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1 Introduction
In this short paper, we report our recent results, adapted from [6], on the vanishing

of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations.
A one-dimensional compressible flow model, called the viscous Saint-Venant system

for laminar shallow water, derived rigorously $hom$ incompressible Navier-Stokes system
with a moving free surface by Gerbeau-Perthame recently in [4], has the form:

$\{\begin{array}{l}\rho_{t}+(\rho u)_{x}=0(\rho u)_{t}+(\rho u^{2})_{x}-a(\rho u_{x})_{x}+(\rho^{2})_{x}=0\end{array}$ (1.1)

Such models appear naturally and often in geophysical flows $[1, 2]$ .
The compressible isentropic Navier-Stokes equations, which are the basic models

describing the evolution of a viscous compressible fluid, read as follows

$\{\begin{array}{l}\rho_{t}+div(\rho u)=0(\rho u)_{t}+div(\rho u\otimes u)-2aiv(\mu D(u))-\nabla(\xi divu)+\nabla p(\rho)=0\end{array}$ (1.2)

where $x\in\Omega\subset R^{N},t\in(O,T),$ $D(u)=(\nabla u+(\nabla u)^{T})/2$ , and $p(\rho)=a\rho^{\gamma},a>0,\gamma\geq 1$ ,
the viscosity coefficients $\mu,\xi$ are assumed to satisfy $\mu\geq 0$ and $\xi+2\mu/N\geq 0$ .

If $\mu$ and $\xi$ are both constants, there is huge literature on the studies of the global
existence and behavior of solutions to (1.2). For instance, the one-dimensional (1D)
problems were addressed by Kazhikhov et al [9] for sufficiently smooth data, where

数理解析研究所講究録
第 1592巻 2008年 105-115 105



Vanishing of vacuum states and blow-up phenomena

the data are uniformly away from the vacuum; the multidimensional problems (1.2)
were investigated by Matsumura et al $[13, 14]$ , who proved global existence of smooth
solutions for data close to anon-vacuum equilibrium. And for the existence of solutions
for arbitrary data(which may include vacuum states), Lions [12](see.also Feireisl et
al [3]) obtained global existence of $weA$ solutions-defined as solutions with finite
energy-when the exponent $\gamma$ is suitably large, where the only restriction on initial
data is that the initial energy is finite, so that the density is allowed to vanish.

Despite the important progress, the regularity, uniqueness $\bm{t}d$ behavior of $th\infty e$

weak solutions remain largely open. As emphasized in mry papers related to com-
pressible fluid dynamioe, the possible appearance of vacuum is one of the major diffi-
culties when trying to prove global existence $\bm{t}d$ strong regularity raeults. Hoff and
Smoller [5] proved that weak solutions of the compressible Navier-Stok\’e equations
(1.2) in one space dimension do not exhibit vacuum states in afinite time provided
that no vacuum is present initially under fairly general conditions on the data. On the
other hand, the results of Xin [17] $s$howed that there is no global vmooth solution to
Cauchy problem for (1.2) with anontrivial compactly supported initial density, which
gives results for finite time blow-up in the presence of vacuum.

For $\mu=\mu(\rho),\xi=\xi(\rho)$ and the multidimensional case, Vaigrt et al [16]first proved
that for the $2D$ case $\bm{t}d$ for the c\"ase $\mu$ is aconstant $\bm{t}d\xi(\rho)=a\beta$ , with $a>0,\beta>3$ ,
(1.2) with periodic boundary condition has aunique strong and $cla\epsilon sical$ volution with
density away from vacuum. More recently, $Bre8ch\bm{t}d$ Daejardins $[1,2]$ (see also [15])
have made important progress. Under the condition that $\xi(\rho)=2(\mu’(\rho)\rho-\mu(\rho))$ ,
they establish anew Bresch-Desjardins (BD)entropy lnequality which can not only be
applied to the vacuum case but $a1_{8}0$ be used to get the compactn\’es results for (1.2)
which extended the compactness results due to Lions [12]to the case $\gamma\geq 1$ .

We study mainly the initial-boundary-value problem (IBVP) for (1.2), where $\mu=\rho^{\alpha}$

with $\alpha>1/2$ , on spatial one-dimensional bounded spatial domains or periodic domains.
This contains the physical important model for shallow water equations (1.1). We first
establish the global existence of entropy weak solutions for the compressible Navier-
Stokae equations (1.2), with pressure $p=\rho^{\gamma_{\bm{t}}}d\gamma\geq\alpha/2$, for general initial data with
finite entropy and vacuum. The key in our $analysi_{8}$ is the construction non-vacuum
approximate solutions so that we ct make use of the stability $analysi_{8}i_{I1}[15]$ , where
the Bresch-Desjardins (BD) entropy inequality was used to obtain the compactness
results. In general, it seems rather difficult to investigate the dynamics of vacuum
states due to the degeneracy of nonlinear diffusion and the density function connecting
to vacuum continuously. Therefore, we further consider the cases of more $re$gular initial
data containing point vacuum or continuous vacuum of one piece, $\bm{t}d$ we show that
there is aglobal entropy weak solution which is unique $\bm{t}d$ regular with well-defined
velocity field at least for short time, $\bm{t}d$ the vacuum $stat\infty$ remain for the short time.
Then, we use some ideas due to [7, 10, 11] to prove that $\bm{r}y$ poesible vacuum state
in such global weak solutions which $satis6^{r}$ the BD entropy must vanish within finite
time. This shows that such short time structure and vacuum stat\’e of weak solutions
can not be maintained all the time. And $a\epsilon$ the vacuum states vtish, the spatial
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derivative of velocity (if it exists) has to blow up even if the velocity is regular enough
and well-defined before. After the vanishing of vacuum states, we can redefine the
velocity field and recover the nonlinear diffusion term in terms of density and velocity.
In addition, the global entropy weak solution is shown to become a strong solution and
tends to the non-vacuum equilibrium state exponentially in time. This phenomena,
applied to the compressible shallow water equations (1.1), seems to be never observed
for the compressible Navier-Stokes equations before.

2 Main results
We consider the initial-boundary-valu -problem (IBVP) for the 1D compressible

Navier-Stokes equations with density-dependent viscosity

$\rho_{t}+(\rho u)_{x}=0$ , (2.1)
$(pu)_{t}+(\rho u^{2}+p(\rho))_{x}-(\mu(\rho)u_{x})_{x}=0$ , (2.2)

with $\rho\geq 0$ the density, $\rho u$ the momentum. The pressure and $vi\epsilon cosity$ are assumed to
have the form: $i$

$p(\rho)=a_{1}\rho^{\gamma},$ $\mu(\rho)=a_{2}\rho^{\alpha}$ (2.3)

where $\gamma\geq 1,$ $a_{1}>0,$ $a_{2}>0$ , and $\alpha>1/2$ are constants.
For simplicity we only state our results on the IBVP of shallow water equations

(1.1) with periodic boundary conditions,

$\{\begin{array}{ll}\rho_{t}+(\rho u)_{x}=0, (\rho u)_{t}+(\rho u^{2})_{x}-(pu_{x} +(\rho^{2})_{x}=0,\rho, u are periodic in x of period 1,\rho(x,0)=\rho_{0}(x)\geq 0, \rho u(x, 0)=m_{0}(x).\end{array}$ (2.4)

In fact, our results still hold for $(2.1)-(2.3)$ and the following Dirichlet type boundary
conditions

pu$(O,t)=\rho u(1, t)=0$ , $t\geq 0$ .

Throughout the present paper the initial data is assumed to satisfy

$\{\begin{array}{ll}\rho_{0}\geq 0 a.e. in \Omega, \rho_{0}\in L^{1}(\Omega), (\sqrt{\rho_{0}})_{x}\in L^{2}(\Omega),m_{0}=0, a.e. on \{ \in\Omega|\rho_{0}(x)=0\}, \frac{|m_{0}|^{2}}{\rho 0}\in L^{1}(\Omega).\end{array}$ (25)

Remark 2.1 It should be clear that a large class of initial data satish the conditions
in (2.5). In particular, the assumptions (2.5) are satisfied for follorning initial data

$\rho_{0}(x)=(x-x_{0})^{2}$ , $m_{0}(x)=0$ , $x\in\Omega$ .
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We define the set of test functions $\Phi$ as follows,

$\Phi=$ { $\varphi\in C^{\infty}(\mathbb{R}\cross[0,$ $T))|\varphi$ is periodic in $x$ of period 1}.
Definition 2.2 (global weak solutions) For any $T>0,$ $(\rho,u)$ is said to be a weak
solution to (2.4) if

$\{\begin{array}{ll}0\leq\rho\in L^{\infty}(O,T;L^{1}(\Omega)\cap L^{\gamma}(\Omega)), (\sqrt{\rho})_{x}\in L^{\infty}(0,T;L^{2}(\Omega)),\sqrt{\rho}u\in L^{\infty}(O,T;L^{2}(\Omega)), pu_{x}\in L^{2} 0,T;W_{1oc}^{-1,1}(\Omega)),\end{array}$ (2.6)

and $(\rho,u)$ satisfies

$\int_{\Omega}\rho 0\varphi(x, 0)dx+\int_{0}^{T}\int_{\Omega}\rho\varphi_{t}dxdt+\int_{0}^{T}\int_{\Omega}\sqrt{\rho}\sqrt{\rho}u\varphi_{x}dxdt=0$, (2.7)

and

$\int_{\Omega}m_{0}\varphi(x, 0)dx+\int_{0}^{T}\int_{\Omega}\sqrt{\rho}(\sqrt{\rho}u)\varphi_{t}dxdt$

$+ \int_{0}^{T}\int_{\Omega}((\sqrt{\rho}u)^{2}+\rho^{2})\varphi_{x}dxdt-(\rho u_{x},$ $\varphi_{x}\rangle$ $=0$

for all $\varphi\in\Phi$ . The nonlinear diffusion term $\rho u_{x}$ is defined as

$\langle\rho u_{x}, \varphi\rangle$ $=$ $- \int_{0}^{T}\int\sqrt{\rho}\sqrt{\rho}u\varphi_{x}dxdt$

$-2 \int_{0}^{T}\int(\sqrt{\rho})_{x}\sqrt{\rho}u\varphi dxdt$ (2.8)

where $\rho\in L^{\infty}(\Omega\cross(O,T))$ due to (2.6). Moreover, $(\rho, \sqrt{\rho}u)$ is periodic.

Definition 2.3 (global entropy weak solutions) Let $(\rho,u)$ be a global weak solu-
tion (in the sense of Definition 2.2) to (2.4). Then, $(p, u)$ is said to be a global entropy
weak solution if there enists some function $\Lambda\in L^{2}(\Omega\cross(0,T))$ satisfying (2.8), $i.e.,$,

$\int_{0}^{T}\int\Lambda\varphi dxdt=-\int_{0}^{T}\int\sqrt{\rho}\sqrt{\rho}u\varphi_{x}dxdt-2\int_{0}^{T}\int(\sqrt{\rho})_{x}\sqrt{p}u\varphi dxdt$

for any $\varphi\in\Phi$ , and the following uniform entropy inequality holds

$\sup_{0\leq t\leq T}\int_{\Omega}-(|\sqrt{\rho}u|^{2}+|(\sqrt{\rho})_{x}|^{2}+\rho^{2})(x,t)dx+\int_{0}^{T}\int_{\Omega}(\rho_{x}^{2}+\Lambda^{2})(x, t)$dxdt

$\leq C_{0}\int_{\Omega}(\frac{|m_{0}|^{2}}{\rho 0}+|(\sqrt{\rho_{0}})_{x}|^{2}+\rho_{0}^{2}(x)dx$ (2.9)

with $C_{0}>0$ independent of $T$.
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We have the following result on the existence of global entropy weak solutions.

Theorem 2.1 (Global existence) Assume that the initial data $(\rho_{0},m_{0})sat\dot{u}$fies
(2.5) and $\frac{|mo|^{2+\nu}}{\rho_{0}^{1+\nu}}\in L^{1}(\Omega)$ for some positive constant $\nu$ . Then for any $T>0$ , there
enists a global entropy weak solution $(p, u)$ to the $IBVP(2.4)$ in the sense of Defini-
tion 2.3.

Next, we show that there is a global entropy weak solution $(p,u)$ in the sense of
Definition 2.3 for which the vacuum states and the structure of interface, if existing
initially, can be preserved for a short time, so long as the initial data has additional reg-
ularity besides (2.5) and the fluids and the vacuum states in initial data are connected
“smoothly”. In addition, the weak solution $(\rho, u)$ is actually a unique regular solution
for the short time. For simplicity, we consider the case of one point vacuum state
contained at $x=x_{0}\in(0,1)$ in the initial data $(\rho_{0}, m_{0})=(\rho_{0}, \rho_{0}u_{0})$ with additional
regularity

$A_{0}|x-x_{0}|^{\sigma}\leq\rho_{0}(x)\leq A_{1}|x-x_{0}|^{\sigma}$ , for any $x\in\Omega$ , (2.10)
$u_{0}\in C^{1}(\overline{\Omega})$ , $(\rho_{0}^{\gamma-1+1/2j})_{x}\in L^{2j}(\Omega),$ $\rho_{0}^{-1+1/2j}(\rho_{0}^{\alpha}u_{0x})_{x}\in L^{2j}(\Omega),$ $j=1,n$, (2.11)

with $n\geq 2$ an integer; and in the case of continuous vacuum state of one piece initially
on $\Omega^{0}=[x_{0}, x_{1}]\subset(0,1)$ in the initial data, we require

$\{\begin{array}{ll}A_{0}(x_{0}-x)^{\sigma}\leq\rho_{0}(x)\leq A_{1}(x_{0}-x)^{\sigma}, x\in[0,x_{0}),\rho_{0}(x)=0,m_{0}(x)=\rho_{0}u_{0}(x)=0, x\in[x_{0}, x_{1}],B_{0}(x-x_{1})^{\sigma}\leq\rho_{0}(x)\leq B_{1}(x-x_{1})^{\sigma}, x\in(x_{1},1]\end{array}$ (2.12)

and

$\{\begin{array}{ll}(\rho_{0}^{\gamma-1+1/2j})_{x}\in L^{2j}(\Omega), j=1,n, u_{0}\in C^{1}(\overline{\Omega}\backslash \Omega^{0}),\rho_{0}^{-1+1/2j}(\rho_{0}^{\alpha}u_{0oe})_{x}\in L^{2j}(\Omega\backslash \Omega^{0}), j =1,n,\end{array}$ (2.13)

with $n\geq 2$ an integer. Here, $\sigma,$ $A_{0},$ $A_{1}$ , and $B_{0},$ $B_{1}$ are positive constants, and the
power $\sigma\in(\sigma_{-},\sigma_{+})$ with positive constants $\sigma_{\pm}$ given in (2.14) later.

We have the following results on short time structure of global entropy weak solu-
tions.

Theorem 2.2 (Short time structure of vacuum states) In addition to the as-
sumptions of Theorem 2.1, assume further that there is either one point vacuum state in
initial data $(\rho_{0}, u_{0})$ with $(2.10)-(2.11)$ satisfied or a piece of continuous vacuum states
in initial data $(\rho_{0}, u_{0})$ with $(2.12)-(2.13)$ satisfied. Then, there erists a global entropy
weak solution $(p, u)$ to the $IBVP(2.4)$ in the sense of Definition 2.3.

Moreover, there is a short time $T_{*}>0$ , so that the global entropy weak solution
$(\rho,u)$ is unique1 and regular on the domain $\Omega\cross[0,T_{r}]$ , and the initial structure of
vacuum states is maintained for $t\in[0,T_{*}]$ in the following sense:

1Here the uniqueness is specified for density $\rho$ and momentum $pu=\sqrt{\rho}\sqrt{\rho}u$ for continuous vacuum
states of one piece.
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For the case of one point vacuum state initially, (2.10), the solution $(\rho,u)$ is regular
and unique on the domain $\overline{\Omega}\cross[0,T_{*}]$ ,

$(\rho,u)\in C^{0}(\overline{\Omega}\cross[0,T_{*}])$ , $u_{x}\in L^{\infty}(0,T_{*};C^{0}(\overline{\Omega}))$ ,
$\Vert u\Vert_{L^{\infty}(\Omega x[0,T_{*}])}+\Vert u_{x}\Vert_{L\infty([0,T.|;C^{0}(\Omega))}\leq C(T_{*})$ .

The one point vacuum state propagates along $pa$rticle path, namely, there is one particle
path $x=X_{0}(t)$ : $[0,T_{*}]arrow\overline{\Omega}$ with $X_{0}(t)\in C([0,T_{*}])$ defined by

$\dot{X}_{0}(t)=u(X_{0}(t),t)$ , $X_{0}(0)=x_{0}\in(0,1)$ ,

so that

$a_{-}|x-X_{0}(t)|^{\sigma}\leq p(x,t)\leq a_{+}|x-X_{0}(t)|^{\sigma}$

for $(x, t)\in\Omega\cross[0, T_{*}]$ , where the two positive constants $a\pm are$ independent of time $T_{*}$ .
In the case of a piece of continuous vacuum states initially, (2.12), there are two

particle pathes $x=X_{i}(t)$ : $[0,T_{*}]arrow\overline{\Omega}$ with $X_{i}(t)\in C([0,T_{*}]),i=0,1$ defined by

$\dot{X}_{1}(t)=u(X_{1}(t), t)$ , $X_{1}(O)=x_{t}\in(0,1),i=0,1$ ,

so that it holds for some positive constants $a_{\pm},$ $b\pm independent$ of the time $T_{*}$ ,

$a_{-}(X_{0}(t)-x)^{\sigma}\leq\rho(x,t)\leq a_{+}(X_{0}(t)-x)^{\sigma}$ ,

for $(x,t)\in[0,X_{0}(t))\cross[0,T_{*}]$ , and

$b_{-}(x-X_{1}(t))^{\sigma}\leq\rho(x,t)\leq b_{+}(x-X_{1}(t))^{\sigma}$

for $(x,t)\in(X_{1}(t), 1$] $\cross[0,T.]$ respectively, and the interfaces separating the fluid and
vacuum coincide with the pant$cle$ pathes

$p(x,t)=0,$ $\rho u(x,t)=0$ , $(x,t)\in[X_{0}(t),X_{1}(t)]\cross[0,T_{*}]$ .

The solution $(\rho,u)$ is regular and unique up to the vacuum boundary

$\rho\in C^{0}(\overline{\Omega}\cross[0,T_{*}])$ , $u\in\sigma(\overline{\Omega}\cross[0,T.]\backslash \Omega_{T}^{0}.)$,
$\Vert u\Vert_{L\infty(\Omega x[0,T.]\backslash \Omega_{T}^{0})}+\Vert u_{x}\Vert_{\iota\infty(\Omega x[0,T.]\backslash \Omega_{T*}^{0})}\leq C(T.)$.

where $\Omega_{T}^{0}$. $=(X_{0}(t),X_{1}(t))\cross[0,T_{*}]$ .

Remark 2.4 (1). The constant $e\varphi onents\sigma\pm are$ defined as $\sigma\pm=\beta\pm/(1-\beta_{\pm})>0$

with $\beta\pm detemined$ by

$\beta_{-}=\max\{\frac{1}{2\alpha}, \frac{1}{\gamma}(1-\frac{1}{2n})\}$ , $\beta_{+}=\min\{1, \frac{\iota}{\alpha}(1-\frac{1}{2n}), \frac{1}{1+3\alpha}(4-\frac{1}{n})\}$ ,

while the positive constants $a\pm aoe$ independent of th$e$ time T..
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(2). The regularity assumptions $(2.10)-(2.11)$ are satisfied for the following initial
data

$p_{0}(x)= \frac{1}{2}(A_{0}+A_{1})(|x-x_{0}|^{2})^{(\sigma-+\sigma+})/4$ $u_{0}(x)=0$ , $x\in\Omega$ ,
and the reyularity assumptions $(2.12)-(2.13)$ are satisfied for the initial data

$\rho_{0}(x)=\{\begin{array}{ll}\frac{1}{2}(A_{0}+A_{1})(x_{0}-x)^{(\sigma-+\sigma+)/2}, x\in[0,x_{0}),0, x\in(x_{0},x_{1}), \cdot u_{0}(x)=0,\frac{1}{2}(B_{0}+B_{1})(x-x_{1})^{(\sigma-+\sigma+)/2}, x\in(x_{1},1],\end{array}$
$x\in\Omega$ .

Next, we prove that for any global entropy weak solution $(\rho, u)$ to the IBVP (2.4)
in the sense of Definition 2.3, even though in some cases that the vacuum states may
exist for some finIte time, for instance, in the cases as shown by Theorem 2.2, any
possible vacuum state has to vanish within finite time after which the density is always
away from vacuum. Simultaneously, not only can the velocity field be defined in terms
of the density and momentum, and the nonlinear diffusion is represented in terms of
the density and velocity, but also the global entropy weak solution $(p, u)$ is shown to
be a unique and strong solution after the vanishing of vacuum states. We have the
following result.

Theorem 2.3 (Vanishing of vacuum states) Let $(\rho, u)$ be any global entropy weak
solution to the IBVP (2.4) in the sense of Definition 2. S. Then, there nist some time
$T_{0}>0$ (depending on initial data) and a constant p-so that

$inf\rho(x, t)\geq p_{-}>0$ , $t\geq T_{0}$ , (2.14)
$x\in\Omega$

and the global entropy weak solution $(\rho,u)$ becomes a unique strong solution $(\rho,u)$ for
$t\geq T_{0}$ and satisfies

$\{$

$\rho\in L^{\infty}(T_{0},t;H^{1}(\Omega)))$ $p_{t}\in L^{\infty}(T_{0},t;L^{2}(\Omega))$ , (2.15)
$u\in H^{1}(T_{0}, t;L^{2}(\Omega))\cap L^{2}(T_{0},t;H^{2}(\Omega))$ ,

with velocity $u$ and nonlinear diffusion term given by

$u^{\Delta}= \frac{\sqrt{\rho}u}{\sqrt{\rho}}$ , $(\rho^{\alpha}u_{x})_{x}=\Lambda_{x}$ ,

respectively. In addition, for
$u_{\epsilon}$ a $\frac{1}{\overline{\rho}_{0}}\int_{\Omega}m_{0}dx$

there $ex\dot{w}t$ two positive constants $\mu \mathfrak{v}c_{0}$ both depending on initial data $(nm_{0})$ and $\rho_{-)}$

such that
$\Vert(p-\overline{\rho}_{0},u-u_{\epsilon})(\cdot, t)\Vert_{L^{2}(\Omega)}\leq qe^{-\mu_{0}(t-T_{0})}$ , $t>T_{0}$ ,

where and what follows $\overline{f}$ denotes the average of $f$ over the bounded domain $\Omega,$ $i.e.$ ,

$\overline{f}=\frac{1}{|\Omega|}\int_{\Omega}f(x)dx=\int_{\Omega}f(x)dx$ .
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Remark 2.5 Theorem 2. 3 shows that any possible vacuum states must vanish in finite
time.

Finally, for any global entropy weak solution $(p,u)$ to the IBVP (2.4) in the sense
of Definition 2.3, the density is continuous, i.e., $\rho\in C(\overline{\Omega}\cross[0,T])$ for any $T>0$ ,
due to (2.6) and (2.7). Thus, the continuity of $\rho$ and Theorem 2.3 imply that if the
density contains vacuum states at least at one point, then there exists some critical
time $T_{1}\in[0,T_{0}$ ) with $T_{0}>0$ given by (2.14) and a nonempty subset $\Omega^{0}\subset\overline{\Omega}$ such that

$\{\begin{array}{ll}p(x, T_{1}).=0, \forall x\in\Omega^{0}\rho(x,T_{1})>0, \forall x\in\overline{\Omega}\backslash \Omega^{0},\rho(x,t)>0, \forall(x, t)\in\overline{\Omega}\cross(T_{1},T_{0}].\end{array}$ (2.16)

It follows from (2.15) easily that for any $\delta>0$ , it holds

$\int_{T_{1}+\delta}^{T_{0}}\Vert u_{x}\Vert_{L\infty}ds<\infty$ .

Under the condition that vacuum states appear, we shall prove that the spatial deriva-
tive of velocity (if regular enough and definable) blows up in finite time as the vacuum
states vanish, even if the solution is regular enough for short time so that the velocity
field and its derivatives are bounded as shown by Theorem 2.2.

Theorem 2.4 (Finite time blow-up) Let $(\rho,u)$ be any global entropy weak solution,
which contains vacuum states at least at one point for some finite time, to the $IBVP$

(2.4) in the sense of Definition 2. S. Let $T_{0}>0$ and $T_{1}\in[0,T_{0}$) be the time such that
(2.14) and (2.16) holds respectively.

Then, the solution $(\rho,u)$ blows up as vacuum states vanish. Namely, for $T_{1}$ satis-
fying (2.16) and for given any fixed $\eta>0$ , it holds

$\lim_{tarrow T_{1}^{+}}\int_{t}^{T_{1}+\eta}\Vert u_{x}\Vert_{L\infty}ds=\infty$ . (2.17)

On the other hand, if there exists some $T_{2}\in(0,T_{0})$ such that the weak solution $(p,u)$

satisfies
$\Vert u\Vert_{L^{1}(0,T_{2j}W^{1.\infty}(\Omega))}<\infty$ ,

then, there is a time $T_{3}\in[T_{2},T_{0}$ ) so that the blowup phenomena happens for $(\rho,u)$ ,
$i.e.$ ,

$\lim_{tarrow T_{S}^{-}}\int_{0}^{t}\Vert u_{x}\Vert_{\iota\infty}ds=\infty$ .

Remark 2.6 Theorem 2.4 implies that for any global entropy weak solution $(\rho,u)$ to
the $IBVP(2.4)$ in the sense of Definition 2. 3, which contains vacuum states at least at
one point initially, the finite time blowup phenomena (2.17) happens for such solution
$(\rho, u)$ .
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Remark 2.7 Theorems 2.1-2.4 provide a complete dynamical description on the van-
ishing of vacuum states and blow-up phenomena for the global entropy weak solutions
to the compressible Navier-Stokes equations with density-dependent viscosity. That is,
a global entropy weak solution enists for geneml large initial data with finite entropy.
For short time, such weak solution is unique and regular with well-defined velocity field
subject to additional initial regularity, and any enisting vacuum state is maintained with
the same interface structure as initial. Then, within finite time the vacuum states van-
ish definitely and the velocity blows up (even if it is regular enough and definable along
the interfaces). After the vanishing of vacuum states, the global entrvpy weak solution
becomes a strong one and tends to the non-vacuum equilibrium state exponentially in
time. This dynamical phenomena is quite similar to those well-known for the 3-D in-
compressible Navier-Stoke8 equations. However, before the time of vacuum-vanishing,
the uniqueness of the global entropy weak solution to the compressible Navier-Stokes
equations with density-dependent viscosity subject to the initial data is not known yet.

3 Outline of proof of Theorem 2.3
Here, we only prove (2.14).
We will employ an idea due to [7, 10, 11]) to obtain (2.14). Let $T\in(O, \infty)$ be fixed

and $C$ denote some generic positive constant independent of $T$. First, it is noted that
the total mass is conserved, i.e., for any $t\in(O,T$]

$\int_{\Omega}\rho(x,t)dx=\int_{\Omega}p_{0}(x)dx$ .

The entropy inequality (2.9) leads to

$\sup_{0\leq t\leq T}(\Vert p\Vert_{L\infty}+\Vert\rho_{x}\Vert_{L^{2}})+\int_{0}^{T}\Vert\rho_{x}\Vert_{L^{2}}^{2}dt\leq C$ . (3.1)

It will be shown below that
$g(t)^{\Delta}=\Vert(p-\overline{\rho_{0}})(\cdot,t)\Vert_{L^{4}(\Omega)}^{4}arrow 0$ 下 s $tarrow\infty$ . (3.2)

Now, we assume that (3.2) holds, and continue the proof of (2.14). In fact, the in-
equality (3.1) and the Poinc\’are-Sobolev inequality imply that

$\Vert(\rho-\overline{p_{0}})(\cdot, t)\Vert_{C(\pi)}$

$\leq C\Vert(p-\overline{\rho_{0}})(\cdot,t)\Vert_{L^{4}(\Omega)}^{2/3}\Vert p_{x}(\cdot, t)\Vert_{L^{2}}^{1/3}arrow 0$ , 邸 $tarrow\infty$ .

This finishes the proof of (2.14). It remains to prove (3.2). First, it follows directly
from (3.1) and the Poinc\’are-Sobolev inequality that

$\int_{0}^{T}g(t)dt$ $\leq$ $C \sup_{0\leq t\leq T}\Vert\rho-\overline{\rho_{0}}\Vert_{L\infty}^{2}\int_{0}^{T}\Vert\rho_{x}\Vert_{L^{2}}^{2}dt$

$\leq$ $C$.
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Note that (2.7) implies that

$\int_{0}^{T}|g’(t)|dt=4\int_{0}^{T}|\langle(\rho-\overline{p_{0}})^{3}, \rho_{t}\rangle_{H^{1}xH^{-1}}|dt$

12 $\int_{0}^{T}|\int_{\Omega}(\rho-\overline{p_{0}})^{2}p_{x}\sqrt{\rho}\sqrt{p}udx|dt$

$\leq$ $C \int_{0}^{T}\Vert\rho_{x}\Vert_{L^{2}}^{2}dt$

$\leq$ $C$.

The above two estimates easily yields (3.2). 口
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