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1 Introduction
In 1993, K. Nomura introduced a notion of t-homogeneous property of graphs and gave a com-
plete classification of 2-homogeneous bipartite distance-regular graphs. Soon after Nomura’s
classification, N. Yamazaki showed that bipartite distanceregular graphs of valency $k$ is 2-
homogeneous if the multiplicity of an eigenvalue is equal to $k$ . About the same time P. Ter-
williger and his then students G. Dickie and B. Curtin were studying antipodal Q-polynomial
distanceregular graphs and a special class of bipartIte Q-polynomial distance-regular graphs,
and Nomura’s result tumed out to cover a special case. In particular the following is known.
See [3, 4, 8, 15].

Theorem 1 Let $\Gamma$ be a distance-regular graph of diameter at least two. Then the following are
equivalent.

(i) $\Gamma$ is bipartite and 2-homogeneous.

(ii) $\Gamma$ is bipartite and the multiplicity of an eigenvalue is equal to its valency.
(iii) $\Gamma$ is a bipartite, antipodal $Qarrow polynomial$ distance-regular graph.

(iv) $\Gamma$ is bipartite 2-thin with exactly one irreducible module of endpoint 2.

A few years later P. Terwilliger and G. Dickie completed a $clas8ification$ of antipodal Q-
Polynomial distanceregular graphs, and J. Caughman is now very close to complete a classifica-
tion of bipartite Q-polynomial $di_{S}tancere_{1^{1ar}}$ graphs. Recently, A. Juri\v{s}i\v{c}, J. H. Koolen and
S. Miklavi\v{c} and others developed a study of triangle-free distance-regular graphs such that the
multiplicity of an eigenvalue is equal to its valency [5]. Hence Nomura’s result gave, in some
sense, a starting point of all that followed.

But I have other thoughts on Nomura’s classification of 2-homogeneous bipartite distance-
regular graphs. Most of the known classes of distance-regular graphs with unbounded diameter
are Q-polynomial. A distanceregular graph is $Q$-polynomial, or a $Q-\bm{i}_{S}tance- re_{1^{1ar}}$ graph
if $\Gamma$ satisfies the balanced condition defined by Terwilliger. The balanced condition is roughly
speaking a ‘nice’ embedding of $\Gamma$ on a sphere, which is closely related to combinatorial regularity.
Hence $Q- distance- re_{1}1ar$ graphs, or infinite series of known distance-regular graphs have several
types of combinatorial regularity. Therefore it is natural to investigate the following problem.

Classify distance-regular graphs with additional combinatorial regularities.
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However there are not many successful classifications of this type besides the classification
of 2-homogeneous bipartite distance-regular graphs. This is a motivation to review Nomura’s
result.

In the following we will discuss possible generalizations of Nomura’s result and its connection
to distance-regular graphs with strongly regular completely regular codes. At the end we remark
that a special case of the results can be drastically improved if we apply an old result of Nomura
and indicate a direction of possible generalizations.

2 Distance-Regular Graphs
Let $\Gamma=(X, R)$ be a connected graph with vertex set $X$ and edge set $R$ . Let $\partial(x, y)$ denote the
distance between $x$ and $y$ , which is the length of a shortest path connecting $x$ and $y$ , and the
diameter $d$ of $\Gamma$ is defined by $d= \max\{\partial(x, y)|x,y\in X\}$ . For $u\in X$ and $j\in\{0,1, \ldots,d\}$ , let

$\Gamma_{j}(u)=\{x\in X|\partial(u, x)=j\}$ and $\Gamma(u)=\Gamma_{1}(u)$ .
For $u\in X$ and $S\subset X,$ $e(u, S)=|\Gamma(u)\cap S|$ .

For $u,$ $v\in X$ with $\partial(u, v)=j$ let
$C(u, v)$ $=$ $C_{j}(u, v)=\Gamma_{j-1}(u)\cap\Gamma(v)$ ,
$A(u, v)$ $=$ $A_{j}(u, v)=\Gamma_{j}(u)\cap\Gamma(v)$ , and
$B(u, v)$ $=$ $B_{j}(u, v)=\Gamma_{j+1}(u)\cap\Gamma(v)$ .

Deflnition 1 A connected graph $\Gamma=(X, R)$ is said to be distance regular, or a distance-regular
graph $(DRG)$ , if the number

$p_{1j}^{h}=|\Gamma_{i}(u)\cap\Gamma_{j}(v)|,$ $h,i,j\in\{0,1, \ldots,d\}$

depends only on $i,$ $j$ and $h=\partial(u, v)$ .
Let $\Gamma=(X, R)$ be a DRG of diameter $d$ . Then the numbers $c_{j}=|C(u, v)|a\cdot=|A(u, v)|$

and $b_{j}=|B(u, v)|$ depend only on $j=\partial(u, v)$ and they determine all $p_{i,j}^{h}’ s$ .
’ $J$

$\iota(\Gamma)=\{b_{0}, b_{2}, \ldots, b_{d-1}; c_{1}, c_{2}, \ldots, c_{d}\}$

is called the intersection amey of $\Gamma$ .
A subset C C $X$ is said to be stmngly closed if

$C(u, v)\cup A(u, v)\subset C$ for all $u,$ $v\in C$.
For each $i=0,1,$ $\ldots,$

$d$, let $A_{i}\in Mat_{X}(C)$ be the i-th adjacency matrix defined by

$(A_{i})_{x,y}=\{\begin{array}{ll}1 \partial(x, y)=i0 otherwi_{8}e.\end{array}$

We set $A=A_{1}.$ $A$ is called the adjacency matrix of $\Gamma$ . The eigenvalues of $A$ i8 called theeigenvalues of $\Gamma$ . Let $k_{i}=|\Gamma_{i}(x)|$ and $v_{i}(\lambda)s$ are PolynomIak of degree $i$ in $\lambda$ defined by
$v_{0}=1,v_{1}(\lambda)=\lambda$ and $\lambda v_{i}(\lambda)=b_{i-1}v_{i-1}(\lambda)+uv_{i}(\lambda)+q_{+1}v_{i+1}(\lambda)$. Then $A_{i}=v_{i}(A)$ .

For the general theory of distance-regular graphs we refer the reader to [1].

62



3 t-Homogeneity
Let $\Gamma=(X, R)$ be a DRG of diameter $d$. For $x,$ $y\in X$ with $\partial(x, y)=h$ , set

$D_{j}^{i}=D_{j}^{i}(x, y)=\Gamma_{i}(x)\cap\Gamma_{j}(y),$ $0\leq i,j\leq d$ .
A Nomura diagram2 (intersection diagram) of rank $h$ is the collection $\{D_{j}^{\dot{*}}\}_{i_{\dot{\theta}}}$ with linesbetween $D_{j}^{i}’ s$ and $D_{t}^{\delta}’ s$ . We draw a line

$D_{j}^{i}-D_{t}^{\delta}$

if there is $p_{088}ibility$ of existence of edges.
We sometimes write

$D_{j}^{1\underline{p}}D_{t}^{\delta}$

in order to indicate that $e(x, D_{t}^{\delta})=p$ for every $x\in D^{i}\cdot$ .
We should note that the number $e(x, D_{t}^{\ell})dependsJ$ on $x\in D_{j}^{i}$ in general.

Deflnition 2 [Nomura [7]] Let $\Gamma=(X, R)$ be a DRG. Then $\Gamma$ is t-homogeneous if
$x\in D_{\delta}^{r}(u, v),$ $x’\in D_{s}^{r}(u’, v’)\Rightarrow e(x, D_{j}^{i}(u, v))=e(x’, D_{j}^{i}(u’, v’))$

for all $r,$ $s,$ $i,j$ and $u,$ $v,$ $u’,$ $v’\in X$ with $\partial(u, v)=\partial(u’, v’)=t$ .
Hence $\Gamma$ is t-homogeneous if and only if the number $e(x, D^{i}\cdot(u, v))$ is Independent on $x\in$

$D_{s}^{r}(u, v)$ and on the choice of $u,$ $v$ . In Particular, all numbers on the lines in the Nomura diagramof $\Gamma$ of rank $t$ are determined.
As for the $2- homogeneity$, the following two lemmas are of fundamental importance.

Lemma 2 (Nomura [9]) Let $\Gamma=(X, R)$ be a DRG of diameter $d$ . Then the following areequivalent.

(H1) There are integers $\delta_{2},$

$\ldots$ , $\delta_{d}$ such that $e(x, D_{r-1}^{r-1}(u, v))=\delta_{r}$ for all $u,$ $v\in X$ with $\partial(u,v)=$
$2$ and $x\in D_{r}^{r}(u, v)$ and $r=2,$ $\ldots,$

$d$ .
(H2) There are integers $\gamma_{1}$ , ., $\gamma_{d}$ such that $|\Gamma(u)\cap\Gamma(v)\cap\Gamma_{r-1}(x)|=\gamma_{r}$ for every $x\in X$ and

$u,v\in\Gamma_{r}(x)$ with $\partial(u, v)=2$ and $r=1,2,$ $\ldots$ , $d$ .
Lemma 3 (Nomura [8]) Let $\Gamma=(X, R)$ be a bipartite or almost bipartite $(a=\cdots-a$
$0)$ DRG of diameter $d$ . Then $\Gamma$ is 2-homogeneous if and only if $\Gamma$ satisfies $(H1)1$ $-d-1-$

4 A Classification by Nomura
K. Nomura classified 2-homogeneous bipartite DRGs completely and he extended its proof tocover almost bipartite case, I.e., $a_{1}=\cdots=a_{d-1}=0$, where $d$ is the diameter.
Theorem 4 (Nomura [8, 9]) Let $\Gamma$ be a $bipan\iota te$ or almost bipartite 2-homogeneous DRG ofdiameter $d>0$ and valency $k$ . Then $\Gamma$ has one of the following intersection $a 7Uys$:

(i) $\{k;1\},$ $k>0$ . $(K_{k+1}.)$

Nomura is not the $flr\epsilon t$ one to use this diagram but he is the one who aPplied it sxtensivel to varietiof $problem8$ and made etcient use of the diagrams of various ranks. The definition of $t- homogeneityy$ is a $el\infty very$

natural one if one u\S es this diagram of various ranks.
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(ii) $\{k, k-1;1, k\},$ $k>1$ . $(K_{k,k}.)$

(iii) $\{k, k-1;1, c\},$ $k=\gamma(\gamma^{2}+3\gamma+1)$ . $c=\gamma(\gamma+1),$ $\gamma>0^{3}$ .
(iv) $\{k, k-1,1;1, k-1, k\},$ $k>1$ . (Complement of 2 $x(k+1)$ -grid.)
(v) $\{4\gamma, 4\gamma-1,2\gamma, 1;1,2\gamma, 4\gamma-1,4\gamma\},$ $\gamma>0$ . (Hadamard graph of valency $k=4\gamma.$ )

(vi) $\{k, k-1, k-c, c, 1;1, c, k-c, k-1, k\},$ $k=\gamma(\gamma^{2}+3\gamma+1)$ . $c=\gamma(\gamma+1),$ $\gamma>0$ . (Antipodal
double cover of (iii).)

(vii) $\{2, 1, \cdots, 1;1, \cdots, 1,2\},$ $d>1$ . (Cycle of length $2d.$)

(viii) $\{2, 1, \cdots, 1;1, \cdots, 1,1\},$ $d>1$ . (Cycle of length $2d+1.$)

(ix) $\{k, k-1, k-2, k-3, \cdots, 1;1,2,3, \cdots, k-1, k\},$ $k=d$. (d-dimensional hypercube.)
(x) $\{2d+1,2d, 2d-1,2d-2, \cdots,d+2;1,2,3, \cdots, d-1, d\},$ $d>1$ . (Folded graph of $(2d+1)-$

dimensional hypercube.)

Besides the trivial cases (i) and (viii), (x) is the only nonbipartite case.

Outline of the Proof: By Lemma 2 and Lemma 3, we set
$\gamma_{i}=|\Gamma_{i-1}(u)\cap\Gamma(x)\cap\Gamma(y)|$

where $\partial(x, y)=2$ and $u\in D_{i}^{i}(x, y)$ .
The following lemma provides basic equations on parameters. The proof of it is given by

counting arguments.

Lemma 5 (Nomura [8, 9]) The following hold.
(i) $(k-2)(\gamma_{2}-1)=(c_{2}-1)(c_{2}-2)$ .
(ii) $\gamma_{i}(q_{+1}-1)=q(c_{2}-1),$ $(0<i<d)$ .

(iii) $(c_{2}-1)(\gamma_{i}-1)=(q-1)(\gamma_{2}-1),$ $(0<i<d)$ .
Now we explain how the proof of Theorem 4 goes.

1. We may assume $d\geq 3,$ $k\geq 3$ and $\gamma_{2}\geq 1$ .
2. Suppose $\gamma_{2}>1$ . Then by (i) and (ii),

$k= \frac{(c_{2}-1)(c_{2}-2)}{\gamma_{2}-1}c_{3}=\frac{c_{2}(c_{2}-1)}{\gamma_{2}}+1$ ,

and $2c_{3}>k\geq c_{3}+b_{3}$ . Hence $d\leq 5$ , as $c_{3}>b_{3}$ .
3. Suppose $\gamma_{2}=1$ . Then $c_{2}=1$ or $c_{2}=2$ by (i).

4. If $\gamma_{2}=1$ and $c_{2}=1$ , then by (ii) $q_{+1}=1$ or $\gamma_{i}=0$ and $b_{i-1}=1$ .
5. Suppose $\gamma_{2}=1$ and $c_{2}=1+q>1$ . Then $\gamma_{i}=1$ by (iii). Now by (ii), $q_{+1}-1=$

$q(c_{2}-1)=q\cdot q$ . Hence $q=1+q+\cdots+q^{i-1}$ . In particular $ci=i$ if $c_{2}=2=1+q$ .
Note that in (i) $c_{2}=1$ and 2 are special, while (ii) and (iii) describes equations which hold

for much larger class of DRGs.
$\overline{3Antipodal}$quotient of5-dimen8ional hypercube when $\gamma=1$ , Higman-Sims graph when $\gamma=2$ , the existenceof graph8 is unknown when $\gamma>2$ .
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Bipartite $\subset$ Regular Near $2d$-gon

口 口

Bipartite or Almost Bipartite C Regular Near Polygon

口 口

Triangle IFliree Parallelogram Free

寡 $\cap$く

Order $(s, t)$ $\supset$ Kite Ftee

Table 1: DRGs of Order $(s, t)$

5 DRGs of Order $(s, t)$

To seek generalizations, we review classes of DRGs which include bipartite DRGs as a subclass.
Let $\Gamma=(X, R)$ be a DRG of valency $k$ and diameter $d$ . $\Gamma$ is said to be $t\dot{n}angle- fiee$ if $a_{1}=0$ .
A kite of lengh $i$ is a 4-tuple xyzw such that $\partial(x, y)=\partial(x, z)=\partial(y, z)=1,$ $\partial(x,w)=i$ ,

and $\partial(y,w)=\partial(z, w)=i-1$ . $\Gamma$ is said to be hte-ffee if there is no kite of any length.
A parallelogram of length $i$ is a 4-tuple xyzw such that $\partial(x, y)=\partial(z,w)=1,$ $\partial(x,z)=i$ , and

$\partial(x, w)=\partial(y, w)=\partial(y, z)=i-1$ . $\Gamma$ is said to be Parallelogram-flee if there is no parallelogram
of any lengh. The parallelogram-hee condition is closely related to the existence of strongly
closed subgraphs. See $[10, 14]$ .

$K_{2,1,1}$ is a graph with four vertices and five edges, and it is nothing but a kite of length 2 anda parallelogram of length 2. If $\Gamma$ does not contain $K_{2,1,1}$ , then there exist positive integers $s,$ $t$

such that every maximal clique is of size $s+1$ and $\Gamma(x)$ is isomorphic to a disjoint union of $t+1$
clique8 of size $s$ . $\Gamma$ is said to be of order $(s, t)$ if there is no $K_{2,1,1},$ $a_{1}=s-1$ and $k=s(t+1)$ .

A DRG $\Gamma=(X, R)$ of diameter $d$ is said to be a regular near polygon (RNP) if it is of
order $(s, t)$ for some integers $s$ and $t$ , and for every maximal clique $L$ and a vertex $x\in X$ with
$\partial(x, L)=i<d,$ $|\Gamma_{i}(x)\cap L|=1$ . If there is no maximal clique $L$ such that $L\subset\Gamma_{d}(x)$ forany $x\in X$ , it is called a regular near $2d$-gon (RN $2d$-gon). A regular near 4-gon is called a
generalized quadrangle.

6 A Modification of 2-Homogeneity
In order to include larger class of DRGs having a certain rank 2 regularity, we weaken the
$2$-homogeneity a little and present a generalization of Theorem 4.
Definition 3 Let $\Gamma=(X, R)$ be a triangle-Ree-DRG of diameter $d$ .
Then $\Gamma$ is said to be 2-homogeneous [resp. dmost 2-homogeneous] if $\gamma_{i}$ exists for $i=2,3,$ $\ldots$ , $d$ ,
[resp. $i=2,3,$ $\ldots$ , $d-2$],

$|\Gamma(u)\cap\Gamma(v)\cap\Gamma_{i-1}(w)|=\gamma_{i}$

for every $w\in X,$ $u,$ $v\in\Gamma_{i}(w)$ with $\partial(u, v)=2$ .
Theorem 6 Let $\Gamma=(X, R)$ is a triangle-free almost $2$ -homogeneous DRG of diameter $d\geq 3$

and valency $k\geq 3$ . If $d=3$, in addition assume $\gamma_{2}$ exists. Then $\Gamma$ is isomorphic to one of thefollowing.
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(i) 2-homogeneous bipartite:

(ii) The folded graph of abinary Hamming 9raph $H(2d+1,2)$ .

(iii) The folded graph of a binary Hamming graph $H(2d, 2)$ .

(iv) The Coxeter graph with intersection array: {3, 2, 2, 1; 1, 1, 1, 2}.
(v) The dodecahedron with intersection amay: {3, 2, 1, 1, 1; 1, 1, 1, 2, 3}.
(vi) The Biggs-Smith graph with intersection $amy;\{3,2,2,2,1,1,1;1,1,1,1,1,1,3\}$ .

(vii) The coset gmph of the extended binar3t Golay code with intersection $amy$:
$\{24, 23, 22, 21; 1, 2, 3, 24\}^{4}$ .

(viii) A DRG with parameters $c_{d-1}=1,$ $a_{1}=\cdots=a_{d-1}=0$ and $d\leq 6$ .
(ix) A DRG with parameters $q=i$ for $i=1,2,$ $\ldots,$ $d-1,$ $a_{1}=\cdots=a_{d-3}=0,$ $a_{d-2}=d-1<$

$a_{d-1}$ .
(x) A DRG of valency $k\geq 4$ with parameters $c_{d-1}=1,$ $a_{1}=\cdots=a_{d-4}=0,$ $a_{d-3}\leq 1$ ,

$a_{d-2}\leq 1$ and $a_{d-1}>0$ .
Moreover, if $\gamma_{d-1}$ exits, (iii), (vii), (viii), (ix) are excluded and in (x), $c_{d}=1,$ $a_{d-3}=0$ , and
$a_{d-2}=a_{d-1}=1$ .

7 Completely Regular Codes
In Theorem 4 and Theorem 6, the case $c_{2}=2$ is essential and the existence of $\gamma_{1}’ s$ is cJosely
related to the condition that every quadrangle is completely regular. Before we state a result
that states their relation, we give definitions of necessary terminologies. $\cdot$

Let $\Gamma=(S, R)$ be a DRG, and $C$ a nonempty subset of $X$ . Then the width of $C$ is defined
by $w(C)= \max\{\partial(x, y)|x, y\in C\}$ . For $x\in X,$ $\partial(x, C)=\min\{\partial(x,y)|y\in C\}$, and
$t(C)= \max\{\partial(x, C)|x\in X\}$ is called the covering mdius of $C$ .

A nonempty subset $C$ of a vertex set $X$ is said to be completely regular, or a completely
regular code, if the following number

$\pi_{i,j}=|\Gamma_{j}(x)\cap C|$

depends only on $i=\partial(x, C)$ and $j$ for all $i,j\in\{0,1,2, \ldots, n\}$ .
Let $\Gamma=(X, R)$ be a DRG of diameter $d,$ $C=\{x, y, z, w\}$ a quadrangle, $x\sim y\sim z\sim w\sim x$ ,

$x \oint z$ and $y \oint w$ . Let $u\in\Gamma_{i+2}(x)\cap\Gamma_{i}(z)$ with $i+2\leq d$ . Then $|\Gamma_{i}(x)\cap C|=1$ , and the
following proposition is straightforward.

Proposition 7 Let $\Gamma=(X, R)$ be a $DRG$ of diameter $d\geq 3$ . Then the following are equivalent.

(i) There is a quadrangle, and for every quadrangle $C$ and a vertex $u\in X$ with $\partial(u, C)=i\leq$

$d-2,$ $\gamma_{i}(u, C)=|\Gamma_{i}(u)\cap C|=1$ .
(ii) For all vertices $x,$ $y\in X$ with $\partial(x, y)=2$ and a vertex $u\in X$ with $\partial(x, u)=\partial(y, u)=i\leq$

$d-2,$ $\gamma(x, y;u)=|\Gamma(x)\cap\Gamma(y)\cap\Gamma_{i-1}(u)|=1,$ $a_{1}=a_{2}=\cdots=a_{d-2}=0$ and $c_{2}=2$ .
$\overline{4Thi_{8}i_{8}}$an almost2-homogenmus bipartite graph. Such graphs were clusified by B. Curtin [4] and A. Juri\S \ddagger P,
J. H. Koolen and S. Miklavi6 [5]. But both of the result8 do not contain this graph.

66



Since the case (ii) above is a special case of Theorem 6, we have the following as a corollary.
Corollary 8 Let $\Gamma=(X, R)$ be a DRG of diameter $d\geq 4$ . Suppose there is a quadrangle, andevery quadrangle is a completely regular code. Then one of the following holds.

(i) The binary Hamming gmph $H(d, 2)$ .
(ii) The folded graph of a binary Hamming gmPh H$(2d+1,2)$ .

(iii) The folded graph of a binary Hamming graph $H(2d, 2)$ .
(iv) The coset gmph of the extended $bina\eta$ Golay code with intersection anay:

$\{24, 23, 22, 21_{1}\cdot 1,2,3,24\}$ .

Sinoe a quadrangle is a strongly regular graph, it is natural to aek about the DRGs havingcompletely regular strongly regular subgraphs. Here by strongly regular graphs we mean DRG8of diameter two, hence connected.

Theorem 9 Let $\Gamma=(X, R)$ be a Parallelogmm-ffee-DRG of diameter $d>4$ such that $b$

and $a_{2}\neq 0.$ SuPpose $eve\eta$ stbngly closed subgmph $C$ of diameter 2 is $completelyregular.Then-ca_{1}>b_{2}$

for every pair of venices $x,$ $y$ at distance $d-1,$ $\Gamma$ has a stmngly closed subgmph $Y$ of diameter$d-1$ containing $x$ and $y$ and $Y$ is isomorphic to a Hamming graph $H(d-1, m)$ for some $m>2$or a dual polar gmph.

In general the covering radius satisfies $t(C)\geq d-w(C)$ . But if equality is attained we havean algebraic characterization of completely regular codes.

Theorem 10 ([2, 11]) Let $\Gamma=(X, R)$ be a DRG of diameter $d$, and $C$ a nonempty subset ofX. Let

$\rho_{C}(\lambda)=\frac{1}{|X|}\sum_{i=0}^{d}\eta_{i}\frac{v_{i}(\lambda)}{k_{i}}\in R[\lambda]$ ,

where $\eta_{i}=|\{(x, y)\in CxC|\partial(x, y)=i\}|$ . If $\rho_{C}(\lambda)$ has $w(C)$ roots among the eigenvalues of$\Gamma$ , then $C$ is completely regular of covering mdius $d-w(C)$ .
H. Tanaka [12] and others claesified completely regular codes of covering radius $d-w(C)$under an extra condition, i.e., $w+w^{*}=d$ , for several classae of DRGs. When $\Gamma$ is a Hammingraph or a dual polar graph, such completely regular codes are strongly closed. As an aPplication

$g$

to the previous theorem, we obtain a kind of the converse of their results.

Theorem 11 Let $\Gamma=(X, R)$ be a Pamllelogmm-ffee-DRG of order $(s, t)$ and diameter $d>4$ .Suppose $b_{1}>b_{2}$ and $a_{2}\neq 0$ . Let $q=c_{2}-1$ . Then the following are equivalent.
(i) There is a completdy regular code $C$ of covering mdius $d-2$ such that the induced $su$bgraphon $C$ is a strongly regular graph.

(ii) $Eve\eta$ strvngly closed subgraph of diameter 2 is completely regular with covering radius$d-2$ and that it is a generalized quadmngle.
(iii) $q\neq 0$ and $\Gamma$ has $eigenvalues-t-1$ and $s-t/q$ .
(iv) $\Gamma$ is isomorphic to a Hamming gmph $H(d, m)$ for some $m>2$ or a dual polar graph.
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8 Remarks
For the case $q=1$ , much stronger result stated in Corollary 14 below holds that is a direct
consequence of Corollary 13 based on Theorem 12 of K. Nomura.

Theorem 12 (Nomura [6]) Let $\Gamma$ be a DRG of order $(s, t),$ $s>1$ , diameter $d\geq 3$ with
pammeters $c_{i}=i$ for $i=1,2,$ $\ldots,$

$e$ and $a_{i}=i(s-1)$ for $i=1,2,$ $\ldots$ , $e-1$ for some $e$ with
$3\leq e\leq d$ . Then there is a covering $\theta$ : $H(t+1, s+1)arrow\Gamma$ with the following properties. For a
vertex $u$ of $\Gamma,$ $C=\theta^{-1}(u)$ is an e-emr correcting completely regular code with covering radius
$d$ . Moreover if $e=d$, or $e=d-1$ , then $d=t+1$ and $\Gamma$ is isomo$rp$hic to $H(d, s+1)$ .

Although $s=3$ is not included in the original paper, we can follow the same line of the proof
if $\Gamma$ is known to be of order $(s, t)$ . In the case $e=d-1,$ $C$ is a uniformly packed code. By the
classification result of H. van Tilborg in [13], we obtain the assertion as $e\geq 3$ .
Corollary 13 Let $\Gamma$ be a Parallelogram-free-DRG of order $(s,t)$ with $c_{2}=2,$ $a_{2}=2(s-1)$ and
$c_{3}=3$ with $s>1$ . If the diameter $d\geq 3$ , then $\Gamma$ is isomorphic to the Hamming gmph $H(d, q)$ .
Corollary 14 Let $\Gamma$ be a Pamllelogmm-free-DRG of order $(s, t)$ with $c_{2}=2$ . Suppose $\Gamma$ contains
a strongly regular subgmph with parameters $(\kappa, \lambda, \mu)$ . If $\kappa\neq\mu$ and $\pi_{i,j}=|\Gamma_{j}(x)\cap C|$ depends
only on $i=\partial(x, C)$ and $j$ whenever $(i,j)=(1,1),$ $(1,2)$ or $(2, 1)$ . Then $\Gamma$ is isomorphic to the
Hamming graph $H(d, q)$ .

Finally we list possible further generalizations of the results in this article.

Problems I. (Generalizations)

1. Characterize bipartite $Q$-polynomial DRGs by rank 2-structure.
2. Characterize $Q$-polynomial regular near polygons by rank 2-structure.
3. Characterize DRGs with $r=r(\Gamma)=\ell(c_{1}, a_{1}, b_{1})>2$ by rank $(r+1)$-structure.
4. Let $C$ be a strongly closed completely regular of width at least two. Find a condition that

$\gamma_{j}=|\Gamma_{j}(u)\cap C|=1$ , whenever $\partial(u, C)=j$ .
5. Classify regular near polygons of order $(s, t)$ with $s>1$ such that $c_{2}=1+q>1$ and

$c_{3}=1+q+q^{2}$ .

Problems II. (FeasIble Arrays) We list three types of intersection arrays of interest. Type
(A) has to do with Problem I-5 and $Th\infty rem9$ . Compare it with Theorem 12. Type (B) is the
case (viii) in Theorem 6, and type (C) is a general form of the cases (vii) and (ix) in the same
theorem.

Let $[i]_{q}=1+q+\cdots+q^{1-1}=(_{1}^{i})_{q}$

(A) $\{$

$0*$

$s-11\ldots\cdot\cdot[i]_{q}(s-1)[i]_{q}b_{i}\ldots[d-1]_{q}(s-1)[d-1]_{q}b_{d-1}a_{d}c_{d}*\}$

$s(t+1)$ $st$

(B) $\{$ $k0*k-101$ $\ldots k-i0i\ldots k-d+3d-30k-2s+3d-1d-2d-1a_{d-1}b_{d-1}a_{d}c_{d}*\}$
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(C) $\{$

$0*$ $s-11$

. .

$\cdot$

$s-1st1\ldots s-1st1a_{d-2}b_{d-2}c_{d-2}a_{d-1}b_{d-1}c_{d-1}a_{d}c_{d}*\}$

$s(t+1)$ $st$
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