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This paper consists of two parts. In the first $P^{aI}t$ we present the result of the numerical simulation
on the steady gas flow in a pump driven by thermal edge flow, which i8 proposed in Rarefied Gas
Dynmics, AIP, New York, 138-141 (2002). A new finding of this analysis is the possibility of the
alternative design of the flow channel of the pump. According to the new design of the channel, a
rarefied gas flow is induced through a pair of parallel wire meshes with different temperatures. In
the second part of this paper, we conflrm thuis phenomena by simple experiments.

1 Introduction
In a rarefied gas, where the mean ftee path of the gas molecule is not negligible com-

pared with the scale of the system, the temperature field of the gas is deeply related to
the gas motion. The flow of the rarefied gas is induced by the temperature flelds of the
gas even if there is no extemal force. The thermal transpiration flow 1,2) which is a flow
induced in a pipe with a temperature gradient along it, is a well known example, and now
it is known that various flows with different properties are induced by the temperature
fields. 3) The thermal transpiration flow in a pipe suggests a possibility of a Pump without
moving parts. That is, if we connect two tanks of different temperatures by a thin pipe
of a uniforn cross section, the thernal transpiration flow is induced in the pipe and thus
we can maintain a pressure difference between these tanks. However the difference of
the pressure between the tanks is proportional to the temperature difference. Thus this
simple idea is not practical since the variations of temperature of material is rather lim-
ited than that of pressure of the gas. In 1910, Knudsen camied out an experiment by a
single pipe with periodic variations of diameter and $temperatu\infty$ (Fig. 1), and succeeded
to obtain the pressuoe ratio 10, which is fairly larger than the temperature ratio in the
system. 4) Recently this type of pumps driven by temperature field attracts researchers
again, since it does not require moving parts and has a possibility of the application as
micro devices. 5-14)

The author and Sone have been camied out two experiments of the pumps driven by the
flows induced by the temperature field. The first one is the pump driven by the thermal
transpiration flow. 10) (This type of pump is called “Knudsen compressor’‘ now.) The
experiment showed that it can reduce the pressure of a tank of 8 liter to a half in 300 $sec$,
but its energy efficiency is lower than standard commercial pump by far. This pump is very
primitive and many improvements are required. One of the reason of the low efficiency of
the Knudsen compressor is the temperature gradient of the pipe wall which is essential to
the thermal transpiration flow. That is, a heat flux through a pipe wall, which is the loss of
the energy, is required to maintain the temperature gradient. In order to reduce this loss of
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the energy, we developed a new type of a pump12) driven by the thermal edge flow 15, 16)

(This type of pump may be called “thermal edge compressor”.) The thermal edge flow
is a localized flow induced around a sharp edge of heated (or cooled) plate (Fig. 2). It is
induced by a sharp variation of the temperature of the gas around the edge of the plate,
thus the temperature gradient of solid body is not required to induce the flow. Some
energy will be lost through the gas around the heated body, but it will be smaller than that
expected when we replace the gas by solid materials. Actually the energy efficiency of
the thermal edge compressor in our experiment is about 6 times better than that of our
Knudsen compressor in Ref. 10.

In order to devise these compressors, the information on the behavior of the gas in the
channel of the pump is required. As for the Knudsen compressor, there are some amounts
of works. The corresponding analysis for the thermal edge compressor is recently
published in Japanese 13). In the present Paper, the main results of the Paper and the new
results on the altemative design of the thermal edge compressor are presented in Sec. 3.
The result on the altemative design is unique since it shows that a new type of rarefied gas
flow is induced through a pair of parallel wire meshes with different temperature. In the
next part of this paper, Sec. 4, the results of two preliminary experiments on the existence
of the flow through a pair of wire meshes are reported.

2 Thermal Edge Compressor
The thermal edge compressor consists of a number of driving units connected in series,

as well as the Knudsen compressor. Figure 3 shows an $2D$ model of the unit of the thermal
edge compressor devised in Ref. 12. The channel is equipped with a pair of two arrays
of plates, one is heated (temperature $T_{h}$) and the other is unheated (temperature $T_{c}$). The
size of the unit in $X_{1}$ direction $D_{w}$ is larger than the total width of the set of arrays of the
plates, thus some space is left around the set of arrays of the plates. The mechanism of
this unit is as follows. In the overlapping region of the two arrays of plates, a temperature
gradient in $X_{1}$ direction is induced. This temperature gradient induces the thermal edge
flow in $X_{1}$ direction. In the gas region around other edges of each plate, the temperature
of the gas is roughly uniform since there are lots of plates of identical temperature in $X_{2}$

direction in a space left around the array. Therefore the thermal edge flow induced there
is weaker than those induced in the overlapping region. In the narrow regions between
the plates of each array, the flow is not induced since the temperature of the gas is roughly

Flg. 1: The experimental apparatus by Knudsen (Ref. 4). The diameter of the thin part is 0.$4mm$

and that of thicker part is $10mm$, and the temperature difference between the heated part and
unheated part is about $500K$.
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Fig. 2: Thernal edge flow. The points A and $B$ are about one mean free path away from the
edge of the plate. Near the edge, the isothermal lines are sharply curved, and thus the temperature
is non-uniform along the plate. The molecules impinging on the edge region from the left side
are roughly represented by those from A and the molecules from the right side by those from $B$ ,
where the gas is hotter than at A when the plate is heated. The situation is similar to that over a
non-unifornly heated plate, where the thernal creep flow 1) is induced. Thus, a flow is induced in
the direction of the arrows around the edge of a heated plate.

Fig. 3: A unit of thermal edge compressor.

uniform there. In summary, the flow is mainly induced in the overlapping region between
the heated array and unheated array. Thus this unit induces a gas flow in $X_{1}$ direction.

3 Numerical simulation
We carry out two cases of numerical simulation on the flows in the thermal edge com-

pressor, following the numerical analysis on the gas flows in the Knudsen compressor in
Refs. 6 and 7.

Problem-I: Investigate the maximum flow rate obtained by the thermal edge compressor.
The maximum flow rate here is the flow rate obtained when the pressures of the gas at
both ends of the compressor are identical, or there is no average pressure gradient along
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the compressor system. For this purpose we consider a Pump system where a infinitely
many units of the thermal edge compressor are connected in series, and investigate the
steady gas flows in the system assuming that the behavior of the gas is periodic along the
system and the cycle is the length of the unit along the system.

Problem-II: Investigate the maximum compression ratio obtained by the thermal edge
compressor. We are interested in the pressure difference between the both ends of the
Pump system that is required to cancel the driving gas flow described in Problem-I. In this
case we consider a Pump system where finite numbers of units are connected in series.
Then we investigate the steady distribution of the pressure of the gas in the system when
the both ends of the system are closed by the walls.

The shape of the flow channel of thermal edge compressor is rather complicated, thus
there are many parameters on it. The purpose of this paper is not the optimization of these
parameters, but to show the basic properties of the thermal edge compressor. Furthermore
the results given in Sec. 3.$3B$ will show that the design of the flow channel is not restricted
to the one shown in Fig. 3. Therefore we first restrict ourselves to the channel shape shown
in Fig. 3, and omit the explanation of detailed shape on it. We use only the following
parameters of the compressor unit in this paper. $T_{h},$ $T_{c}$ : the temperatuoe of two arrays of
plates (the temperature of side wall is also $T_{c}$) $;D_{h}$ : the distance berween the plates in a
array; $n$ : the number of plates with temperature $T_{h}$ (or the number of small flow channels
of height $D_{h}$), $D_{w}$ ; the length of a unit in $X_{1}$ direction.

3.1 Basic Equation

The analysis is carried out on the basis of the Boltzmann equation for hard sphere
molecules: 17)

$\xi_{1}\frac{\partial f}{\partial X_{1}}+\xi_{2}\frac{\partial f}{\partial X_{2}}=J(f.f)$, (1)

$J(f,f)= \frac{d_{m}^{2}}{2m}\int_{\kappa.|<\infty.\psi|--1}[f(f_{*})g(\xi’)-f(\xi.)g(\xi)]|V\cdot a|d\Omega(a)oe_{*\prime}$ (2)

$\xi’=\xi+(V\cdot a)a$ , $\xi_{*}’=\xi$. $-(V\cdot a)a$ . $V=\xi$. $-\xi$. (3)

The notation is as follows. $d_{m}$ : the diameter of a molecule; $m$; the mass of a molecule;
$\xi_{i}$ : the molecular velocity; $f$: velocity distribution function of gas molecules; $dg$. $=$

$d\xi_{1}d\xi_{2}d\xi_{3};d\Omega(a)$: solid angle element in the direction of unit vector $a$ .
The boundary condition on solid walls is the diffuse reflection:

$f( \xi\cdot n>0)=\frac{\sigma_{w}}{(2\pi RT_{w})^{3/2}}\exp(-\frac{|\xi|^{2}}{2RT_{w}})$ , (4)

$\sigma_{w}=-(\frac{2\pi}{RT_{w}})^{1/2}\int_{\xi n<0}\xi\cdot nfd\xi$ . (5)

78



where $T_{w}$ and $n$ are, respectively, the temperature and the unit normal vector to the bound-
$a\iota\gamma$, pointed to the gas. $R$ is the specific gas constant ($R=k_{B}/m,$ $k_{\beta}$ : the Boltzmann
constant). In the numerical simulation the specular reflection condition

$f(\xi\cdot n>0)=f(\xi-2(\xi\cdot n)n)$, (6)

is also used to represent a symmetric surface.
The macroscopic quantities are defined by the moments of the velocity distribution

function $f$ as follows:

$\rho=\int fdg$, $\nu=\frac{1}{\rho}\int\xi foe$, $T= \frac{1}{3w}\int g_{-\nu|^{2}foe}$. $p=R\rho T$, (7)

where $\rho,$ $\nu,$ $T$ , and $p$ are the density, flow velocity, temperature and pressure of the gas,
respecuvely. The integrations are camied out over the whole space of $\xi$.

An important length of scale in the Boltzmann equation is the mean free path of the
gas molecule. For hard sphere molecules, its size at equilibrium state at rest $de\mu nds$ on
$d_{m},$ $m$, and density of the gas. Thus we deflne the reference mean free path $\ell_{a\nu}$ by using
the average density over a period (Problem-l, or average density over the pump system
(Pmblem-Il). That is,

$\ell_{av}=m/(\sqrt{2}\pi d_{m}^{2}\rho_{av})$. (8)

The Knudsen number Kn is defined by

$Kn=t_{a\nu}/D_{h}$ . (9)

For the convenience of the description we introduce reference pressure $Po$ by

$p_{0}=R\rho_{a\nu}T_{c}$ . (10)

3.2 Method of solution

The system of equation (1)$-(6)$ is analyzed numerically by the Direct Simulation Monte
Carlo (DSMC) method 18) where the gas molecules are replaced by a numbers of simu-
lation particles, and the behavior of the particles over a small time step is simulated by
two separate processes, the process of motion of the particles without collisions and the
process of changing their velocities by collisions between particles. Thus the method is
$ume$-dependent. We obtained the steady solution of Pmblem-I or Problem-II by chasing
a long time behavior of the results. The DSMC method is widely used in the studies
of rarefied gas flows, and the numerical procedure used here is just the same as the one
described in Ref. 6. What is special in this paper is only that the shape of the flow field
is rather complicated by many pieces of plates. The DSMC method is convenient for
this type of the problems since we can divide the flow field into many small rectangular
domains by introducing virtual boundaries in the gas region. We carry out the numerical
simulation in each rectangular domain by using additional boundary conditions on the
virtual boundaries that the molecules which $disap\propto ar$ into the virtual boundary revive
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(a) (b)

Fig. 4: One way flow in the thermal edge compressor I (Problem I). $T_{h}/T_{c}=3.n=10$, and
Kn $=1$ . $(a)$ Temperature field and (b): flow velocity field. The temperature field in (a) is shown
by the shade of the darkness, and its scale is shown in the right end of the panel. The arrows in (b)
indicate the flow velocity at their starting points, whose scale is shown on the right shoulder of the
panel.

from the virtual boundary of corresponding adjacent domain. This method is also effec-
tive for parallel computers since we can carry out the simulation for each domain almost
independently except small amount of information on the molecules that pass the virtual
boundaries in each time step of numerical simulation.

3.3 Results

A One way flow for basic channel

Here we explain the result for Problem-I, the maximum flow rate obtained by the ther-
mal edge compressor. Figure 4 shows the temperature and flow velocity fields for the case
of $T_{h}/T_{c}=3$ , Kn $=1$ , and $n=10$. Only the part $X_{2}>0$ is analyzed since the system is
symmetric with respect to $X_{2}=0$, and the cyclic boundary condition is applied to $X_{1}=0$

and $5D_{h}$ . The temperature gradiem is large in the gas at the overlapping region of two
arrays of plates $(D_{h}\leq X_{1}\leq 1.5D_{h})$ . On the other hand, the temperature gradient is small
around the other ends of plates($X_{1}\sim 0,2.5D_{h}$ or $5D_{h}$). As the result, the one-way flow
is induced in $X_{1}$ direction. The flow spoed $v_{1}$ decreases near the side wall at $X_{2}=5D_{h}$ .
This is because of the temperature between the side wall and the nearest plate (the plate
at $X_{2}=4.5D_{h}$ ) is roughly symmetric with respect to $X_{1}$ direction, and only a small size of
net flow $v_{1}$ is induced there.

Figure 5 shows the one-way flow for the case of $T_{h}/T_{c}=3$ , Kn $=1$ , and $n=W$. The
effect of side wall at $X_{2}=nD_{h}/2$ is confined in several small channels (or several $D_{h}$ in
$X_{2}$ direction) near the side wall, and a periodic structure of the flow field in $X_{2}$ direction
is seen around the centerline of compressor unit $(X_{2}\sim 0)$ .
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(a) (b)

Fig. 5: One way flow in the thermal edge compressor II (Problem $I$). $T_{h}/T_{c}=3,n=40$, and
Kn $=1$ . $(a)$ Temperature field and (b): flow velocity field. (See the caption of Fig. 4).

fig. 6: A simpler model of a unit of the thermal edge compressor. $X_{2}=0$ and $D_{h}/2$ are the
symmetric surface. The part-C represents the unheated plate, and pan-H does the heated wall.

This result leads a simplified model of the thermal edge compressor depicted in Fig. 6.
Consider a rectangular domain $0<X_{1}<D_{w}$ and $0<X_{2}<D_{h}/2$ . The boundary condition
at a part of the lower boundary $X_{2}=0$ (say, part-C in Fig. 6) is the diffuse reflection
(4) at temperature $T_{c}$ , and a part of the upper boundary $X_{2}=D_{h}/2$ (part-H in Fig. 6) is
the diffuse reflection at temperature $T_{h}$ . The boundary condition at other part of upper
and lower boundary is the specular reflection (6). The condition for boundaries normal
to $X_{1}$ direction will be defined depending on the purpose of the problems; In this section
(P’vblem-b), we apply the cyclic boundary condition. This model is denoted by $narrow\infty$

for the convenience of expression.
The result for mass flow rate for $T_{h}/T_{c}=3$ is shown in Fig. 7. In the figure, the mass
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Flg. 7: Nondimensional mass flow rate per cross sectional area $m_{f}/\rho_{av}(2RT_{c})^{1/2}$ vs Knudsen
number Kn of the thermal edge Pump (Problem-l). $T_{h}/T_{c}=3$ . $x:n=10,2:n=20,$ $\theta:n=40$,
$\bullet;narrow\infty$ .

flux per unit time and per unit area of the cross section of the compressor unit

$m_{f}=\{\begin{array}{ll}\frac{2}{nD_{h}}\int_{0}^{D_{h}/2}\rho v_{1}dX_{2} (n<\infty),\frac{2}{D_{h}}\int_{0}^{D_{h}/2}\rho v_{1}dX_{2}1 (narrow\infty),\end{array}$ (11)

are plotted for Knudsen number Kn $=0.01,0.5,0.2,0.5,1,5$, and 10 for $n=10$ and $\infty$ ,

and Kn $=1$ for $n=20$ and 40. The nondimensional mass flux $m_{f}/\rho_{0}(2RT_{c})^{1\prime 2}$ takes its
maximum value around Kn – 0.5, and it decreases as $Knarrow 0$ or $\infty$ . The effect of the
side wall is clearly seen in the cases for $n=10.20,40$, and $\infty$ at Kn $=1$ . The mass
flux approaches to that for $narrow\infty$ as $n$ increases and the deviation of $m_{f}$ from the case
of $narrow\infty$ is roughly proportional to $1/n$. This supports the previous discussion that the
effect of side wall is confined in a small region near the side wall.

B Alternative design of flow channel

The preceding result shows that the velocity of the one-way flow (which is roughly
represented by $m_{f}/\rho_{av}$) in the thermal edge compressor takes its maximum value when
the scale of the small flow channel $(D_{h})$ is comparable to the mean free path $\ell_{a\nu}$ of the gas
molecules. The $p_{a\nu}$ at high pressure is, however, quite small [cf. Eq. (8). $\ell_{av}\sim 0.07\mu m$

under the atnospheric pressure and the standard temperature], and it can be difficult to
realize a complicated flow channels by the usual engineering process. Here we investigate
the possibility of altemative design of flow channel of the thermal edge compressor.

In the following numerical analysis, we arrange objects of various $sha\mu$ in the flow
channel, and the gas region is not represenoed only by $X_{1}=$ Const or $X_{2}=$ Const. In
this paper such shapes of gas region is also approximately represented by the union of
many rectangular domains as is explained in Sec. 3.2. This simple strategy may lead the
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increase of computational time, since, in some cases, we have to prepare large number
of rectangular regions to represent the shape of the boundary. Therefore we carry out the
numerical simulation only for the limiting case for many small flow channels ($narrow\infty$ in
Sec. A).

Some of the results are shown in Fig. 8. In the figures, the temperature field is shown
by the shade of the darkness and flow velocity is represented by arrows. In the case of
Fig. 8(a), two squares with one side $\ell_{av}$ in length are put in the channel. The temperature
of square at smaller $X_{1}$ is $T_{c}$ , and that of larger $X_{1}$ is $T_{h}$ . In this case the temperature
field around each square is slightly asymmetric with respect to $X_{1}$ direction, and one-way
flow is induced in $X_{1}$ direction. The mass flux $m_{f}$ per unit area of the cross section of the
compressor unitl is $m_{f}/\rho_{av}(2RT_{c})^{1/2}=0.\omega 32$ . The mass flux $m_{f}$ increases if we round
off the edges of these squares. In the case of Fig. 8(b), the radius of the curvature is $l_{av}/4$

and $m_{f}/\rho_{0}(2RT_{c})^{1/2}=0.\alpha)43$. In Fig. 8(c), the object is cylinder with radius $\ell_{a\nu}/2$, and
$m_{f}/\rho_{0}(2RT_{c})^{1/2}=0.\infty 53$ .

In Fig. 8(c), the objects put in the channel are the circular cylinders, and thus there
is no “sharp edge” of a solid body which is usually required to induce the thermal edge
flow. Of course there is no thermal edge flow around a circular cylinder put isolated from
other boundaries. In the case of Fig. 8(c), we are considering the behavior of the gas in a
compressor unit which consists of two parallel meshes with different $tem_{K^{ratu\infty S}}$, since
the boundaries $X_{2}=0$ and $D_{h}/2$ are the symmetric surface. These two meshes induce a
temperature gradient of the gas in $X_{1}$ direction between these meshes. This temperature
gradient induces a one way flow similar to those seen in the thermal edge compressor,
because the size of the wires and distance between the meshes are of the order of the
mean free path of the gas molecules $\ell_{av}$ ($=D_{h}/2$ in Fig. 8).

As is discussed in Sec. $A$, the width of the small channel of the thermal edge compressor
would be of the order of the mean free path of the gas molecules $\ell_{av}$ . From the result in
this section, it is possible to infer that one-way flows are induced by any object with a
radius of curvature of the order of $\ell_{av}$ . These two informations means that one can use
various $\mu rous$ materials with pole size of $t_{av}$ to construct the thermal edge compressor
unit. From the view point of engineering, it is important result which enables the thermal
edge compressors with micro channels works at higher pressure of gases.

CPump effect

Next we consider Problem-lI, the steady pressure distribution in a pump system con-
sisting of a number of compressor units connected in series with their two ends of the
Pump system being closed by the walls. The number of the compressor units $N$ is limited
in the DSMC simulation. The accuracy and computational speed of DSMC dcpend on
the number density of simulation particles, which show unbalanced distribution as $N$ in-
creases in this problem. This results in the low accuracy at low density regions and alow

1A modiflcation of the domain of integration in the definition of $m_{f}$ in (11) is required since some part
of the domain of integration can be inside the solid body. The integration here is carried out only in the gas
region.
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(c)

Fig. 8: One way flow in the thermal edge compressor $b$ (Problem 7). $T_{h}/T_{c}=3$ . $(a)$ The case
where the plates are replaced with square boxes with temperature $T_{c}$ (shown by a dark box) and
$T_{h}$ (shown by blight box); (b) The case with square boxes with the round off (the radius of the
curvature is $D_{h}/4$); and (c) The case with a cylinder with diameter $D_{h}/2$ . (See the capuon of
Fig. 4.) The size of the reference mean free path $t_{av}$ is shown on the left shoulder of each panel.

computational speed at high density regions. In Ref. 6, it is shown that the compression
ratio of a compressor unit is a function of the local Knudsen number $Kn_{L}$ defined by the
average density of the gas in each unit in the system, and their relation is determined as
follows: (i) Carry out the numerical simulation with $N=10$ for Knudsen number Kn
defined by the density $\rho_{av}$ of the gas averaged over whole Pump system; (ii) Obtain a part
of the relation between the compression ratio and $Kn_{L}$ from the result of (i); (iii) Repeat
(i) and (ii) for various Kn. In this Paper, we follow this method. We also consider a pump
system of 10 compressor units of basic type shown in Figs. 3 or 6, and the both ends of
the Pump system are closed by the walls with temperature $T_{c}$ . We first define the pressure
averaged over the cross section of the pump $p(X_{1})$ by

$\overline{p}(X_{1})=\{\begin{array}{ll}\frac{2}{nD_{h}}f_{0}^{D_{h}/2}pdX_{2} (n<\infty),\frac{2}{D_{h}}\int_{0}^{D_{h}/2}pdX_{2} (n\ovalbox{\tt\small REJECT}\neg\infty).\end{array}$ (12)
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$K_{1}\Phi_{i}$

(a) (b)

Fig. 9: The distribution of the average poessure $\overline{p}(X_{1})$ and local Knudsen number $Kn_{L}(X_{1})$ in the
steady state of a closed system of 10 compressor units (Problem II). $T_{h}/T_{c}=3$ . $\cdots\cdots\cdots$ : $n=10$,
– $\cdot$ –: $n=20$,–: $narrow\infty$ . $(a)Kn=0.1,$ $(b)Kn=1$ .

(a) (b)

Fig. 10: The compression ratio of a compressor unit $P(X_{1})$ vs the local Knudsen number $Kn_{L}(X_{1})$

(Problem II. $T_{h}/T_{c}=3$ . $(a)n=10,$ $O$: Kn $=$ 0.1,0.4, 2, 5; $\bullet$ : 0.2, 1,3.5. (b) $narrow\infty,$ $O$:
Kn $=0.05,0.1$ , 0.3,0.75, 1.5, 2.75, 4; $\bullet$ : 0.075,0.2, 0.4, 1, 2, 3.5. The ranges of local Knudsen
number $Kn_{L}(X_{1})$ for each value of Kn are shown in the bottom of the figure. The white line
represents the approximation curve Eq. (15).

The compression ratio $P(X_{1})$ of a compressor unit between $X_{1}$ and $X_{1}+D_{w}$ is defined by

$P(X_{1})=\overline{p}(X_{1}+D_{w})/\overline{p}(X_{1})$, (13)

and the local Knudsen number $Kn_{L}(X_{1})$ by

$Kn_{L}(X_{1})=\frac{m}{\sqrt{2}\pi d_{m}^{2}\overline{\rho}(X_{1})D_{h}}=\frac{\rho_{av}}{\overline{\rho}(X_{1})}Kn$, (14)

where $\overline{\rho}(X_{1})$ is the average density between $X_{1}$ and $X_{1}+D_{w}$ .
The examples of the distribution of the average pressure $\overline{p}(X_{1})$ and the local Knudsen

number $Kn_{L}(X_{1})$ for the case $T_{h}/T_{c}=3$ , Kn $=0.1$ and 1 are shown in Fig. 9. The average
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Flg. 11: The compression ratio $\Pi_{N}$ obtained by $Ncomp\infty ssor$ units (Problem II). $T_{h}/T_{c}=3.narrow$

$\infty,$ $Kn_{L(1)}=5.7$ . The marks $\bullet$ show the points $(i,\Pi_{i})$ where $Kn_{I4^{i)}}\sim 0.05$ , 0.1,0.2,0.5, 1, 2, 3.5.

pressure $\overline{p}(X_{1})$ increases showing some vibrations as $X_{1}$ increases. The profile of local
Knudsen number $Kn_{L}(X_{1})$ is smoother than that of $\overline{p}(X_{1})$ . It is because $Kn_{L}$ is defined
by the average density over a unit length $D_{w}$ and $\overline{p}(X_{1})$ by the values at a cross section
at $X_{1}$ . The profile of $Kn_{L}$ shows local variations at both ends of the pump system. This
corresponds to the effect of end walls of the pump system which is also seen in Ref. 6.

The sets of $(Kn_{L}(X_{1}),P(X_{1}))$ for various Knudsen numbers Kn are plotted in $Kn_{L}-P$

plane for the case $T_{h}/T_{c}=3$ and $n=10$ and $\infty$ in Fig. 10. The points $(Kn_{L},P)$ form a
curve $P’(Kn_{L})$ in the $Kn_{L}-P$ plane. The data for $X_{1}$ near the ends of the Pump system
deviate from the above curve $P’(Kn_{L})$ due to the effect of the end walls of the system. An
$aPproXimanon$ of $P(Kn_{L})$ :

$P’(x)\sim$ exp $[C_{0}+C_{1}\ln x+C_{2}(\ln x)^{2}]+1$ , $C_{i}$ : Constant, (15)

is also shown in the figure, where $C_{i}$ are determined by the least square method from
the data $(Kn_{L},P)$ except those close to the ends of the Pump system. The values of $C_{l}$

are $(C_{0}, C_{1},C_{2})=(-2.24, -0.276, - 0.244)$ for $n=10$ and $(-2.11, -0.221. - 0.238)$ for
$narrow\infty$ .

The compression ratio $\Pi_{N}$ of a Pump system consists of $N$ units can be estimated by
using Eq. (15). That is, we estimate the local Knudsen number $Kn_{I40}$ of i-th unit and the
total compression ratio of the system $\Pi_{N}$ from a initial local Knudsen number at i-th unit
by

$Kn_{L\langle i+1)}=Kn_{L(i)}/P(Kn_{L\langle l)})$ , $\Pi_{N}=\prod_{i\overline{-}1}^{N}P(Kn_{L(l)})$. (16)

An example of the result is shown in Fig. 11, for the case of $T_{h}/T_{c}=3$ and $n\cdotarrow\infty$ with
initial local Knudsen number $Kn_{L\langle 1)}=5.7$ .

86



(a) (b) (c)

Fig. 12: The device that forns a flow channel of the scale of lmm. (a) Unheated part. It is a
rectangular copper plate (thickness lmm) of 200mm in height and 200mm in width. There is a
rectangular hole of 80mm in width and 100mm in height. A large number of copper wires with
diameter lmm is attached in the horizontal direction to the hole with the solder. (b) Heated part.
An aluminum frame forms a square flow channel of side 100mm in length. A large number of
Kanthal heater wires with diameter lmm in vertical direction are attached by alumina adhesive
on one side of the frame. (c) The assembled device. The wires around the heated part supply the
electric current to the heater wire.

4 Experiment
In the course of the numerical simulation in Sec. 3, a one-way flow under the condition

of periodic flow along the pump system (Pmblem-I) is induced by the newly designed
unit, which consists of a pair ofparallel wire meshes with different temperatures. It means
that there will be a rarefied gas flow through a pair of parallel wire meshes with different
temperatures. The flow is, however, not found in literature. Therefore, we win carry out
a preliminary experiment in this section to observe this phenomena in a rarefied gas.

4.1 Experinent on the channel width of lmm
A Experimental apparatus

Here we present the setup for the experiment of the channel width of lmm. The device
consists of two parts: one is the unheated part, and the other is the heated part. The fomer
is a rectangular coPper plate (thickness lmm) of $200m\iota n$ in height and 190mm in width.
This plate has a hole of 100 mm in height and 80mm in width [Fig. 1 $2(a)$], and many
copper wires with diameter lmm in horizontal direction are arranged in the hole. The
latter is a aluminum frame [Fig. $12(b)$] which forms a square flow channel of side $1\infty\iota nm$

in length, and many Kanthal heater wires with diameter lmm in vertical direction are
attached by alumina adhesive. The gap between each of these wires, $cop\mu r$ and Khantal,
is about lmm.

The aluminum frame is hung on the copper plate by several Nylon suppon parts so that
the side of the mesh of heater wire face to the wire mesh on the copper plate. The dis-
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Fig. 13: The overview of the experimental apparatus. The device is set inside the glass bell jar.
The motion of the film or windmill is observed by the camera positioned appropriately.

(a) (b)

Flg. 14: (a) Wlndmill to detect the vertical gas flow. The vane is made of mica. The vane is
supported by a bearing of tiny glass cup and a steel needle. (b) The aluminum duct and a hole for
the windmmill, attached to the unheated side of the device. The windmill detects upward flow if a
gas flows through the device from unheated side to heated side.

tance between these wire meshes is kept as close as possible, while there is a small space
between them. (We can detect the contact between them by measuning the electric resis-
tance.) Then the whole system is put in a glass belljar, whose inner pressure is controlled
from the atnospheric pressure ( $1.01\cross 10^{5}$ Pa) down to about0.5 Pa by extemal oil-sealed
vacuum pump (Fig. 13). The coPper plate of the unheated pan is connected to the steel
base of the vacuum chamber to keep the temperature close to the room temperature.

We supply the electric current to the heater wire with the gas pressure $p$ in the bell
jar being kept at some constant value. Then the gas flow through this pair of wires are
detected by two separate experiments: (A) A thin aluminum film (thickness $4\mu m$) of
width 60mm and height 80mm is hung on the flow channel in the side of the heated wire.
We observe the motion of the film by a camera (Fig. 13); (B) Prepare a windmill which
detects a flow in the vertical direction[Fig. $14(a)$]. The windmill is set in an aluminum
duct attached to the hole of unheated copper plate in the opposite side of the heated mesh
as shown in Fig. 14(b). Each of experiments(A) and (B) is camied out more than 2 hours
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(a) (b) (c)

Fig. 15: The movement of the film in experiment (A) for the case of channel width of lmm. I:
The results for constant pressure $p=1Pa$ and various energy supply $E$ to the heater. (a) $E=OW$,
(b) 5. $2W,$ $(c)12W$, and (d) $21W$.

after the heater is put on in order to wait the steady temperature of the device.

B Res\omega 籾

Two series of experiments are camied out for experiment (A). In the first series we
observe the film for various energy to the heater $E=0,5.2,12$, and 21W with keeping
constant gas pressure $p=$ 1Pa. The result is shown in Fig. 15. The film is gradually
inclined as the energy $E$ to the heater increases, and keeps at some angle as long as $E$

and $p$ are kept at constant value. The temperatures of the frame of the heated part and
that of the copper plate of the unheated part are measured in a separate experiment. The
temperature difference between them is 0.OK at $E=OW,$ $6.6K$ at 2.$0W,$ $11.4K$ at 4.$0W$,

and 19.$8K$ at 8.$5W$. In the second series the energy to the heater $E$ is fixed to $21W$, and
the observation is camied out for various $p$ in the range from 1Pa to $2\ovalbox{\tt\small REJECT} Pa$ . Some of the
results are shown in Fig. 16. The movement of the film takes maximum value at around
$5Pa$, where the mean free path of the air is about lmm. The movement of the film vanishes
as pressure increases. In this preliminary experiment it is difficult to conclude that this
shows that the flow vanishes as Knudsen number decreases; We will discuss about the
problem later in Sec. 4.3.

The experiment (B) is camied out for the case with $(E,p)=(0W, 5Pa),$ $(2W, 5Pa)$,
$(18W, 5Pa),$ $(18W, 20Pa)$, and ( $18W,$ lmpa). There is no rotation of the windmill for the
case of (OW, $5Pa$) or $(18W. 100Pa)$ . For other cases, the windmill rotates and the direction
of the rotation shows that the gas flow is upward. From the position of the windmill shown
in Fig. 14(b), it means that the gas flows through the pair of wire meshes from unheated
wire mesh to heated wire mesh. The rotation speed of the windmill is 95rpm at $(2W, 5Pa)$ ,

667rpm at $(18W, 5Pa)$, and 176rpm at $(18W, 20Pa)$ .

4.2 Experiment on the channel width of $100\mu m$

A Experimental apparatus

In order to confirm the applicability of the flows induced through the wire meshes to
higher pressure, we camied out another experiment by using a stainless wire mesh which
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(a) (b) (c)

Fig. 16: The movement of the film in experiment (A) for the case of channel width of lmm. II:
The results for constam energy suPply $E=21W$ and various pressure $p$ in the bell jar. (a) $p=5Pa$,
(b) $10Pa,$ $(c)20Pa$, and (d) $90Pa$.

(a) $\zeta b$)

Mg. 17: Experimental setup for the exporiment of flow channel of $1\infty\mu m$ in width. (a) The
stainless mesh. The scale of 100pm is shown at the right bottom comer of the figure. (b) The
schematic figure (not to scale) of the device for the experiment. This figure shows the cross
section along the flow channel to explain the layered sbucture of the device.

mesh size is about $10\mu m$ [Fig. $17(a)$]. In this case we have to suPpon two wire meshes
with different temperatures in a small distance. For this purpose we constructed alayered
structure as shown in Fig. 17(b). The base is a copper plate A (thickness $20mn$) with a
circular hole which is one end of the flow channel [Fig. $17(b)$]. The diameter of the hole
is 10mm on one side and it is enlarged to 20mm on the other side. This plate is connected
to a bigger copper base which is connected to the steel base of a vacuum chamber to $k\infty p$

the $tem\mu rature$ close to the room temprature [the coPper base is omitted in Fig. $17(b)$].

In order to support two wire meshes, the following material is layered on this copper
plate: (i) A stainless wire mesh B. (ii) Several mica plates $C$ (thickness $20\mu m$). which
forms a space around the hole of the copper plate A. (iii) Another stainless wire mesh
$D$, to which two of electrical leads, shown by a dotted lines in Fig. 17(b), are attached to
suPply an electric current to the mesh. (iv) A mica plate $E$ (thickness $2\ovalbox{\tt\small REJECT}\mu m$). $(v)$ A
aluminum plate $F$ (thickness $10mm$) with a hole whose size is similar to that on $\bm{m}p\mu r$

plate A. The main purpose of mica plates $C$ is to keep a space between the heated wire
mesh $B$ and the unheated wire mesh D. Another $pu\iota pose$ of mica plates $C$ is to maintain

90



(a) (b) (c)

(d) (e) (f)

Fig. 18: The movement of the film for the case of the channel width of $100\mu m$ . The results for
constant energy supply $E=1.5W$ and various pressure $p$ in the bell jar. (a) $p=5Pa,$ $(b)20Pa,$ $(c)$

$40Pa,$ $(d)100Pa,$ $(e)600Pa$, and $(D1000Pa$ .

the electrical insulation between them. The electrical insulation is required to prevent the
electric current through wire mesh $D$ from heating the wire mesh B. The mica plate $E$ is
also inserted to keep the electrical isolation between mesh $D$ and plate F.

These layers are fastened tightly by several bolts, and the electrical isolation (including
the space between meshes $B$ and D) is confirmed by measuring the electrical resistance
between mesh $B$ and other metallic materials. Then the hole system is put in the same
vacuum chamber as in section 4.1. In this system, the flow is detected by the movement
of a thin film of mica or aluminum hung in the hole of the aluminum plate F.

B Results

We supply the electric current to a wire mesh (mesh $D$ in Fig. 17) and observe the tilting
of the film. Two series of experiments are camied out; The first one is the case for various
energy supply $E=0,0.06,0.23$, and 0.$53W$ for $p=10Pa$, and the second is the case for
various pressure $p=5$ , 10,20,40,100,600, and 1000Pa for a fixed energy supply $E=1.5W$.
In any case the film is constant if $E$ and $p$ are kept constant. Some of the results for
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the second series are shown in Fig. 18. Compared with the previous experiment with the
channel width of lmm, the movement of the film is observed at slightly higher pressure;
it takes maximum value at around $p=20\sim 40Pa$. Incidentally the mean free path of air is
about $200\mu m$ around $p=40Pa$.

4.3 Discussion

In this section, we camied out two simple experiments to confirm the flow of a rar-
efied gas induced through a pair of parallel wire meshes with different temperatures. The
movement of the thin fllm or the rotation of the windmill put in the channel of the flow
shows that a flow is induced from the colder side to hotter side, and these phenomena is
seen only in the rarefied gas regime. This flow is attributed to the flow induced by the
temperature difference of two wire meshes. These experiments, however, are preliminary
ones, and there should be several discussions on the results.

A point in question of the experiments given in this section is that the energy supply to
the heater $E$ is kept constant in the experiments for different pressure of the gas $p$ . This
will give some effect on the pressure dependence of the flow obtained by these experi-
ments. The temperature of heated wire is determined by the given energy supply $E$ and
the loss of the energy. The loss consists of the radiation and heat flow through the support
parts of the heated wire mesh and the loss of the energy camied by the gas molecules.
The later energy loss is roughly proportional to $p$ and the temperature difference between
the wire meshes. Therefore, in these experiments, the temperature difference between the
wire meshes decreases as $p$ increases. (At the same time the temperature of the unheated
wire mesh increases because the heat conduction between the unheated wire mesh and
extemal environment is rather limited in a vacuum chamber.) Thus in these experiments,
the flow through the pair of wire meshes may vanish in higher pressures by following
two reasons: (1) the gas flow induced by rarefied effect vanishes since the mean free path
becomes smaller; (2) the temperature difference between two wire meshes vanishes. Thus
the dependence of the strength of the flow on pressure $p$ is not clear by these experiments.
The difficulty will be solved by the experiments with the temperature difference between
two wire meshes being kept constant. It is possible for the system given in Sec. 4.1, and
the result will be reported in the future work. In the system given in Sec. 4.2, it is difficult
to measure the temperature of wire meshes since the wires are thin and total size of the
heated area is rather small. A more sophisUcated version of the device may be required to
obtain the pressure dependence of the gas flow.

In the results for lower pressure, the motions of the film show that the effect of the flow
decreases as the pressure decreases. This is because the gas molecule that amives to the
surface of wire experiences last molecular collision in the gas far from the pair ofmeshes,
where the temperature of the gas is close to the room temperature.

We have to examine what we observe with the tilting of the film in these experiments.
The weight of the aluminum film per unit area used in Sec. 4.1 is about $0.01kym^{2}$ , and
the force required to support this film is about 0.1Pa per unit area. This force is supplied
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by the momentum transfer through the flow channel per unit time. The momentum trans-
fer (per unit area and per unit time) through a channel cross section consists of two parts,
the contribution of the momentum camied by the gas motion $(\rho\#_{1})$ and the contribution of
the stress. In the experiments shown in this section, the density of the gas is very small
($\rho\sim 10^{-5}kym^{3}$ at $p=1Pa$). Therefore, it is impossible to support the film only by the
contribution of $\rho v_{1}^{2}$ , since the flow speed may not be so large by the temperature differ-
ence given in these experiment. The contribution of the stress or pressure is important.
That is, the motion of the gas in the flow channel is blocked by the film, and it induces
pressure difference between both sides of the film. There is no analytical information on
the pressure difference obtained by blocking the gas flow induced through wire meshes
with different temperature. Instead, we estimate the pressure gradient obtained by block-
ing the thermal transpiration flow between two parallel plates with a temperature gradient
$dT/dX$. According to the result of linearized Boltzmann equation, the mass flux through
the two parallel plates is Proportional to

$( \frac{1}{p_{0}}\frac{dp}{dX})M_{P}(Kn)+(\frac{1}{T_{0}}\frac{dT}{dX})M_{T}(Kn)$ ,

where $p_{0},$ $T_{0}$ are the reference pressure and temperature, respectively. 17) Then we can
obtain the relation between the pressure and temperature differences $\Delta p$ and $\Delta T$ in some
range of $X$ when there is no mass flux, by using the numerical values for $M_{P}$ and $M_{T}$ . For
example, $\Delta p\sim 0.3p_{0}\Delta T/T_{0}$ (Kn $=1$ ) for hard sphere molecules, which is, for example,
0.1Pa when $p_{0}=5Pa$ and $\Delta T/T_{0}=0.07$ .

5 Concluding Remarks
In this paper, we camied out the numerical simulation of the rarefied gas flows in the

thermal edge compressor, and clarified the maximum mass flow (Problem-I in Sec. 3)

and pressure ratio (Problem-II in Sec. 3). In the course of the analysis we also tried to
develop the altemative design of the thermal edge compressor adequate to high pressure
range or compressor for micro channels, and it is shown that there is a wide variety of
the design of the compressor. The result on the altemative design of the unit is also
important as the fundamental study of the rarefied gas flows induced by the temperature
fields, since it shows the presence of a rarefied gas flow through a pair of wire meshes
with different temperatures. The flow, a new type of the flow which is not pointed out
before, is demonstrated by simple experiments in Sec. 4. The experiment succeeded in
showing that the flow is actually induced, but its dependence on the gas pressure or the
Knudsen number is not still clear by these preliminary experiments.
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