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Let $X=\{0,1,2, \cdots , n\}$ . Let $B$ be a set of k-point subsets of $X$ . Here
$B$ may be a multi-set. Then (X, $B$ ) is called a $t-(n+1, k, \lambda)$ design if every
t-point subset of $X$ is contained exactly $\lambda$ elements of $B$ . An element of $B$

is called a block. A design (X, $B$ ) is called simple, if there are no repeated
blocks in $B$ .

Let $G$ be a permutation group on $X$ .
t-Transitive and t-Homogeneous:

Let $x_{1},$ $x_{2},$ $\cdots$ $x_{t}$ and $y_{1},$ $y_{2},$ $\cdots$ , $y_{t}$ be a couple of $t$ points of $X$ .

$\exists g\in G$ such
$thatx_{1}^{g}=Gi_{S}t- tr_{\theta_{1^{X_{2}^{g}=y_{2}}}^{nsitive}}\ldots$

, $x_{t}^{g}=y_{t}$ .

$\exists g\in G$ such
$that\{x_{1}^{g}, x_{2}^{g},\cdots,x_{t}^{g}\}=Gist- h_{0}\gamma^{ogeneous}\cdot\{y_{1}, y_{2}, \cdots, y_{t}\}$

.
Examples

$G=PGL(2, q)$ , projective general linear group over a field of $q$

elements.
$\Rightarrow G$ is 3-transitive.

$G=PSL(2, q)$ , projective special linear group over a field of $q$

elements, $q$ odd.
$\Rightarrow G$ is 2-transitive.

$G$ is 3-homogeneous if $q=3$ mod 4.

Action of $G$ in k-point subsets:
Let $b=\{x_{1}, x_{2}, \cdots , x_{k}\}$ , a k-point subset of $X$ . We denote
$\{x_{1}^{g}, x_{2}^{g}, \cdots, x_{k}^{g}\}=\{x_{1}, x_{2}, \cdots, x_{k}\}^{g}$ .
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Let $B=\{b^{g}|g\in G\}$ , the orbit of $G$ containing $b$ .
$G$ is t-homogeneous. $\Rightarrow(X, B)$ is a simple t-design.

Here we assume $G$ is t-homogeneous on $\{$ 1, 2, $\cdots$ , $n\}=X\backslash \{0\}$ and $G$ leaves
the point $0$ fixed. We want to choose orbits $B_{0},$ $B_{1},$ $B_{1}’$ of $G$ on $(k+1)$-point
subsets so that

$b_{0}\in B_{0}$ $\Rightarrow 0\in b_{0}$

$b_{1}\in B_{1}\cup B_{1}’$ $\Rightarrow 0\not\in b_{1}$

$c_{0}B_{0}\cup c_{1}B_{1}\cup d_{1}B_{1}’$ becomes the blocks of a t-design,
where $c_{j}B_{j}$ means every subset in $B_{j}$ is repeated $c_{j}$ times. Here we quote a
theorem which will be shown in [4]

Theorem 1 Let $B=c_{0}B_{0}\cup c_{1}B_{1}\cup c_{1}’B_{1}’$ , where $c_{0},$ $c_{1}$ and $c_{1}’$ satisfy

$\frac{(n-k)c_{0}}{(k+1)g_{0}}=\frac{c_{1}}{g_{1}}+\frac{c_{1}’}{g_{1}}$ .

Then (X, $B$ ) is a $t-(n+1, k+1, \lambda)$ design with

$\lambda=\frac{c_{0}g(t-k1)}{g_{0}(t-n1)}$ .

In particular, if $c_{1}’=0_{f}$ then $B=c_{0}B_{0}\cup c_{1}B_{1}$ and the above condition becomes

$\frac{c_{1}}{c_{0}}=\frac{g_{1}(n-k)}{g_{0}(k+1)}$ .

Examples
$G=PSL(2, q)$ or $PGL(2, q)$ acting on projective line $P=\{1,2, \cdots, q+1\}$ .
If $G=PSL(2, q)$ , we assume that $q=3$ mod 4 so that $G$ is 3-homogeneous.
$G_{1,2}=$ stabilizer of points 1 and 2 in $G$ We assume $q=1$ mod 6, which
implies $3|q-1$ . So $G_{1,2}$ has subgroups of order 3 and $\frac{1}{2}(q-1)$ having- $(q-1)$

orbits of length 3 and of order $\sim 12(q-1)$ having two orbits of lengh $\frac{1}{2}(q-1)$

respectively. We use some of these orbits to construct blocks. Set $b_{0}=$

$\cup\frac{1}{6}(q-7)orf)it_{\iota}\backslash$, of $leIlgt,h3\cup\{0,1,2\}b_{1}=\cup\frac{1}{6}(q-1)$ orbits of $1(^{J,}Ilgtl13$

$b_{1}’=a$ orbit of lengh $\frac{1}{2}(q-1)$ Then the block size is $k+1= \frac{1}{2}(q-1)$ . The
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orders of the stabilizers of the blocks $b_{0},$ $b_{1},$ $b_{1}’$ should be $g_{0}=3c_{0}$ , $g_{1}=3c_{1}$ ,
$g_{1}’=^{c_{2}’}\lrcorner(q-1)$ Set $B=c_{0}B_{0}\cup c_{1}B_{1}\cup c_{1}’B_{1}’$ . Then we have

$\frac{(n-k)c_{0}}{(k+1)g_{0}}=\frac{q+1-\frac{1}{2}(q-3)}{\frac{1}{2}(q-1)\cross 3}=\frac{q+\ulcorner 0}{3(q-1)}$

$\frac{c_{1}}{g_{1}}+\frac{d_{1}}{g_{1}}=\frac{1}{3}+\frac{2}{q-1}=\frac{q+5}{3(q-1)}$

$|G|= \frac{1}{m}(q+1)q(q-1)$ , where $m=2$ or 1 according as $G=PSL(2, q)$ or
$PGL(2, q)$ .

$\lambda=\frac{(q-1)(q-3)(q-5)}{12m}$

Theorem 2 [3] $(P\cup\{0\}, B)$ is a $3-(q+2, \frac{1}{2}(q-1),$ $\frac{1}{12m}(q-1)(q-3)(q-5))$

design.

$G$ is as above. Similarly we chose 3 subsets of $P\cup\{0\}$ of size - $(q+1)$ so
that the stabilizers are of order $g_{0}=c_{0}$ , $g_{1}=c_{1}$ , $g_{1}’=\lrcorner^{c_{2}’}(q+1)$

Theorem 3 $(P\cup\{0\}, B)$ is a $3-(q+2, \frac{1}{2}(q+1),$ $\frac{1}{4m}(q-1)^{2}(q-3))$ design.

Simple designs

$LetGandb_{1}=PSL(2)q),q\equiv 3ofsize\frac{1}{2}(q-1)such(mod 4)that$
From Theorem 2, if there exist $b_{0},$ $b_{1}$

$|G_{b_{O}\backslash \{0\}}|=3$ , $|G_{b_{1}}|=3$ , $|G_{b_{1}’}|= \frac{1}{2}(q-1)$ ,

then we have a simple 3-design.
Similarly from Theorem 3, if there exist $b_{0},$ $b_{1}$ and $b_{1}’$ of size $\frac{1}{2}(q+1)$ such

that
$|G_{b_{O}\backslash \{0\}}|=1$ , $|G_{b_{1}}|=1$ , I $G_{b_{1}’}|= \frac{1}{2}(q+1)$ ,

then we have a simple 3-design.
The number of k-subsets with stabilizer group precisely $H$ for a subgroup

$H$ of $PSL(2, q)$ is determined in [2] if $k\not\equiv O,$ $1(mod p)$ , where $q$ is a power of
a prime $p$ and $q\equiv 3$ mod 4. The number is denoted by $g_{k}(H)$ . A cyclic group
of order $l$ , a dihedral group of order $2l$ , an alternating and a symmetric group
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of degree 4 will be denoted by $C_{l},$ $D_{2l},$ $A_{4}$ and $S_{4}$ respectively. $A_{5}$ denotes a
alternating group of degree 5.

For $T1_{11^{\backslash },OIt^{\backslash },II1}2$ it suffices to show that

$g_{\frac{1}{2}(q-3)}(C_{3})>0$ , $g_{\frac{1}{2}(q-1)}(C_{3})>0$ and $g_{1}(C_{\frac{1}{2}(q-1)})z^{(q-1)}>0$

For Theorem 3,

$g_{\frac{1}{2}(q-1)}(C_{1})>0g_{\iota_{(q+1)}}(C_{1})>02g_{A_{(q+1)}}(C_{\frac{1}{2}(q+1)})>02$

Let $f_{k}(H)$ denotes the number of k-subsets left invariant by a subgroup $H$ and
$1et/\iota(l)$ denotes the M\"obius function. In Table 2 in [2] $f_{k}(H)$ are obtained for
various subgroups $H$ of $PSL(2, q)$ . In Theorem 24, 25 and 26 in [2] $g_{k}(C_{1})$ ,
$g_{k}(C_{2})$ and $g_{k}(C_{3})$ are expressed with $f_{k}(H)$ . So we have the following.

$g_{\frac{1}{2}(q-3)}(C_{3})$ $=$ $-L^{-\underline{1}}3f_{\frac{1}{2}(q-3)}(A_{4})+f_{2}\iota_{(q-3)}(C_{3})-a_{\frac{-1}{6}f_{A_{(q-3)}}(D_{6})}$

$g_{\frac{1}{2}(q-1)}(C_{3})$ $=$
$\sum_{l|\frac{1}{6}(q-1)}\mu(l)f_{\frac{1}{2}(q-1)}(C_{3l})$

,

where $p_{1}$ is the smallest prime factor of $\frac{1}{6}(q-1)$ .

$g_{\frac{1}{2}(q-1)}(C_{1})$ $=$
$f_{\frac{1}{2}(q-1)}(C_{1})+ \sum_{l>1,l|_{2}^{1}(q-1)}$

妊$g_{L+\lrcorner D_{\mu(l)f_{\epsilon^{(q-1)}}(C_{l})}}\iota$

$g_{\frac{1}{2}(q+1)}(C_{1})$ $=$ $f_{\frac{1}{2}(q+1)}(C_{1})$

$+4\mapsto^{-1}1_{(2f_{1}(A_{4})-6f_{\frac{1}{2}(q+1)}(S_{4})-12f_{1}(A_{5})+f_{\frac{1}{2}(q+1)}(D_{4}))}122z^{(q+1)}z^{(q+1)}$

$+ \sum_{l>1,l|(q\pm 1)/2}q\iota_{f\mp\lrcorner 1,2}\mu-4^{2}\mapsto I$

In order to see $g_{k}(H)>0$ , we use the following lemmas.

Lenmna 4 Let $m$ and $t$ be integers greater than 1. Assume $t$ divides $m$ .
Then

(1) $(\begin{array}{l}2mm\end{array})>2^{m-g}t(\frac{t+1}{2})^{\frac{m}{t}}(\begin{array}{l}2m/tm/t\end{array})$

(2) $(\begin{array}{l}+4m22m\end{array})>2^{2m}(\begin{array}{ll}2m +1m \end{array})$ and $(\begin{array}{l}4m2m\end{array})>2^{2m-1}(\begin{array}{l}2mm\end{array})$

96



Lelllllla 5 Let $p_{1},$ $p_{2)}\cdots,$ $p_{r}$ be the prime factors of $m$ . Then

$- \sum_{i=1}^{r}(\begin{array}{l}2m/p_{i}m/p_{i}\end{array})\leq\sum_{l>1,l|m}\mu(l)(_{m/l}^{2m/l})<-\frac{7}{8}\sum_{i=1}^{r}(\begin{array}{l}2m/p_{i}m/p_{i}\end{array})$

Lemma 6
$\sum_{l>1,l|m}\mu(l)(\begin{array}{l}2m/lm/l\end{array})>-\frac{3}{2}(\begin{array}{l}2m/p_{l}m/p_{1}\end{array})$ ,

where $p_{1}$ is the smallest prime factor of $m$ .

The proofs will be shown in [4]. Then we will have the following simple
designs.

Theorem 7 If $q\equiv 7$ mod 12 and $q>19$ , then there exists a simple 3-
$(q+2, \frac{1}{2}(q-1),$ $\frac{1}{24}(q-1)(q-3)(q-5))$ design $(P\cup\{0\}, B)$ , where $B$ consists
of three orbits $B_{0_{f}}B_{1}$ and $B_{1}’$ of $PSL(2, q)$ acting on the $\frac{1}{2}(q-1)$ -point subsets
of $P\cup\{0\}$ such that $0\in b_{0},0\not\in b_{1}$ and $0\not\in b_{1}’$ for $b_{0}\in B_{0_{f}}b_{1}\in B_{1}$ and $b_{1}’\in B_{1}’$

and that the stabilizers of them are $C_{3},$ $C_{3}$ and $C_{\frac{1}{2}(q-1)}$ respectively.

$T1_{1C^{\backslash }}.ore\iota 118$ If $q\equiv 3$ mod 4 and $q\geq 19$ , then there exists a simple 3-
$(q+2, \frac{1}{2}(q+1),$ $\frac{1}{8}(q-1)^{2}(q-3))$ design $(P\cup\{0\}, B)$ , where $B$ consists of
three orbits $B_{0},$ $B_{1}$ and $B_{1}’$ of $PSL(2, q)$ acting on the $\frac{1}{2}(q+1)$ -point subsets
of $P\cup\{0\}$ such that $0\in b_{0},0\not\in b_{1}$ and $0\not\in b_{1}’$ for $b_{0}\in B_{0},$ $b_{1}\in B_{1}$ and
$b_{1}’\in B_{1}’$ and that the stabilizers of them are $C_{1}$ , $C_{1}$ and $C_{\frac{1}{2}(q+1)}$ respectively.

We note that it is a popular method to construct designs using some orbits
of perinutation groups, if the nuniber of the points is fixed. For $i_{l1i^{\backslash }},taI1(:t’$

’

readers may refer to [1]. We also note that $g_{\frac{1}{2}(q-3)}(C_{3})=0$ if $q=19$ below.
So we will construct a simple design in the following section from $PSL(2,19)$

by a similar method shown in Theorem 1.

$g_{1}(C_{3})\tau^{(q-3)}$ $=$ $- L^{-\underline{1}}3\frac{1}{2}$

$-g_{\frac{-1}{3}}(((qq--179))//1224)+(_{(q-7)}^{(q-1)}/36)-L_{\frac{-1}{6}}(\begin{array}{ll}(q -l)/6(q -7)/l2\end{array})$

$-6(\begin{array}{l}l0\end{array})+(\begin{array}{l}62\end{array})-3(\begin{array}{l}31\end{array})=-6+15-9=0$
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Experiments
$G=PSL(2,19)=PrimitiveGroup(20,1)$ of order 3420. $G$ is 3-homogeneous
on $P=\{1,2, \cdots, 20\}$ . Here we consider the additional point 21. So $X=P\cup$

$\{21\}$ . We take the following 49-point subsets of $X,$ $\{1,2,3,4,9,10,15,16,21\}$ ,
{1, 2, 3, 6, 9, 12, 15, 18, 21}, {3, 4, 5, 9, 10, 11, 15, 16, 17} and {3, 5, 7, 9, 11, 13,
15, 17, 19}. The stabilizers of these subsets are of order 6, 6, 3 and 9, re-
spectively. Let $B$ be the union of the 4 orbits of $G$ acting on the 9-point
subsets of $X$ containing these 4 subsets. Then $B$ becomes the block set of a
$3-(21,9,168)$ design.

$G=PGL(2,25)=PrimitiveGroup(26,2)$ . We can choose the blocks of
size $\frac{1}{2}(q-1)=12$ so that the stabilizers are of order 6, 6, 24. So by Theorem
2 $c_{0}=c,1=c_{1}’=2$ and $B=2B_{0}\cup 2B_{1}\cup 2B_{1}’$ . So, if we set $B=B_{0}\cup B_{1}\cup B_{1}’$ ,
we have a simple 3-(27,12,440) design.

$G=PGL(2,25)=PrimitiveGroup(26,2)$ . We can choose the blocks of
size $\frac{\iota}{2}(q+1)=13$ so that the stabilizers are of order 2, 2 and 26. So by
Theorem 3 $c_{0}=c_{1}=c_{1}’=2$ . We have a simple 3-(27,13,1584) design if we
set $B=B_{()}\cup B_{1}\cup B_{1}’$ .

We used GAP system in our experiments.
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