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1 Leonard systems

We begin by recalling the notion of a Leonard system, following [20]. To prepare for our
definition of a Leonard system, we recall a few concepts from linear algebra. Let d denote
a positive integer and let Maty,1(K) denote the K-algebra consisting of all d + 1 by d + 1
matrices that have entries in K. We let K%*! denote the K-vector space of all d + 1 by 1
matrices that have entries in K. We view K%+! as a left module for Matg;(K). We observe
this module is irreducible. Let .4 denote a K-algebra isomorphic to Matgy;(K) and let V
denote an irreducible left .A-module. We remark that V is unique up to isomorphism of
A-modules, and that V' has dimension d + 1. Let A denote an element of A. We say A is
multiplicity-free whenever it has d + 1 mutually distinct eigenvalues in K. Let A denote

a multiplicity-free element of A. Let 6,6,,...,6; denote an ordering of the eigenvalues
of A, and for 0 < ¢ < d put

A-6;1

0<j<d
J#i

where I denotes the identity of .A. We observe (i) AE; = 6;E; (0 < i < d); (ii) EE; =
6B (0 < 4,5 < d); (il) S0 0B = I; (iv) A = 3% 6,E;.. We call E; the primitive

i=0
idempotent of A associated with 6;. It is helpful to think of these primitive idempotents
as follows. Obscrve

V=EV +EV+-...+ EV (direct sum).

For 0 < ¢ < d, E;V is the (one dimensional) eigenspace of A in V associated with the
eigenvalue 6;, and E; acts on V as the projection onto this eigenspace.

Definition 1.1 ([20, Definition 1.4]). By a Leonard system.in A we mean a sequence
® = (A; A% {E}oo; {ENYL,)
that satisfies (i)-(v) below:
(i) Each of A4, A* is a multiplicity-free element in A.
(ii) {Ei}., is an ordering of the primitive idempotents of A.
(iii) {Er}e, is an ordering of the primitive idempotents of A*.
0 ifli—j]>1

0<4,5<d).
40 iflimj=1 OSHISI

(iv) EJAE} = {
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0 ifli—j|>1
40 ifli—j|=1

We refer to d as the diameter of ®, and say ® is over K. We call A the ambient algebra
of ®. For notational convenience, we set E; = E = 0if i <0 or i > d.

Note 1.2. Let & = (4; A*;{E;}%,; {E* t_0) denote the Leonard system from Definition
1.1. Then the sequence ®* = (A*; A; {E;}L; {E:}d.,) is a Leonard system in A.

(v) EA*E, = { (0<ij<d).

2 Balanced bilinear forms

Let & denote the Leonard system from Definition 1.1. Let & = (A’; A*; {E{}&y; {EF'}e,)
denote a Leonard system over K with diameter d’, where d > d'. For any object f that

we associate with ®, we let f’ denote the corresponding obJect for the Leonard system
®'; an example is V' = V().

Definition 2.1. A nonzero bilinear form {{, )) : V x V' — K is said to be balanced with
respect to ®, &’ if (i), (ii) hold below:

(i) There exists an integer p (0 < p < d — d') such that (E}V, EXV') =0ifi—p#j
(0<i<d, 0<j<d)

(i) (BV,E{V) =0ifi<jori>j+d—d (0<i<d, 0<j<d).
We refer to p as the endpoint of {(, )).

The parameter army of the Leonard system & is a sequence of the form p(®) =
({6:}0; {07 Yoo {0}y {03}, ), where 6; (resp. 67) denotes the eigenvalue for A (resp.
A*) associated with E; (resp. E}) for 0 < i < d, and the o;, ¢; (1 € i < d) are
certain nonzero scalars in K. See [22]. The central result of this paper is the following

characterization of the existence of a balanced bilinear form in terms of the parameter
arrays of ® and ®’:

Theorem 2.2. There exists a bilinear form (( ) : V x V' — K that is balanced with

respect to ®, &' and with endpoint p (0 < p < d — d') if and only if the parameter arrays
of d, @' satasfy (i), (ii) below:

(i) There exist scalars £*,¢* € K (£* # 0) such that 8 = 6, +¢ (0<igd).

. ¢,' ¢p+12 ‘ .
i) 2 =-+= (1<igd).
() @i Poi ( )

Moreover, if (i), (ii) hold above, then { , )) is unique up to multiplication by a nonzero
scalar in K.

In [21] the parameter array of a Leonard system is given in parametric form. See
Appendix A. The following result is a restatement of Theorem 2.2 in terms of this form.

Theorem 2.3. Let the parameter array of ® be given as in Theorem A.1. Then there
exists a bilinear form {(, )) : V x V' — K that is balanced with respect to &, & and with
endpoint p if and only if the following (i)-(iii) hold:
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(i) For Caselll, p is even if d is odd; and d — d' is even ifd > 2.

(i) For Case IV, (d', p) € {(1,0), (1,2),(3,0)}.
(iii) The parameter array of ®' is of the following form:
(p(1IC; 7', &', s*, 64,8, 1) where §'s¥ /1" =1~ @pi1/¢ps1 ford =1,
p(Lig, k' B, 11g°, ragP, 5%, %%, 6}, 65, ') for Case I,
p(IA;q,h",1',8',60,6, d') where §'Jr' = gi~4~Pg/r for Case 1A,
p(IL R, B, 11+ p,ra+ p,s+d —d',s* +2p,0,,0%,d)  for Casell,

p(IIA; B, r +p,s +d — d', s, 6;,605,d') for Case 1A,
p(IIB; R¥, 7 + p, &', s* + 2p, 6}, 6%, d') for Case 11B,
p(®) = J p(IIC; 7', &', 8™, 64,605, d') where s's* /1’ = ss*/r for Case 11C,

p(IIL A R ry 4+ p,r2 + p,s —d + d', s* — 2p, 65, 6y',d') for CaseIll, d even,
d’ even, p even;
or Case I11, d odd,
d' odd, p even,
p(IIL A, A, 7o + pyr1 + pys—d + d', s* — 2p, 6, 65',d")  for CaseIll, d even,
d’ even, p odd,
(p(IV; R, R 7, s, 5% 60,63) for Case IV, d' = 3.

Our third result characterizes the Leonard system @' in terms of the balanced bilinear
form ((, ). To state the result we recall a concept from linear algebra. Let V' denote
a vector space over K with finite positive dimension d’ + 1. By a decomposition of V'

we mean a sequence {U:}£, consisting of one-dimensional subspaces of V' such that
Vi=Uy+ U+ + Uy (direct Qllll"l)

Theorem 2.4. Let d' denote a positive integer such that d > d'. Let A' denote a K-
algebra isomomhz’c to Maty41(K) and let V' denote an irreducible left A'-module. Let

{U}e, {UF}E, denote decompositions of V'. Assume there exists a bilinear form ((, ) :
V x V' — K that satisfies (i)-(iii) below:

() There exists an integer p (0 € p € d — d') such that (EXV,UN) =0ifi—p#j
0<i<d, 0<j<d).
(il) (BV,U;) =0 ifi<jori>j+d—d (0<i<d 0<j<d).
(iii) (, ) has full-rank.
With reference to Theorem A.1, we further assume (iv), (v) below:
(iv) For Case Il, p is even if d is odd; and d — d' is even if d' > 2
(v) For Case 1V, (d', p) € {(1,0),(1,2),(3,0)}.

Then there exists a Leonard system & = (A'; A, {E}}Ly; {E¥}E,) in A' such that
EV' = U, EfV' = U} for 0 < i < d. In particular, { , )) is balanced with respect

to ®, ' with endpoznt p. Moreover, this Leonard system is unique up to affine transfor-
mations of A’, A*.
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3 Motivations: Q-polynomial distance-regular graphs

In this section we discuss how balanced bilinear forms arise in the theory of Q-polynomial
distance-regular graphs. We refer the reader to [2, 3, 17] for terminology and background
materials on this topic. Throughout we let I = (X,R) denote a Q-polynomial distance-
regular graph with diameter D. Let C denote the complex number field. Let Matx(C)
denote the C-algebra consisting of all matrices whose rows and columns are indexed by
X and whose entries are in C. Let V = CX denote the vector space over C consisting
of column vectors whose coordinates are indexed by X and whose entries are in C. We
observe Matx(C) acts on V by left multiplication. We endow V with the Hermitian inner
product ( , ) that satisfies (u,v) = u'D for u,v € V, where ¢ denotes transpose and -
denotes complex conjugation. For all y € X, let § denote the element of V with & 1 in the
y coordinate and 0 in all other coordinates. Let Ay = I,Ay,...,Ap € Matx(C) denote the
distance matrices of I and let E, = [X|~!J,Ey,...,Ep denote the primitive idempotents
(in the Q-polynomial ordering) for the Bose-Mesner algebra M = (Ag, A,...,Ap), where
| (resp. J) denotes the identity matrix (resp. all 1’s matrix) in Matx(C). We set A = A,
and recall A generates M.

We briefly recall the Terwilliger algebra of T. Fix a vertex z € X. We call = the base
vertex. For 0 < i < D let E} = E}(z) denote the diagonal matrix in Matx(C) with yy
entry (Ej)y, = (Ai)zy for all y € X. These dual idempotents form a basis for the dual
Bose-Mesner algebra M* = M*(z) of T with respect to . Let A* = A*(z) denote the
diagonal matrix in Matx(C) with yy entry (A*)yy = |X|(E1)zy for all y € X. We recall
A* gencrates M*. The Terwilliger algebra (or subconstituent algebra) T = T(z) of I with
respect to x is the subalgebra of Matx(C) generated by M and M* [17, 18, 19]. Let W C V
denote an irreducible T-module. By the endpoint (resp. dual endpoint) of W we mean
v=mn{i |0<3i< D, EEW # 0} (resp. v* = min{i | 0 < i < D, W # 0}). By
the diameter (resp. dual diameter) of W we mean d = |{i |0<i< D EEW#0} -1
(resp. d@* = [{¢ | 0 < ¢ < D, EW # 0}/ — 1). In fact, by [11, Corollary 3.3] we find
d = d*. We say W is thin whenever dim EfW < 1for 0 < ¢ < D. Suppose W is thin. Then
@ = (Alw; A*lw; {Evtilw}io; {Efe ilw}?io) defines a Leonard system in the C-algebra of
all linear transformations on W, where for all B € T we let Blw denote the action of B
on W (cf. [18, Theorem 4.1]). We say ® is associated with W. We recall the primary
T-module MZ is a unique irreducible T-module in V with diameter D, and moreover it is
thin {17, Lemma 3.6).

Subsets with minimal width plus dual width

Let C denote a proper subset of X. We let X = Xc denote the characteristic vector of C;
ie, x = ZyEC y. Brouwer, Godsil, Koolen and Martin [4] introduced two parameters,
width and dual width, for C. By the width of C we mean w = max{i |0 < i< D, x*A;x #
0}. By the dual width of C we mean w* = max{i | 0 <4 < D, x'E;x # 0}. They showed
w+w* 2 D, and if w+w* = D then C is completely-regular and induces a Q-polynomial
w-class association scheme [4, Section 5]. Subsets with w + w* = D arise quite naturally
when I is associated with a regular semilattice [4, Theorem 5|, and we expect that such
subsets will play a potential role in the theory of Q-polynomial distance-regular graphs.
We remark that subsets with w + w* = D have been applied to Erdds-Ko-Rado theorem
in extremal set theory [13, Theorem 3] and (implicitly) to Assmus-Mattson theorem in
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coding theory [14, Example 5.4]. Now suppose C is connected and satisfies w + w* = D.
Then by [4, Theorem 3] the induced subgraph I'c on C is a (2-polynomial distance-
regular graph with diameter w. Suppose the base vertex z is taken from C. Let M’
denote the Bose-Mesner algebra of I'c and let T’ denote the Terwilliger algebra of I'c
with respect to z. Let @, &' denote the Leonard systems associated with the primary
T-module MZ and the primary T’-module M'Z, respectively. By carefully analyzing some
of the arguments in [4, 10], we will show in a subsequent paper [16] that the bilinear form
€, ) :MZx Mz — C defined by ((u,v)) = (u,7) (u € MZ, v € M'#) is balanced with
respect to @, ® and with endpoint 0. By this fact, for instance, our results will enable
us to explicitly determine when C is connected (so that ¢ is a Q-polynomial distance-
regular graph). Moreover, we will also show that if 0 < w < D then C is convex (i.e.,
geodetically closed) precisely when I' has classical parameters [3, p. 193]. Known families
of Q-polynomial distance-regular graphs with unbounded diameter that have classical
parameters form natural hierarchical structures. Embedding as a subset with w+w* = D
is a special (but very important) case of these structures. The classification of subsets
satisfying w +w* = D is complete for Hamming, Johnson, Grassmann, bilinear forms and
dual polar graphs [4, 13]. Our results will then lead to the classification of such subsets for
Doob, alternating forms, Hermitian forms, quadratic forms and also twisted Grassmann
graphs [6, 8, 1].

Short irreducible modules for the Terwilliger algebra

Recall T = T(z) denotes the Terwilliger algebra of I' with respect to z. Let W denote an
irreducible T-module in V with endpoint v, dual endpoint v* and diameter d. Caughman
[5, Lemma 5.1 showed 2v +d > D, and if 2v + d = D then by the results of [12] we find
W is thin. See also [9] for discussions concerning the case v = 1. Now suppose W satisfies
2v+d = D and pick any y € X such that (, E} ()W) # 0. Let T = T(y) denote the
Terwilliger algebra of ' with respect to y. Let ®, & denote the Leonard systems associated
with the primary T’-module Mg and W, respectively. Then it is easy to show that the
bilinear form ((, )) : M§xW — C defined by {(u,v)) = (u,%) (u € Mj, v € W) is balanced
with respect to ®*, ™ and with endpoint v*. Around 1990 Terwilliger [17, 18, 19] began
the systematic study of thin irreducible T-modules and found how the Leonard systems
associated with these modules are described. We remark Theorem 2.3, when applied
to the above pair of Leonard systems, recovers his results for those modules satisfying
2v +d = D. See (18, Theorem 4.6]. The current approach to Leonard pairs and Leonard
systems was established in Terwilliger’s 2001 paper [20], and since then it has been an
active area of research; so it should be a natural and important project to reconstruct
and extend his theory on thin irreducible modules based on this new treatment. We may
also view this paper as providing the starting point of this project.

A The list of parameter arrays

In this appendix we display all the parameter arrays of Leonard systems. The data in
Theorem A.1 below is from [21], with a change of prescntation to be consistent with
the notation in [2, 17, 18, 19] which we will follow for describing various Q-polynomial
distance-regular graphs in a subsequent paper [16]. In Theorem A.1 the following implicit
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assumptions apply: the scalars 6;,6 (0 < i < d), i, ¢ (1 <5 < d) are contained in K,
and the scalars g, h, h*, ... are contained in the algebraic closure of K.

Theorem A.1 ([21, Theorem 5.16)). Let ® denote the Leonard system from Definition 1.1

and let p(®) = ({8:}dy; {87 }0; {0i}Ly; {#:}L,) denote the parameter array of ®. Then

at least one of the following cases 1, IA, 11, IIA, 1IB, IIC, III, IV hold (the expressions
p(.;...) below are labels):

(D) p(®) = p(L;g, b, h*, 71,72, 5,5", 60,65, d) where ryry = s5"g%+1,
0; = 6o + h(1 - ¢*)(1 - sg**1)g~,
6 =03+ h*(1 — g)(1 — s*gitlyg
for0<i<d, and
i = hh*q =2 (1 - ¢f)(1 - ¢4 1) (1 = r1g)) (1 — rag),

g = | PA°@ %1 = g')(1 = ¢4 ) (ry — 5°¢*)(rz - 8°") /5" if s* #0,
4 hh' d+2— 21(1__ )(1 t d— 1)(8—7‘1(]1 -d— l__rzqz—-d-l) if3‘=0

for1<igd.
(IA) p(‘b) = P(IA;q,h',Ty 3)001061‘1) where
6; = 6 — sq(1 - ¢*),
07 = 05+ h*(1 — g')g
for0<i<d and
0 = _rh-tql—i(l - q‘l)(l i—d—'l)’
b = h-qd+2~2i(1 q )(1 - qi-—d 1)( :-d 1)
forl1 €i<gd.
(I1) p(®) = p(1I; hyh*,11,72,8,58%,60,05,d) where ry + 15 =s+8* +d+1,
8; = 6o + hi(i + 1 + s),
6; =0 +h*i(i+1+s%)
for0<i<d, and
@i = hh*i(i —d — 1)(i + r1)(i + rg),
¢i = hh*i(i —d —1)(i + s* —ry)(i + 8" —1p)
forl1 €i<gd.
(IIA) p(®) = p(I1A; h,r, s, 8%, 6p,63,d) where

0; =60+ hi(i +1+3s),
0; =65 + s*i

for0<i<d, and
wi = hs*i(i —d - 1)(i + r),
bi=hs"i(i-d-1)(i+r—-s-d-1)
for1 <i<d.
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(IIB) p(®) = p(1IB; h*,r,s, s*, 60,05, d) where

8; = 8y + si,
O7 =65+ h*i(t +1+s")

for0<i<d, and

wi=h*si(i—d-1)(i+r),
¢i=—h*si(i—d-1)(i+s" —-r)

fori<i<d.
(IIC) p(®) = p(IIC; T, s, 8*, 60,65, d) where

6; = by + st,
67 = 6p + s*i

for0<i<d, and

pi=ri(i—d-1),
¢i=(r—ss")i(i—d-1)

for1 <i<d.
(III) p(®) = p(IIL; hy h*,71,72,8,8%,60,05,d) wherer; + 12 = -s—s* +d +1,

8; =6+ h(s =1 + (1 - s+ 2i)(-1)"),
07 =05 +h*(s" ~ 1+ (1 - 8" + 20)(-1))

for0<i<d, and

[ —4hh*i(i +71) if i even, d even,
_ J—4hh*(i—d-1)(i+1r3) ifi odd, d even,
i = —4hh*i(i—d - 1) if i even, d odd,
| —4hh* (i + 71)(i + 72) if i odd, d odd,
(4hh*i(i — s* — 1) if i even, d even,
b = | 4hh*(i—d—-1)(i — 8" —ry) if i odd, d even,
Y ) —4hhri(i—d - 1) if i even, d odd,
\—4hh*(i — s —7)(i —s* — 1) ifi odd, d odd

for1 €i<d.
(IV) p(®) = p(IV; h, h*, 1,3, 8", 60,05) where char(K) = 2, d = 3, and

61=60+h(s+1), 62 =60 + h, 63 = 6y + hs,

67 =65 + h*(s* +1), 03 = 65 + h*, 63 = 65 + h*s*,

w1 = hh*r, w2 = hh*, w3 =hh*(r + 8+ s*),

¢1 = hh*(r + s(1 + s*)), ¢z =hh", ¢3 = hh*(r + s*(1 + 3)).
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