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UNIFORM L2-STABILITY FOR THE BOLTZMANN EQUATION
SEUNG-YEAL HA AND SEOK-BAE YUN

ABSTRACT. We discuss a recent progress on the uniform L3-stability for the Boltzmann
equation in a close-to-Maxwellian regime.

1. INTRODUCTION

The purpose of this article is to present a recent formulation [6] on the uniform L2-
stability for the Boltzmann equation near a global Maxwellian. Consider the Boltzmann
equation describing the phase space evolution of a distribution function F = F(z,¢§,t) of

moderately dilute gas particles with the physical position z € Q and the velocity £ € R3 at
time t € Ry:

(L.1) OF+¢ -V, F=Q(F,F), z€Q, £€R? t>0,

' F(z,€,0) = F™(z,¢),

where Q(F, F') is a quadratic collision operator whose exphcxt form will defined below.
Let (¢',&,) be the post-colhsxonal velocities defined in terms of pre-collisional velocities
(€,6) and w e 82

(1.2) €=¢-[¢-&) ww and &=6&+[(E-&) ww
In this case, the collision operator is given by the following form:

_1 _ 'Rl _
) QER©O=g [ €GP E - FR)dwde.

Here k is the Knudsen number which is the ratio between the mean free path and the
characteristic length of the flow, 82 = {w € S%: (¢ — &) - w > 0}, and we used standard
abbreviated notations:

= F(z,¢,t), F.=F(x,&,t), F=F(z,6,t) and F.=F(zé6,t).

We assume that the collision kernel g(-,-) satisfies the inverse power law and the angular
cut-off assumption:

Q(€ —&,w) = € - 5*'7177(0),
where @ is the angle between £ — &, and w:

0 = cos~} (g___i*l_ﬂ)
1€ — &l
The spatial domain § is assumed to be either whole space R3 or a torus T3 = R3/L3 (L :
any 3-dimensional lattice in R3) to focus on the initial value problem. Throughout the
paper, we shall restrict ourselves to the Boltzmann equation in a maxwellian regime, and
denote by C the generic constant independent of time ¢.

3 by(0)
—=<~v<1 and pyy

5 < b < 00,
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In a global maxwellian regime, there are many literatures available for the existence the-
ory of solutions and convergence toward a global maxwellian (see [2, 3] for a detailed survey).
We next briefly review only the global existence theory of solutions to (1.1). In [10], Ukai
first established the global existence of mild solutions to the Boltzmann equation for hard
potential and hard sphere models combining a spectral analysis and a bootstrapping argu-
ment. Later Caflisch(l] and Ukai-Asano [11] further extended Ukai’s seminal work to the
moderately soft potentials ¥ € (~1,0] on a periodic domain and whole space respectively.
For the general case of v € (—3,0], the global existence of classical solutions was finally
settled by Guo [5] employing an energy method. A global existence theory in an energy
space H? (Lg) (s > 8) became available only in recent years due to Liu-Yang-Yu [8] and Guo
[4]. In particular, Liu, Yang and Yu in (7] introduced a macro-microscopic decomposition
of the solution so that the Boltzmann equation can be rewritten as a new fluid type system
and an equation for a non-fluid component. Hence the existence theory for (1.1) in a global
Maxwellian regime is now in a good shape for small perturbations.

The rest of this paper is organized as follows. In Section 2, we review the basic properties
of the linearized collision operator and micro-macro decomposition of a solution and the
Boltzmann equation, and key trilinear estimates for the stability analysis. In Section 3,
we discuss a priori uniform L?-stability estimates [6] for the Boltzmann equation with
moderately soft potentials —3 < v < 1.

Notations: Throughout the paper, we use various local and global norms on 2, ]Rg and
Q x R}. Let h = g(z,t,£) be a measurable function on Q x R; x R}. Below, p,q € [1,00]:

1
Hh(z, t)"Lg = { (/1;3 if(%f,t)ﬁd{) y 1< g<oo,

esssupecps|f(2,€,t)], ¢ = oo,

1 |

h(z,t)||Pdz)®, 1<p< oo,

1@l 2z = (o M 0iEgde)”, 15 1B@)l> = 1K) 2z
esssqueR’Ilh(x’ t)"Lg’ Db =00,

2. PRELIMINARIES

In this section, we review the basic properties of collision operators around a global
Maxwellian, and micro-macro decomposition introduced in [7, 8]. Consider the Boltzmann
equation

8F +¢-V.,F=Q(F,F), z€Q £cR3 teR,,
F(0,z,§) = Fy(x,§). |

We now introduce a symmetric bilinear operator Q[F, G] associated with Q(F, F):
QIF,Gl(e) = 2i / / 46 — €, w) (F'G. + FIG' — FG, — F.G) dud..
_ K JJr3x8%

Then it is easy to see that
QIF, F] = Q(F,F).



71

UNIFORM L2-STABILITY FOR THE BOLTZMANN EQUATION

2.1. The Boltzmann equation near M. In this part, we study the linearization of the
Boltzmann equation around a global Maxwellian. We first introduce the perturbation f as

2
(2.1) F =M+ Mif, e

M=

\/ (2m) e
Then the perturbation f satisfies the linearized Boltzmann equation:
(2.2) 8:f +&-Vof = L(f) + I({, f),

where L(-) and I'(-,-) are linear and nonlinear collision operators

L(f)=2M~1QIM,M3f]  and  T(f,f) = M-iQIM}s Mif].
We formally define a quadratic form I'[-,-] associated with I'(-,):

Tlg,h) = M~4QMig, Min).

Proposition 2.1. [2] For the Boltzmann eguation (2.2), there exist positive constants vy =
v1(7), v2 = v2(7), 0, k1, ka2, k3, ks such that

(1) L has the decomposition
L=-v (E)I + K,
where Id is an identity operator and v(€) is a collision frequency satisfying
n€) Sv) <w(E), € =1+¢, £eR,

and K is a compact operator.

(2) L is a non-positive self-adjoint operator on Lg with the estimate
(Lh,h) < —o(viP1h, P1h).
where (-,-) is a usual L2-inner product.

2.2. Micro-macro decomposition. In this part, we briefly present the micro-macro de-
composition which enable us to see the multi-scale nature of the Boltzmann equation. This
beautiful idea of decompose the solution and the Boltzmann equation to see its correspond-
ing fluid part and non-fluid part directly at a time was introduced by Liu and Yu in [7] to
the study of the positivity of Boltzmann shock. This micro-macro decomposition will play
a key role in our L2-stability analysis for hard potential case in Section 3.2.

The linear collision operator L defines an unbounded symmetric operator on L%:

= (LR, () wnd (f0)= [ f@o)k  for frg€ I

The null space N of L is a five-dimensional vector space spanned by an orthonormal basis
{x:}i=:

N= Sp‘m{Xo, X1, X2) X3, X4},

X0 = M%a Xi = f;’Mi, X4 = ‘/_(|€|2 - 3)M% (XHXJ> = 61'.1" i= 1’2’3'
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We decompose Hilbert space Lg as a direct sum of A and its orthogonal component N1,
and we denote by Pp the projection on this null space and P; the complementary projection:

f=Pof+Pif = fo+ f1,

fo=Pof = p(z,t)x0 + Tty mi(z, t)xi + e(z, t)xa,

p(x?t) = (fa XO)’ mi(xit) = (f1 Xt') (7‘ = la 2’3)’ e(a:,t) = (f, X4)’
h=Pif=f—fo,

We next present trilinear estimates for nonlinear term I'[f + g, f — g](f — g). The property
of I'[f + g, f — g] € N+ and Cauchy-Schawarz yield the following estimates.

Lemma 2.1. [6] Let —3 < v <1, and f,g be measurable functions in R3 x R} satisfying
143(f + 9)llzsozy < 00r IS = gllzz + IWAPL(S = g)lla < oo
Then there ezxists a positive constant C independent of t such that
G)—%S7sm
| [+ 9. = 51,7 - D)@

< O(IA SO o a) + 9Oz ) 1F®) — 9@ + ZIWAPL((E) - 9(8) s
(i7) 0 <y < 1;
| [ 1F+ 0.5 = 0. f = (e)da]

< O (A F @I zn) + A9z ) 1FE) — 9112

+[CUFOlrgwa +119®lgp@z) + 7 | IVEPLFE) - 9©) s

3. A PRIORI UNIFORM L2-STABILITY

In this section, we briefly present a priori uniform L2-stability estimates. For details, we
refer to [6]. Let f and g be two classical solutions to the Boltzmann equation (2.2) and
f,9 € L®(Ry; L2 . N LP(LE)). Then f and g satisfy

(3.2) ~ Bg+E&-Vag=L(g) +T(9,9)
We subtract (3.2) from (3.1) and multiply (f — g) to both sides to find

(3.3) Of —gP+&-Valf —gP=L(f-g)(f—9) +Tf +9,f — gl(f — 9).

We now integrate (3.3) with respect to (z,§) using the boundary condition and Proposition
2.1 to see

ZI5© =90l = [ (L(F~0)f - iz + [ @lf +9.f = ol.f - o)
< —ollvAPo(7(®) = 9®llza +| [ @1 +9.1 =), £~ g)aa]

We set the uniform L2-stability criterion as follows.

* 1
(32) /o (”'/%f(s)“%g"(Lg) + HV’Q(t)H%go(Lg))dt < oo.

(3.4)
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3.1. Soft potential and Maxwellian molecule: —% < v < 0. Suppose two smooth
perturbations f and g satisfy the stability. condition (3.5). In (3.4), we use Lemma 2.1 to
derive a Gronwall type inequality: '

L150) ~ 90l% < 2P - o)
+ C(IA Oz + 19O 2 ) 158 — 9(0) 12

Then Gronwall’s lemma yields
2 g [t 1 2
I£®) = 9®)llza + 5 A lv2P1(f(s) — g(s))ll72ds

t .
i 2 2 ' inj|2
< exp [{: /0 (||u=f<s>||Lgo(Lg) + A gl 2y )] I1£™ - ™12
< C”fm - 9m"%2- _
This yields the uniform L?-stability estimate.
Theorem 3.1. [6] For v € (—32,0] and let F and G be two classical solutions to (1.1)
in  LO(R*; L2 (M ~}dtdz) N LP(LA(M~3dE))) corresponding to initial data F™, G re-

spectively. Suppose the smooth perturbations f and g satisfy the condition (3.5). Then we
have

su Ft) - G(t _ < C|I|F™ — gt _ ’
0St<poo “ ( ) ( )”LZ(M Uzd{da:) < “ ”L’(M Vzdfdz)
where C' i3 a positive constant independent of t.

Remark 3.1. As a direct application of the above theorem, the classical solutions in [1, 5, 11]
are uniformly L?-stable.

3.2. Hard potential and hard sphere model: 0 < v < 1. Suppose two smooth pertur-
bations f and g satisfy the stability condition (3.5) and the smallness condition:

o
(36) | I Ollgez) + 19O < -
In (3.4), we use Lemma 2.1 to get
(3.7)

d 1 1 |
200 =90l < OISOz, + 0B o) 15O - 9O

+ [- 3 +O(IF OB ey + ooz | IAPLE) - 9812
‘We use (3.7) to find

d 1 1
GO =90 < C(IvAFOIR g + g2 17O - 9®Es
o X
L GORFTON 7
Then Gronwall’s lemma yield the following stability estimate.

Theorem 3.2. [6] For v € (0,1] and let F and G be two small classical solutions to (1.1)
in L®(R+; L2(M~1d¢dz) NLP(L3(M~3d¢€))) corresponding to small initial data F*, G'*
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respectively. Suppose the smooth perturbations f and g satisfy (3.5) and (3.6). Then we
have

sup ||F(t) - G(t 124000y < C|F™ — G - :
oS IF () — Gl L2r-1/2dd0) < Cl ll23(ar-1/2dgds)
where C is a positive constant independent of t.

Remark 3.2. As a direct application of this theorem, the classical solutions in [12] are
uniformly L2-stable.
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