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1 Introduction

In 1993, K. Nomura introduced a notion of t-homogeneous property of graphs and gave a com-
plete classification of 2-homogeneous bipartite distance-regular graphs. Soon after Nomura’s
classification, N. Yamazaki showed that bipartite distance-regular graphs of valency k is 2-
homogeneous if the multiplicity of an eigenvalue is equal to k. About the same time P. Ter-
williger and his then students G. Dickie and B. Curtin were studying antipodal Q-polynomial
distance-regular graphs and a special class of bipartite Q-polynomial distance-regular graphs,

and Nomura’s result turned out to cover a special case. In particular the following is known.
See [3, 4, 8, 15).

Theorem 1 LetT be a distance-regular graph of diameter at least two. Then the following are
equivalent.

(i) T is bipartite and 2-homogeneous.
(i) T is bipartite and the multiplicity of an eigenvalue is equal to its valency.
(iii) T is a bipartite, antipodal Q-polynomial distance-regular graph.

(iv) T is bipartite 2-thin with ezactly one irreducible module of endpoint 2.

A few years later P. Terwilliger and G. Dickie completed a classification of antipodal Q-
polynomial distance-regular graphs, and J. Caughman is now very close to complete a classifica-
tion of bipartite Q-polynomial distance-regular graphs. Recently, A. Jurisi¢, J. H. Koolen and
S. Miklavig and others developed a study of triangle-free distance-regular graphs such that the
multiplicity of an eigenvalue is equal to its valency [5]. Hence Nomura’s result gave, in some
sense, a starting point of all that followed.

But I have other thoughts on Nomura’s classification of 2-homogeneous bipartite distance-
regular graphs. Most of the known classes of distance-regular graphs with unbounded diameter
are Q-polynomial. A distance-regular graph is Q-polynomial, or a Q-distance-regular graph
if " satisfies the balanced condition defined by Terwilliger. The balanced condition is roughly
speaking a ‘nice’ embedding of T on a sphere, which is closely related to combinatorial regularity.
Hence Q-distance-regular graphs, or infinite series of known distance-regular graphs have several
types of combinatorial regularity. Therefore it is natural to investigate the following problem.

Classify distance-regular graphs with additional combinatorial regularities.

1This research was partially supported by the Grant-in-Aid for Scientific Research (No.17540039), Japan
Society of the Promotion of Science.
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However there are not many successful classifications of this type besides the classification
of 2-homogeneous bipartite distance-regular graphs. This is a motivation to review Nomura’s
result.

In the following we will discuss possible generalizations of Nomura’s result and its connection
to distance-regular graphs with strongly regular completely regular codes. At the end we remark
that a special case of the results can be drastically improved if we apply an old result of Nomura
and indicate a direction of possible generalizations.

2 Dista_nce-Regular ‘Graphs

Let I' = (X, R) be a connected graph with vertex set X and edge set R. Let 9(z,y) denote the
distance between z and y, which is the length of a shortest path connecting = and y, and the
diameter d of T is defined by d = max{d(z,y) | z,y € X} Foru€ X and j € {0,1,...,d}, let

Tj(u) = {z € X | 8(u,z) = j} and I'(u) = I'; (u).

Foru€ X and S C X, e(u,S) = [I'(u) N §|.
For u,v € X with d(u,v) = j let

C(u,v) = Cj(u,v) = I'j_1(u) NT(v),
A(v,v) = Aj(u,v) = Tj(u)NT'(v), and
B(u,v) = Bj(u,v) = [jt1(u)nC(w).
Lo (u) ' (u) Fi1(u) Ls(u) Lip1(u) Ta(u)

Definition 1 A connected graph I' = (X, R) is said to be distance regular, or a distance-regular
graph (DRG), if the number :

pbj = [Ti(w) NT3(v)], hyi,j € {0,1,...,d}
depends only on ¢, j and h = 8(u, v).

Let I' = (X, R) be a DRG of diameter d. Then the numbers ¢; = [C(u,v)|, aj = |A(u,v)|
and b; = [B(u, v)| depend only on j = 8(u, v) and they determine all p{"j ’s.
¢(T") = {bo, b2,..., ba-1;c1,c2,... ,cd}

is called the intersection array of T".
A subset C C X is said to be strongly closed if

C(u,v) U A(u,v) C C for all u,v € C. ‘
For each i = 0,1,...,d, let A; € Maty (C) be the i-th adjacency matriz defined by

(Ai)a:,y = { 1 O(z,y) =1

‘ 0 otherwise.
We set A = A;. A is called the adjacency matriz of I'. The eigenvalues of A is called the
eigenvalues of I'. Let k; = |Ty(z)| and v;()\)’s are polynomials of degree i in )\ defined by
v =1,v1(A) = X and y;(\) = i-1Vi-1(A) + a;vi(A) + ¢;41vi41()). Then A; = vi(A).
For the general theory of distance-regular graphs we refer the reader to (1].
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3 t-Homogeneity
Let I' = (X, R) be a DRG of diameter d. For z, y € X with 8(z,y) = h, set
Dj = Dj(z,y) =Tu(z) NTy(y), 0< i, < d.

A Nomura diagram?® (intersection diagram) of rank h is the collection {D;}, j With lines
between D}’s and Dj’s. We draw a line

D D;
if there is possibility of existence of edges.
We sometimes write -
Dj D}

in order to indicate that e(z, D}) = p for every € D;.
We should note that the number e(z, Df) depends on z € D;'- in general.

Definition 2 [Nomura [7]] Let T = (X, R) be a DRG. Then T is t-homogeneous if
z € Di(u,v), &’ € Di(u,v') = e(z, Di(u,v)) = (o, D;(u',v'))
for all r, 3,4, and u,v, v/, v € X with O(u,v) = 8(v/,v') =t.

Hence I is t-homogeneous if and only if the number e(z, D;- (w,v)) is independent on z €
D7 (u,v) and on the choice of u,v. In particular, all numbers on the lines in the Nomura diagram
of I' of rank ¢ are determined.

As for the 2-homogeneity, the following two lemmas are of fundamental importance.

Lemma 2 (Nomura [9]) Let I = (X, R) be a DRG of diameter d. Then the following are
equivalent.

(H1) There are integers 63, ..., 64 such that e(z, D{=1(u,v)) = &, for allu,v € X with o(u,v) =
2 and z € D} (u,v) andr = 2

(H2) There are integers ,,...,v4 such that IT'(u) NT(v) NTro1(z)| = 74y for every z € X and
u,v € I'y(z) with 8(u,v) =2 and r = 1,2,...,d.

Lemma 3 (Nomura [8]) LetT = (X, R) be a bipartite or almost bipartite (a; = -+- = ag_; =
0) DRG of diameter d. Then T is 2-homogeneous if and only if T' satisfies (H1).

4 A Classification by Nomura

K. Nomura classified 2-homogeneous bipartite DRGs completely and he extended its proof to
cover almost bipartite case, i.e., a; = ... = a4-1 = 0, where d is the diameter.

Theorem 4 (Nomura [8, 9]) LetT be a bipartite or almost bipartite 2-homogeneous DRG of
diameter d > 0 and valency k. Then T has one of the following intersection arrays:

(i) {k;1}, k> 0. (Ki41.)

*Nomura is not the first one to use this diagram but he is the one who applied it extensively to varieties
of problems and made efficient use of the diagrams of various ranks. The definition of t-homogeneity is a very
natural one if one uses this diagram of various ranks.
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(i) {k,k—1;1,k}, k> 1. (Kik.)

(iii) {k,k—1;1,¢c}, k=v(v*+3y+1). c=y(y+1), v > 03,

(iv) {k,k—1,1;1,k - 1,k}, k > 1. (Complement of 2 x (k+1)-grid.)

(v) {47,47-1,2v,1;1,2v,4y - 1,4¢}, v > 0. (Hadamard graph of valency k = 4y.)

(Vi) {k’k—' l,k-C,C,1;1,C,k—c,k—l,k}, k= 7(72+37+1)- C= ’Y("Y+1), v >0. (Antipodal
double cover of (iii).) ‘

(vii) {2,1,---,1;1,--+,1,2}, d > 1. (Cycle of length 2d.)
(viii) {2,1,---,1;1,-++,1,1}, d > 1. (Cycle of length 2d + 1.)
(ix) {k,k—1,k—-2,k=3,--,1; 1,2,3,---,k~1,k}, k =d. (d-dimensional hypercube.)

(x) {2d+1,2d,2d~1,2d~2,---,d +21,2,3,--,d— 1,d}, d > 1. (Folded graph of (2d+ 1)-
dimensional hypercube.)

Besides the trivial cases (i) and (viii), (x) is the only nonbipartite case.

Outline of the Proof: By Lemma 2 and Lemma 3, we set
% = [Tiz1(u) NT(z) NT(y)]

where 8(z,y) = 2 and u € Di(z,y).
The following lemma provides basic equations on parameters. The proof of it is given by
counting arguments.

Lemma 5 (Nomura [8, 9])) The following hold.
(1) (k=2)(y2—1) = (e2 — 1)(c2 ~ 2).
(1) %(ci+1 —=1) =ci(ca — 1), (0 < i < d).
(i) (-1 -1)=(ci—1)(r-1), 0<i<d).
Now we explain how the proof of Theorem 4 goes.
1. We.may assumed > 3, k> 3 a,nd 2 > 1.
2. Suppose 72 > 1. Then by (i) and (ii),

k= (02—1)(C2—2), c3=ci(ci—_1)+1
72— 1 Y2
and 2c3 > k > c3 + b3. Hence d < 5, as c3 > bs.

’

3. Suppose 72 = 1. Then ¢z =1 or ¢z = 2 by (i).
4. Ify2=1and ¢3 = 1, then by (i) c;4; =1 ory; =0 and b;_; = 1.

5. Suppose 72 = land g = 1+¢ > 1. Then ; = 1 by (iii). Now by (ii), ¢;41 — 1 =
ci(cc—1)=c;-q. Hencec;=1+q+ .-+ ¢gi~1. In particular ¢; =i if o =2=1+4¢.

Note that in (i) c2 = 1 and 2 are special, while (i) and (iii) describes equations which hold
for much larger class of DRGs.

3 Antipodal quotient of 5-dimensional hypercube when v = 1, Higman-Sims graph when v = 2, the existence
of graphs is unknown when v > 2.
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C Begular Near 2d—gon]

N N

|Bipa.rtite or Almost Bipartit—e] C LRegula.r Near Polygozq

N N
| Triangle Free| | Parallelogram Free|
N o N

Order (s,1) >

Table 1: DRGs of Order (s, t)

5 DRGs of Order (s,t)

To seek generalizations, we review classes of DRGs which include bipartite DRGs as a subclass.

Let ' = (X, R) be a DRG of valency k and diameter d. T is said to be triangle-free if a; = 0.

A kite of length i is a 4-tuple zyzw such that O(z,y) = 8(x,2) = d(y,2) = 1, 8(z,w) = i,
and 9(y,w) = 8(z,w) =i — 1. T" is said to be kite-free if there is no kite of any length.

A parallelogram of length i is a 4-tuple zyzw such that d(z,y) = 3(z,w) =1, d(z, z) = i, and
O(z, w) = d(y,w) = (y,z) = i—1. T is said to be parallelogram-free if there is no parallelogram
of any length. The parallelogram-free condition is closely related to the existence of strongly
closed subgraphs. See [10, 14].

K3,1,1 is a graph with four vertices and five edges, and it is nothing but a kite of length 2 and
a parallelogram of length 2. If I does not contain K. 2,1,1, then there exist positive integers s, t
such that every maximal clique is of size s+ 1 and ['(z) is isomorphic to a disjoint union of ¢+ 1
cliques of size s. T is said to be of order (s,t) if thereisno Kp11,a; =s—1and k = s(t+1).

A DRG I' = (X, R) of diameter d is said to be a regular near polygon (RNP) if it is of
order (s,t) for some integers s and ¢, and for every maximal clique L and a vertex z € X with
O(z,L) = i < d, [Ti(z) N L| = 1. If there is no maximal clique L such that L C T4(zx) for

any € X, it is called a regular near 2d-gon (RN 2d-gon). A regular near 4-gon is called a
generalized quadrangle.

6 A Modification of 2-Homogeneity

In order to include larger class of DRGs having a certain rank 2 regularity, we weaken the
2-homogeneity a little and present a generalization of Theorem 4.

Definition 3 Let ' = (X, R) be a triangle-free-DRG of diameter d.

Then I is said to be 2-homogeneous [resp. almost 2-homogeneous] if ~; exists for i = 2,3, ... ,d,
[resp. i =2,3,...,d - 2),

IT'(w) NT(v) N Ty (w)| =
for every w € X, u,v € Ti(w) with 8(u,v) = 2.
Theorem 6 LetI' = (X,R) is o triangle-free almost 2-homogeneous DRG of diameter d > 3

and valency k > 3. If d = 3, in addition assume 72 exists. Then ' is isomorphic to one of the
following.
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(i) 2-homogeneous bipartite:
(i) The folded graph of a binary Hamming graph H(2d + 1,2).
(iii) The folded graph of a binary Hamming graph H(2d,2).
(iv) The Cozeter graph with intersection array: {3,2,2,1;1,1,1,2}.
(v) The dodecahedron with intersection array: {3,2,1,1,1;1,1,1,2,3}.
(vi) The Biggs-Smith graph with intersection array: {3,2,2,2,1,1,1;1,1,1,1,1,1, 3}.

(vii) The coset graph of the extended binary Golay code with intersection array:
{24,23,22,21;1, 2,3,24}4.

(viii) A DRG with parameters cg-1 =1,a; =---=a4_; =0 and d < 6.
(ix) A DRG with parametersc; =i fori=1,2,...,d—1,a1 =+ =ag_3=0,04-9=d—1<
ad-1-
(x) A DRG of valency k > 4 with parameters c4_1 = 1, a1 = -+ = ag_4 = 0, ag-3 < 1,

ai-2 <1 and aq-1 > 0.

Moreover, if v4-1 exits, (iii), (vii), (viii), (ix) are ezcluded and in (x), ¢y = 1, ag_3 = 0, and
a4-2 = ag-1 = 1.

7 Complétely Regular Codes

In Theorem 4 and Theorem 6, the case c; = 2 is essential and the existence of ~;’s is closely
related to the condition that every quadrangle is completely regular. Before we state a result
that states their relation, we give definitions of necessary terminologies. -

Let I = (S, R) be a DRG, and C a nonempty subset of X. Then the width of C is defined
by w(C) = max{9(z,y) | z,y € C}. For ¢ € X, 8(z,C) = min{d(z,y) | y € C}, and
t(C) = max{9(z,C) | z € X} is called the covering radius of C.

A nonempty subset C of a vertex set X is said to be completely regular, or a completely
reqular code, if the following number

mij = |Tj(z) N C|

depends only on i = 8(z,C) and j for all 4,5 € {0,1,2,...,n}.

Let I = (X, R) be a DRG of diameter d, C = {z,y, z,w} a quadrangle, t ~ y ~ z ~ w ~ z,
z # zand y # w. Let u € Nipa(x) NTy(2) with i + 2 < d. Then |Ti(z) N C| = 1, and the
following proposition is straightforward.

Proposition 7 LetT' = (X, R) be a DRG of diameter d > 3. Then the following are equivalent.

(i) There is a quadrangle, and for every quadrangle C and a vertez u € X with 8(u,C) =i <
d-2, %(u,C) = Ty(v)NC|=1.

(ii) For all vertices z,y € X with 8(x,y) = 2 and a vertez u € X with 8(z,u) = d(y,u) =i <
d-2,7v(z,y;u) = I'(z) NT(y) NTi—1(v)| =1, a1 =az=+-=ag2=0 and cy = 2.

4This is an almost 2-homogeneous bipartite graph. Such graphs were classified by B. Curtin [4] and A. Jurisi¢,
J. H. Koolen and §. Miklavi¢ [5]. But both of the results do not contain this graph.
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Since the case (ii) above is a special case of Theorem 6, we have the following as a corollary.

Corollary 8 LetT = (X, R) be a DRG of diameter d > 4. Suppose there is a quadrangle, and
every quadrangle is a completely reqular code. Then one of the following holds.

(i) The binary Hamming graph H (d,2).
(ii) The folded graph of a binary Hamming graph H(2d + 1, 2).
(iii) The folded graph of o binary Hamming graph H(2d, 2).

(iv) The coset graph of the extended binary Golay code with intersection array:
{24,23,22,21;1,2,3,24).

Since a quadrangle is a strongly regular graph, it is natural to ask about the DRGs having

completely regular strongly regular subgraphs. Here by strongly regular graphs we mean DRGs
of diameter two, hence connected.

Theorem 9 LetI' = (X,R) be a parallelogram-free-DRG of diameter d > 4 such that by > b
and az # 0. Suppose every strongly closed subgraph C of diameter 2 is completely regular. Then
for every pair of vertices z,y at distance d — 1, T has a strongly closed subgraph Y of diameter
d—1 containing = and y and Y is isomorphic to a Hamming graph H(d — 1,m) for somem > 2
or a dual polar graph.

In general the covering radius satisfies t(C) = d — w(C). But if equality is attained, we have
an algebraic characterization of completely regular codes.

Theorem 10 ([2, 11]) Let T = (X, R) be a DRG of diameter d, and C a nonempty subset of
X. Let '

po) = 37082 ¢ iy
C =T i
X im0 ki ,
where 1y = |{(z,y) € C x C | 8(z,y) = i}. If pc(A) has w(C) roots among the eigenvalues of
T, then C is completely regular of covering radius d — w(C).

H. Tanaka [12] and others classified completely regular codes of covering radius d — w(C)
under an extra condition, i.e., w + w* = d, for several classes of DRGs. When I is a Hamming
graph or a dual polar graph, such completely regular codes are strongly closed. As an application
to the previous theorem, we obtain a kind of the converse of their results.

Theorem 11 LetT' = (X, R) be a parallelogram-free-DRG of order (s,t) and diameter d 2 4.
Suppose by > by and ay # 0. Let g =cz2 — 1. Then the following are equivalent.

(1) There is a completely regular code C of covering radius d—2 such that the induced subgraph
’ on C is a strongly regular graph.

(ii) Every strongly closed subgraph of diameter 2 is completely regular with covering radius
d — 2 and that it is a generalized quadrangle.

(iii) ¢ % 0 and T has eigenvalues —t — 1 and s — t/q.

(iv) T is isomorphic to a Hamming graph H(d, m) for some m > 2 or a dual polar graph.
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8 Remarks

For the case ¢ = 1, much stronger result stated in Corollary 14 below holds that is a direct
consequence of Corollary 13 based on Theorem 12 of K. Nomura.

Theorem 12 (Nomura [6]) Let I' be a DRG of order (8,t), s > 1, diameter d > 3 with
parameters ¢; = i for i = 1,2,...,e and a; = i(s — 1) fori=1,2,...,e = 1 for some e with
3 < e<d. Then there is a covering 6 : H(t+1,s + 1) — I with the following properties. For a
vertez u of I', C = 6~1(u) is an e-error correcting completely regular code with covering radius
d. Moreover ife=d, ore=d—1, thend=t+1 andT is isomorphic to H(d, s + 1).

Although s = 3 is not included in the original paper, we can follow the same line of the proof
if " is known to be of order (s,t). In the casee =d—1, C is a uniformly packed code. By the
classification result of H. van Tilborg in [13], we obtain the assertion as e > 3.

Corollary 13 LetT be a parallelogram-free-DRG of order (8,t) withc3 =2, ag = 2(s — 1) and
c3 =3 with s > 1. If the diameter d > 3, then T is isomorphic to the Hamming graph H(d, q).

Corollary 14 LetT be a parallelogram-free-DRG of order (8,t) with c; = 2. SupposeT contains
a strongly regular subgraph with parameters (k, A\, p). If k # p and m; 5 = |T'j(z) N C| depends
only on i = 8(z,C) and j whenever (i,5) = (1,1),(1,2) or (2,1). ThenT is isomorphic to the
Hamming graph H(d, q).

Finally we list possible further generalizations of the results in this article.

Problems 1. (Generalizations)
1. Characterize bipartite Q-polynomial DRGs by rank 2-structure.
2. Characterize Q-polynomial regular near polygons by rank 2-structure.
3. Characterize DRGs with r = r(I') = £(c1,a;,b) > 2 by rank (r + 1)-structure.
4. Let C be a strongly closed completely regular of width at least two. Find a condition that
v = |Tj(u) N C| = 1, whenever d(u, C) = j.

5. Classify regular near polygons of order (s,t) with s > 1 such that cg2=14+¢q¢>1 and
c3=1+qg+g>

Problems II. (Feasible Arrays) We list three types of intersection arrays of interest. Type
(A) has to do with Problem I-5 and Theorem 9. Compare it with Theorem 12. Type (B) is the
case (viii) in Theorem 6, and type (C) is a general form of the cases (vii) and (ix) in the same
theorem. . '

Let [ig=1+q+--+¢71= (),

* .. [ilq d—1, Cd
(A) 0 =1 - [ilg(s=1) - [d=1]g(s—1) aq
s(t+1) st ... b; ces ba—1 *

* 1 .. 9 . d-3 d—2 d-1 ¢4
(B) o o ..~ 0 .. 0 d-1 a4-1 Gaq

k k=1 - k=4 --- k—=d+3 k—2s+3 by; =«
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* 1 . e 1 e 1 Cd—2 Cd-1 €4
(C) 0 §=1 - s~1 . 5—1 ag_9 a4_; ag
s(t+1) st - st oo st by bg-1 =
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