 is a parameter,
and h(z) and a(x) are positive functions on €. Solutions u of the boundary value
problem above is corresponding to critical points of the functional

Iw) = 3¢ [ |Vu(@)P dz + ; [ ) (a(a)? — u(z)?)? da

on H(Q). The global minimizer u(z) of J(u) on H'(2) has an asymptotic behavior
u(z) = a(z) (or u(x) — —a(z) ) as € — 0. In general, to find a nontrivial local
minimizer u(z) with inner transition layers is a delicate problem.

If the dimension is one, there are several results. Let @ = (0,1). When h(z) = 1,
Nakashima [8] proved by using a delicate construction of a subsolution and a super-
solution that if a € C?[0, 1] takes a nondegenerate local minimum at zo € {0, 1), then
there exists a stable solution which has the asymptotic behavior u.(z) ~ —a(z) on
(0, o) and u.(z) ~ a(z) on (xo,1) as ¢ — 0. Later, Matsuzawa [7] extended her re-
sult in a degenerate setting. On the other hand, when a(z) = 1, Nakashima [9] also
constructed a stable solution which has an inner transition layer near a local minimal
point of h(z) and studied the location of inner transition layers of solutions in details.
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Furthermore, Nakashima-Tanaka [10] constructed solutions with multi-transition layers
systematically by using variational methods.

For the studies in the higher dimensional case and a(z) = 1, we refer to [3], [6], [11],
[12]. In these previous results, the effect of domain geometry or the effect of h(z) have
been studied for the existence of stable solutions with inner transition layers. However,
it seems that there exist few studies on the effect of a(z) to this problem in the higher
dimensional case.

In this paper, we consider the special case a(x) = xp(z) with a subdomain D c
and show existence of stable solutions with inner transition layers to

EAu+ (a(z)’ —v?)u=0, z€Q, %‘:— =0, ze€d

Assume that D =D, UD,,D;NnD;, =0, 3DNQ c Q and 0D,, 8D, belong to the C?
class. Then we have the following.

Theorem 1. For sufficiently small € > 0, there exists a local minimizer u, of J(u) on
H() which has the following asymptotic behavior: ue converges to 1 uniformly on any
compact subset of' D, converges to —1 uniformly on any compact subset of Dy, and
converges to 0 uniformly on any compact subset of Q \ (D).

Remark 1. The same result holds under the homogeneous Dirichlet boundary condi-
tion. .

Remark 2. When D consists of several components, by choosing D; and D, suitably,
Theorem says the existence of local minimizers which have different asymptotic behav-
ior, i.e. are close to 1 on some components and are close to —1 on other components.
Remark 3. Although we think the smoothness of 0D;,7 = 1,2, is not necessary, we
need at least C? regularity from a technical reason.

2 Useful Lemmas

We recall two useful lemmas.

Lemma 1 (Asymptotic behavior). Let D = {z € R" | |z| < 6}, g € C}(R%), and
there erists a constant T > 0 such that g(t) > 0 (t < 0), g(T) = 0,9(t) <0 (t > T).
Suppose that G(t) = [; g(s) ds has a unique mazimum at t = T. Then, for a minimizer
Ue € H& (D) of

inf{Je(u; D) |ue H&(D)}’
where

2
Je(u; D) = %LIVu|2dx—LG(u) dz,

we have 0 < u(z) < T, (z € D),uc(z) = ue(|x]). Moreover, u(x) converges to T
uniformly on any compact subset K C D.
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Next, let g1(z,t), g2(, t) be C*-functions with respect to ¢ and let

t
G,‘(Cl?,t) = ‘/0 gi(x’ S) dS,?; = 1’2

For n; € H(D),i = 1,2, consider the minimizing problem:

2
inf{J;(u; D) | u —n; € Hy(D)}, Ji(w; D) = fé-/D|Vu|2 dr — /DG,-(z,u) dz.

Lemma 2 (Energy comparison). u; € H'(D),i = 1,2 be minimizers to the mini-
mization problem above. Assume that there ezit constants m < M such that

(a) m < ui(z) < M fori=1,2,z€D.

(b) gi(z,t) > go(z,t) for = eDte [m, M]

(c) m(z) 2 na(x) for z € D.

Suppose n; € C(D), m(z) # n2(z) on 8D. Then, we have ui(z) = uz(z),x € D.

Although the proofs of these lemmas are known (see (3], [14]), we present it for
reader’s convenience.
Proof of Lemma 1. u, satisfies

[ —e2Au=g(u), for z € D= {z| |z| < d}),
u=0, on dD.

By the maximum principle and the condition on g(t), we have 0 < u(x) < T,z € D.
Gidas-Ni-Nirenberg’s theorem implies

ue(z) = ue(|zl), ve(r) <0, (r=|z| >0).
For sufficiently small e > 0, define w, € Hj(D) as follows:

e (lzf <6 —¢)
we(T) = { ~L(lz|-6), (F—e<]z[<9).

Since u, is a minimizer,
_ /D G(ug) dz < Jo(ue; D) < Je(we; D).

There exists a constant Cy such that

[Vwel* dz—G(T)|B(0, 8)|+2 gmax |G(¢)|{zld—e < |z < 8}

2
€
(wg; D) < 2 /{m\s—edxlsﬁ}

< —G(T)|D| + Coe.



where |A| denotes the Lebesgue measure of a set A C R". Thus

/ (G(T) - G(ue)) dz < Che.

Since G(t) takes its maximum only at t = T, we have G(T') — G(ue) 2> 0 on D.

Take arbitrary ry € (0,6) and fix. For o € (0,6 — r9),
6@ - 6wy do > (G(T) - G(uc))) do

{ro<|zi<ro+o}

| = (G(T) — G(ue(re))){zlro < |2 < o + 0}
holds for some r¢ € (r¢,70 + 7).
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Because the measure |{z| ro < |z| < ro + o}| is positive and independent of ¢, as

€ = 0 we have
0 < G(T) — G(ue(re)) < Che.

Since G(t) takes its maximum only at ¢t = T, we obtain u.(r.) = T as ¢ — 0. Noting

ue(z) = ue(|z|) and ul(r) < 0, we see
Ue(re) S ue(r) = ue(lz]) <T, r=lz|<ro<re
In particular, it follows

lue(z) = T| — 0 as e — 0.
{=| If'v‘l< ro}

By using a compactness argument, ue(a:) converges to T umformly on any compact

subset of D.

Proof of Lemma 2. Let M = {z € D| uz(z) > u;(z)}. Assume M # 0. Then D\ M
contains nonempty open set. Put ¢(z) = (uz — u;)*. Then ¢ € H§(D), ¢ # 0 on D,

and ¢(z) =0 on D\ M. Since u,, u; are minimizers respectively,

0 < Ji(uy + @) — Ji(uy)
uy (z)+¢(x)

= ——/ IV + 9)? = [V |*) dz —f /1( ) 9 (z, s)dsdx

: v ( )+¢(z)
< %/M(IV(ul + )| - ]Vu1|2 dz —-/ / ;: o(z, 8) dsdz
= Jy(us) = Ja(uz ~ 9) < 0.
This means that u; + ¢ is also a minimizer of J;, and hence
—€A(uy + ¢) = g1(z, ur + ¢)-

Therefore, there exists a bounded function ¢(z) such that

—Ad = gi(x, ur + ¢) = g1(z, W) = c(z)¢.

The maximum principle or the unique continuation property leads a contradiction.

Thus we can conclude M = {.
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3 Proof of Theorem 1

In this section we use the notation
1 1
Je ;G'=—2/V 2 _/ 2 _ 2y2
(4; G) 5¢ GI u(z)|*dz + 1 G(a(:c) u(z)?)* dz
for uw € H(G) with G C Q. Let v, be a positive global minimizer of

f J
vEI}Ill(Dl) (‘U Dl)
- Existence of v, follows from the standard argument. Moreover, by the maximum prin-
ciple we have 0 < y.(z) < 1 on D;. By Lemma 1, v () converges to 1 uniformly on
any compact subset K C D;. Let w, be a negative global minimizer of
inf = J(v;Q .

veHY(Q\DY) w2\ Dy)
By Lemma 1, w,(z) converges to —1 uniformly on any compact subset KX C D, and to
0 uniformly on any compact subset K C Q\ D; U D;. Define u, € H}(Q) as follows

_f v(z), ze€eD
“‘(”)"{wxw),, z e\ Dy

Lemma 3. Let v be the outward unit normal vector on 0D;. Then there exist positive
constants &g, Cy independent of e such that

Oy
ov

6g_v_€ (:c) —~Coe, (z € 8Dy).

(.'L‘) S —60, (:c € 6D1),

Proof. For simplicity, we assume DcQ. Lety ¥, be a positive global minimizer of
infye g3 (py) Jeo (V3 D). Then , it is easy to see that v is a subsolution of the equation
with (< €) on D;. Since v = 1is a supersolution and the uniqueness of a positive
solution, we have

0 <2, (z) Sulz) L1, (z € D).

This implies

%%_(x) < 6;50 (z) £ =60 <0, (xz € 0Dy).

Let w = —yw, > 0 be a positive minimizer of

inf _ J.(v;Q\ Dy).

veH}(Q\Dy)

It suffices to show

%%(:v) < Coe, (z € 8DY),
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where v be the outward ( from D; ) unit normal vector on 8D;.

Take a smooth domain (2 >)D; D Dy s.t. B:ﬂ Dy = (). Let @ be a global minimizer
of '

inf{J.(v; D, \Dl); v € HY(D, \D,), v=00n8D;, v=1, on af)l._}.
By Lemma 2, we have
w(z) < B(z), (z € Dy \ D).
Since D, \ D, € Q\ D, w satisfies

8.

AW

Let W(z) = ¢ 'o(z). Then
AW, =W32, z € D, \ Dy,

W.(z) =0, (z € 8Dy), Wi(z)= -1- (z € 8Dy).

It is well-known (e.g., [5], [1], [13] and the references therein) that under the
assumption 8D; and 8D, are of C? class there exists a unique positive solution to

AVep=V3, 2 € D\ Dy,

Veo(2) = 0, (z €8D)), Veo(z) = +00, (z € 8Dy).

Moreover, by comparison’s theorem (see, e.g. [4]) we have
We(z) < Vo(z), (z € D1\ Dy).

Thus, we have
w(z) < W(z) = eW,(z) < eVeo (), (x € D1 \ Dy).
For any compact subset K C D, \ D, where K include a neighborhood of 8D;,

%%(x) < eaaL:’(:c) <eCy, z € K.

This completes the proof of Lemma 3.
As an easy consequence of Lemma 3, we have the following.

Proposition 1. There exists a sufficiently small ¢g > 0 such that, u, is a subsolution
for 0 < e < €. :

Proof. We show that

(- 96 - e - ) as <0
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holds for any ¢ € C(Q) with ¢(z) > 0 in Q. Note that by the elliptic regularity
theorem we have v, € W?(D,) for any p > n and hence », € C*(D;). Also we have
w, € W2?(Q\ D) for any p > n and hence w, € C*(Q\ D;). Thus we obtain

A(EZV% Vo — (ala)* - u?)m) de
- /Dl(ezvys'w‘(a(w)z—y?)w dz
+ oo (V6 (0 ~udus) s
= fint A 2egds - [, (¢800 + (@) - Dus) do
B /am awc"’d L\E(€2A%¢+(“(z)2”ﬂz)%¢) dz

foo (%; - T)MS

E2
< € -4, <0.
e/wl( o+ Coe)$dS < 0

This completes the proof of Proposition 1.

In a similar way, let 7. be a negative global minimizer of

e flr?(fn,) Je(v; Dy).

Let W, be a positive global minimizer of

inf _ J.(v; 9\ Dy).
veH T (v; 2\ Dy)

Define %, € H'(Q2) as follows:

_ | B(x), =z€D
T(z) = { We(z), =€ QZ’\"D‘;.

Then we have the following lemma which can be proved in the same way as in the proof
of Lemma 3.

Lemma 4. Let v be the outward unit normal vector on 8Dy. Then there ezist positive
constants 6, C, independent of € such that '

0v. ‘
Y (17) > 41, (.'B € 6D2),

%m';/i(a:) S 016, (.’B € 6D2)

By Lemma 4, we have the following proposition as in the proof of Proposition 1.



141

Proposition 2. There exists a sufficiently small €5 > 0 such that, T, is a supersolution
for 0 < e < ¢.

The following lemma is a consequence of the energy comparison lemma.
Lemma 5. For 0 < € < ¢, we have T(z) > u.(z), (z € Q).

Proof. By using Lemma 2, we have wW.(z) > v.(z) on D;. Moreover, by the strong
maximum principle we have W(z) > v.(x) on D;. In a similar way, we have 7.(z) >
w,(x) on Dy. By the construction, these yield the desired result.

Proof of Theorem 1. By Lemma 5 and Brezis-Nirenberg’s argument (see e.g. [2],

(7], [12]), we have a local mimimizer u, of J.(u; ) on H() such that
Ue(z) 2 ue(z) 2 ue(3), (= € Q).

The asymptotic behavior. of u, follows from the construétions of @, u., Lemma 1 and
the proof of Lemma 3.

4 Some Extensions and Questions

In this section we discuss about possible extensions and open questions. First, for a
given positive function b(z), when a(z) = b(z)xp(x) with the same assumptions on D
as in Theorem 1, we have a similar result. Moreover, it is possible to extend our result
for the equation on compact manifolds, since the proof of Theorem 1 depends on simple
minimizing problems, a comparison theorem and a solvability of solutions which blow
up at the boundary. ‘

Finally, we mention that the following questions remain open.

1. For a technical reason, in Theorem 1 we assume the condition D N C Q. It is
an open question to show the same statement as in Theorem 1 for the case that 8D N )
intersects 09. '

2. When a(z) = xp, D C , and D is a dumbbell like domain with a thin channel,
can one still have a stable solution with inner transition layers? (cf. [2])

3. Without the smallness of ¢ > 0, under certain assumption on D as in Theorem 1,
can one show the existence of solutions which change sign? |
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