Simple 3-designs on q + 2 points constructed from $PSL(2, q), q \equiv 3 \pmod{4}$

Izumi Miyamoto University of Yamanashi

Let $X = \{0, 1, 2, \dots, n\}$. Let B be a set of k-point subsets of X. Here B may be a multi-set. Then (X, B) is called a $t - (n + 1, k, \lambda)$ design if every t-point subset of X is contained exactly λ elements of B. An element of B is called a block. A design (X, B) is called simple, if there are no repeated blocks in B.

Let G be a permutation group on X.

t-Transitive and *t*-Homogeneous:

Let x_1, x_2, \cdots, x_t and y_1, y_2, \cdots, y_t be a couple of t points of X.

$$G \text{ is } t\text{-transitive.}$$

$$\exists g \in G \text{ such that } x_1^g = y_1^g, x_2^g = y_2, \cdots, x_t^g = y_t.$$

$$G \text{ is } t\text{-homogeneous.}$$

$$\exists g \in G \text{ such that } \{x_1^g, x_2^g] \cdots, x_t^g\} = \{y_1, y_2, \cdots, y_t\}$$

Examples

G = PGL(2, q), projective general linear group over a field of q elements.

 \Rightarrow G is 3-transitive.

G = PSL(2, q), projective special linear group over a field of q elements, q odd.

 \Rightarrow G is 2-transitive.

G is 3-homogeneous if $q = 3 \mod 4$.

Action of G in k-point subsets:

Let $b = \{x_1, x_2, \cdots, x_k\}$, a k-point subset of X. We denote $\{x_1^g, x_2^g, \cdots, x_k^g\} = \{x_1, x_2, \cdots, x_k\}^g$.

Let $B = \{b^g | g \in G\}$, the orbit of G containing b.

G is t-homogeneous. $\implies (X, B)$ is a simple t-design.

Here we assume G is t-homogeneous on $\{1, 2, \dots, n\} = X \setminus \{0\}$ and G leaves the point 0 fixed. We want to choose orbits B_0 , B_1 , B'_1 of G on (k+1)-point subsets so that

> $b_0 \in B_0 \implies 0 \in b_0$ $b_1 \in B_1 \cup B'_1 \implies 0 \notin b_1$ $c_0 B_0 \cup c_1 B_1 \cup c'_1 B'_1 \text{ becomes the blocks of a t-design,}$

where $c_j B_j$ means every subset in B_j is repeated c_j times. Here we quote a theorem which will be shown in [4]

Theorem 1 Let $B = c_0 B_0 \cup c_1 B_1 \cup c'_1 B'_1$, where c_0 , c_1 and c'_1 satisfy

$$\frac{(n-k)c_0}{(k+1)g_0} = \frac{c_1}{g_1} + \frac{c_1'}{g_1'}.$$

Then (X, B) is a t- $(n + 1, k + 1, \lambda)$ design with

$$\lambda = \frac{c_0 g \begin{pmatrix} k \\ t-1 \end{pmatrix}}{g_0 \begin{pmatrix} n \\ t-1 \end{pmatrix}}.$$

In particular, if $c'_1 = 0$, then $B = c_0 B_0 \cup c_1 B_1$ and the above condition becomes

$$\frac{c_1}{c_0} = \frac{g_1(n-k)}{g_0(k+1)}.$$

Examples

G = PSL(2,q) or PGL(2,q) acting on projective line $\mathbf{P} = \{1, 2, \dots, q+1\}$. If G = PSL(2,q), we assume that $q = 3 \mod 4$ so that G is 3-homogeneous. $G_{1,2}$ = stabilizer of points 1 and 2 in G We assume $q = 1 \mod 6$, which implies 3|q-1. So $G_{1,2}$ has subgroups of order 3 and $\frac{1}{2}(q-1)$ having $\frac{1}{3}(q-1)$ orbits of length 3 and of order $\frac{1}{2}(q-1)$ having two orbits of length $\frac{1}{2}(q-1)$ respectively. We use some of these orbits to construct blocks. Set $b_0 = \bigcup \frac{1}{6}(q-7)$ orbits of length $3 \bigcup \{0,1,2\}$ $b_1 = \bigcup \frac{1}{6}(q-1)$ orbits of length 3 $b'_1 = a$ orbit of length $\frac{1}{2}(q-1)$ Then the block size is $k+1 = \frac{1}{2}(q-1)$. The orders of the stabilizers of the blocks b_0 , b_1 , b'_1 should be $g_0 = 3c_0$, $g_1 = 3c_1$, $g'_1 = \frac{c'_1}{2}(q-1)$ Set $B = c_0 B_0 \cup c_1 B_1 \cup c'_1 B'_1$. Then we have

$$\frac{(n-k)c_0}{(k+1)g_0} = \frac{q+1-\frac{1}{2}(q-3)}{\frac{1}{2}(q-1)\times 3} = \frac{q+5}{3(q-1)}$$
$$\frac{c_1}{g_1} + \frac{c_1'}{g_1'} = \frac{1}{3} + \frac{2}{q-1} = \frac{q+5}{3(q-1)}$$

 $|G| = \frac{1}{m}(q+1)q(q-1)$, where m = 2 or 1 according as G = PSL(2,q) or PGL(2,q).

$$\lambda = \frac{(q-1)(q-3)(q-5)}{12m}$$

Theorem 2 [3] $(\mathbf{P} \cup \{0\}, B)$ is a 3- $(q+2, \frac{1}{2}(q-1), \frac{1}{12m}(q-1)(q-3)(q-5))$ design.

G is as above. Similarly we chose 3 subsets of $\mathbf{P} \cup \{0\}$ of size $\frac{1}{2}(q+1)$ so that the stabilizers are of order $g_0 = c_0$, $g_1 = c_1$, $g'_1 = \frac{c'_1}{2}(q+1)$

Theorem 3 ($\mathbb{P} \cup \{0\}, B$) is a 3- $(q+2, \frac{1}{2}(q+1), \frac{1}{4m}(q-1)^2(q-3))$ design.

Simple designs

Let G = PSL(2,q), $q \equiv 3 \pmod{4}$. From Theorem 2, if there exist b_0 , b_1 and b'_1 of size $\frac{1}{2}(q-1)$ such that

$$|G_{b_0\setminus\{0\}}| = 3, |G_{b_1}| = 3, |G_{b'_1}| = \frac{1}{2}(q-1),$$

then we have a simple 3-design.

Similarly from Theorem 3, if there exist b_0 , b_1 and b'_1 of size $\frac{1}{2}(q+1)$ such that

$$|G_{b_0\setminus\{0\}}| = 1, \quad |G_{b_1}| = 1, \quad |G_{b'_1}| = \frac{1}{2}(q+1),$$

then we have a simple 3-design.

The number of k-subsets with stabilizer group precisely H for a subgroup H of PSL(2,q) is determined in [2] if $k \not\equiv 0, 1 \pmod{p}$, where q is a power of a prime p and $q \equiv 3 \mod 4$. The number is denoted by $g_k(H)$. A cyclic group of order l, a dihedral group of order 2l, an alternating and a symmetric group

of degree 4 will be denoted by C_l , D_{2l} , A_4 and S_4 respectively. A_5 denotes a alternating group of degree 5.

For Theorem 2 it suffices to show that

$$g_{\frac{1}{2}(q-3)}(C_3) > 0, \quad g_{\frac{1}{2}(q-1)}(C_3) > 0 \text{ and } g_{\frac{1}{2}(q-1)}(C_{\frac{1}{2}(q-1)}) > 0$$

For Theorem 3,

$$g_{\frac{1}{2}(q-1)}(C_1) > 0 \quad g_{\frac{1}{2}(q+1)}(C_1) > 0 \quad g_{\frac{1}{2}(q+1)}(C_{\frac{1}{2}(q+1)}) > 0$$

Let $f_k(H)$ denotes the number of k-subsets left invariant by a subgroup H and let $\mu(l)$ denotes the Möbius function. In Table 2 in [2] $f_k(H)$ are obtained for various subgroups H of PSL(2,q). In Theorem 24, 25 and 26 in [2] $g_k(C_1)$, $g_k(C_2)$ and $g_k(C_3)$ are expressed with $f_k(H)$. So we have the following.

$$g_{\frac{1}{2}(q-3)}(C_3) = -\frac{q-1}{3}f_{\frac{1}{2}(q-3)}(A_4) + f_{\frac{1}{2}(q-3)}(C_3) - \frac{q-1}{6}f_{\frac{1}{2}(q-3)}(D_6)$$

$$g_{\frac{1}{2}(q-1)}(C_3) = \sum_{\substack{l|\frac{1}{6}(q-1)}} \mu(l)f_{\frac{1}{2}(q-1)}(C_{3l}),$$

where p_1 is the smallest prime factor of $\frac{1}{6}(q-1)$.

$$g_{\frac{1}{2}(q-1)}(C_1) = f_{\frac{1}{2}(q-1)}(C_1) + \sum_{l>1, l|\frac{1}{2}(q-1)} \frac{q(q+1)}{2} \mu(l) f_{\frac{1}{2}(q-1)}(C_l)$$

$$g_{\frac{1}{2}(q+1)}(C_{1}) = f_{\frac{1}{2}(q+1)}(C_{1}) + \frac{q(q^{2}-1)}{12}(2f_{\frac{1}{2}(q+1)}(A_{4}) - 6f_{\frac{1}{2}(q+1)}(S_{4}) - 12f_{\frac{1}{2}(q+1)}(A_{5}) + f_{\frac{1}{2}(q+1)}(D_{4})) + \sum_{l>1,l|(q\pm1)/2} \frac{q(q\mp1)}{2}\mu(l)f_{\frac{1}{2}(q+1)}(C_{l}) - \frac{q(q^{2}-1)}{4}\sum_{l>2,l|(q+1)/2}\mu(l)f_{\frac{1}{2}(q+1)}(D_{2l})$$

In order to see $g_k(H) > 0$, we use the following lemmas.

Lemma 4 Let m and t be integers greater than 1. Assume t divides m. Then

(1)
$$\binom{2m}{m} > 2^{m-\frac{m}{t}} \left(\frac{t+1}{2}\right)^{\frac{m}{t}} \binom{2m/t}{m/t}$$

(2) $\binom{4m+2}{2m} > 2^{2m} \binom{2m+1}{m}$ and $\binom{4m}{2m} > 2^{2m-1} \binom{2m}{m}$

Lemma 5 Let p_1, p_2, \dots, p_r be the prime factors of m. Then

$$-\sum_{i=1}^r \binom{2m/p_i}{m/p_i} \le \sum_{l>1,l|m} \mu(l) \binom{2m/l}{m/l} < -\frac{7}{8} \sum_{i=1}^r \binom{2m/p_i}{m/p_i}$$

Lemma 6

$$\sum_{l>1,l|m} \mu(l) igg({2m/l \ m/l}igg) > -{3\over 2} igg({2m/p_1 \ m/p_1}igg) \,,$$

where p_1 is the smallest prime factor of m.

The proofs will be shown in [4]. Then we will have the following simple designs.

Theorem 7 If $q \equiv 7 \mod 12$ and q > 19, then there exists a simple 3- $(q+2, \frac{1}{2}(q-1), \frac{1}{24}(q-1)(q-3)(q-5))$ design ($\mathbf{P}\cup\{0\}, B$), where B consists of three orbits B_0 , B_1 and B'_1 of PSL(2,q) acting on the $\frac{1}{2}(q-1)$ -point subsets of $\mathbf{P}\cup\{0\}$ such that $0 \in b_0$, $0 \notin b_1$ and $0 \notin b'_1$ for $b_0 \in B_0$, $b_1 \in B_1$ and $b'_1 \in B'_1$ and that the stabilizers of them are C_3 , C_3 and $C_{\frac{1}{2}(q-1)}$ respectively.

Theorem 8 If $q \equiv 3 \mod 4$ and $q \geq 19$, then there exists a simple 3- $(q+2,\frac{1}{2}(q+1),\frac{1}{8}(q-1)^2(q-3))$ design $(\mathbf{P}\cup\{0\},B)$, where B consists of three orbits B_0 , B_1 and B'_1 of PSL(2,q) acting on the $\frac{1}{2}(q+1)$ -point subsets of $\mathbf{P}\cup\{0\}$ such that $0 \in b_0$, $0 \notin b_1$ and $0 \notin b'_1$ for $b_0 \in B_0$, $b_1 \in B_1$ and $b'_1 \in B'_1$ and that the stabilizers of them are C_1 , C_1 and $C_{\frac{1}{2}(q+1)}$ respectively.

We note that it is a popular method to construct designs using some orbits of permutation groups, if the number of the points is fixed. For instance, readers may refer to [1]. We also note that $g_{\frac{1}{2}(q-3)}(C_3) = 0$ if q = 19 below. So we will construct a simple design in the following section from PSL(2, 19)by a similar method shown in Theorem 1.

$$g_{\frac{1}{2}(q-3)}(C_3) = -\frac{q-1}{3}f_{\frac{1}{2}(q-3)}(A_4) + f_{\frac{1}{2}(q-3)}(C_3) - \frac{q-1}{6}f_{\frac{1}{2}(q-3)}(D_6)$$

= $-\frac{q-1}{3}\binom{(q-7)/12}{(q-19)/24} + \binom{(q-1)/3}{(q-7)/6} - \frac{q-1}{6}\binom{(q-1)/6}{(q-7)/12}$
= $-6\binom{1}{0} + \binom{6}{2} - 3\binom{3}{1} = -6 + 15 - 9 = 0$

Experiments

G = PSL(2, 19) = PrimitiveGroup(20, 1) of order 3420. G is 3-homogeneous on $P = \{1, 2, \dots, 20\}$. Here we consider the additional point 21. So $X = P \cup$ $\{21\}$. We take the following 4 9-point subsets of X, $\{1, 2, 3, 4, 9, 10, 15, 16, 21\}$, $\{1, 2, 3, 6, 9, 12, 15, 18, 21\}$, $\{3, 4, 5, 9, 10, 11, 15, 16, 17\}$ and $\{3, 5, 7, 9, 11, 13, 15, 17, 19\}$. The stabilizers of these subsets are of order 6, 6, 3 and 9, respectively. Let B be the union of the 4 orbits of G acting on the 9-point subsets of X containing these 4 subsets. Then B becomes the block set of a 3-(21, 9, 168) design.

G = PGL(2, 25) =PrimitiveGroup(26, 2). We can choose the blocks of size $\frac{1}{2}(q-1) = 12$ so that the stabilizers are of order 6, 6, 24. So by Theorem $2 c_0 = c_1 = c'_1 = 2$ and $B = 2B_0 \cup 2B_1 \cup 2B'_1$. So, if we set $B = B_0 \cup B_1 \cup B'_1$, we have a simple 3-(27,12,440) design.

G = PGL(2, 25) =PrimitiveGroup(26, 2). We can choose the blocks of size $\frac{1}{2}(q+1) = 13$ so that the stabilizers are of order 2, 2 and 26. So by Theorem 3 $c_0 = c_1 = c'_1 = 2$. We have a simple 3-(27,13,1584) design if we set $B = B_0 \cup B_1 \cup B'_1$.

We used GAP system in our experiments.

References

- [1] A. Betten, E. Haberberger, R. Laue, A. Wassermann, DISCRETA a program to construct t-designs with prescribed automorphism group. http://www.mathe2.uni-bayreuth.dc/discreta/
- [2] P. J. Cameron, H.R.Maimani, G.R.Omidi and B. ayfeh-Rezaie, 3-Designs from PSL(2, q). Discrete Math., 306 (2006) 3063-3073.
- [3] I. Miyamoto, A construction of designs from PSL(2,q) and PGL(2,q), $q \equiv 1 \pmod{6}$, on q + 2 points. to appear in Algorithmic Algebraic Combinatorics and Gröbner Bases, edited by G.Jones, A. Jurisic, M. Muzychuk and I. Ponomarenko Springer.
- [4] I. Miyamoto, A construction of designs on n + 1 points from multiply homogeneous permutation groups of degree n. in preparation.